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Preface

A Note on Using this Text
Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay beƩer understand what you will find beyond this
page.

This text comprises a three–volume series on Calculus. The first part covers
material taught in many “Calculus 1” courses: limits, derivaƟves, and the basics
of integraƟon, found in Chapters 1 through 6. The second text covers mate-
rial oŌen taught in “Calculus 2”: integraƟon and its applicaƟons, along with an
introducƟon to sequences, series and Taylor Polynomials, found in Chapters 7
through 10. The third text covers topics common in “Calculus 3” or “MulƟvari-
able Calculus”: parametric equaƟons, polar coordinates, vector–valued func-
Ɵons, and funcƟons of more than one variable, found in Chapters 11 through
15. All three are available separately for free.

PrinƟng the enƟre text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased separately.

A result of this spliƫng is that someƟmes material is referenced that is not
contained in the present text. The context should make it clear whether the
“missing” material comes before or aŌer the current porƟon. Downloading the
appropriate pdf, or the enƟre APEX Calculus LT pdf, will give access to these
topics.

For Students: How to Read this Text
MathemaƟcs textbooks have a reputaƟon for being hard to read. High–level
mathemaƟcal wriƟng oŌen seeks to say much with few words, and this style
oŌen seeps into texts of lower–level topics. This book was wriƩen with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and secƟon starts with an introducƟon of the coming mate-
rial, hopefully seƫng the stage for “why you should care,” and ends with a look
ahead to see how the just-learned material helps address future problems. Ad-
diƟonally, each chapter includes a secƟon zero, which provides a basic review
and pracƟce problems of pre-calculus skills. Since this content is a pre-requisite
for calculus, reviewing and mastering these skills are considered your responsi-
bility. This means that it is your responsibility to seek assistance outside of class
from your instructor, a math resource center or other math tutoring available
on-campus. A solid understanding of these skills are essenƟal to your success in
solving calculus problems.

Please read the text; it is wriƩen to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definiƟons, the truth



of theorems, and the applicaƟon of mathemaƟcal techniques. When you en-
counter a sentence you don’t understand, read it again. If it sƟll doesn’t make
sense, read on anyway, as someƟmes confusing sentences are explained by later
sentences.

You don’t have to read every equaƟon. The examples generally show “all”
the steps needed to solve a problem. SomeƟmes reading through each step is
helpful; someƟmes it is confusing. When the steps are illustraƟng a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathemaƟcs needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of geƫng bogged down in reading how the number was found.

Some proofs have been delayed unƟl later (or omiƩed completely). In math-
emaƟcs, proving something is always true is extremely important, and entails
much more than tesƟng to see if it works twice. However, students oŌen are
confused by the details of a proof, or become concerned that they should have
been able to construct this proof on their own. To alleviate this potenƟal prob-
lem, we do not include the more difficult proofs in the text. The interested
reader is highly encouraged to find other proofs online or from their instruc-
tor. In most cases, one is very capable of understanding what a theoremmeans
and how to apply it without knowing fully why it is true.

Work through the examples. The best way to learn mathemaƟcs is to do it.
Reading about it (or watching someone else do it) is a poor subsƟtute. For this
reason, every page has a place for you to put your notes so that you can work
out the examples. That being said, someƟmes it is useful to watch someone
work through an example. For this reason, this text also provides links to online
videos where someone is working through a similar problem. If you want even
more videos, these are generally chosen from

• Khan Academy: https://www.khanacademy.org/
• Math Doctor Bob: http://www.mathdoctorbob.org/
• Just Math Tutorials: http://patrickjmt.com/ (unfortunately, they’re
not well organized)

Some other sites you may want to consider are
• LarryGreen’s Calculus Videos: http://www.ltcconline.net/greenl/
courses/105/videos/VideoIndex.htm

• Mathispower4u: http://www.mathispower4u.com/
• Yay Math: http://www.yaymath.org/ (for prerequisite material)

All of these sites are completely free (although some will ask you to donate).
Here’s a sample one:

Watch the video:
PracƟcal Advice for Those Taking College Calculus at
https://youtu.be/ILNfpJTZLxk

InteracƟve, 3D Graphics

New to Version 3.0 is the addiƟon of interacƟve, 3D graphics in the .pdf version.
Nearly all graphs of objects in space can be rotated, shiŌed, and zoomed in/out
so the reader can beƩer understand the object illustrated.

https://www.khanacademy.org/
http://www.mathdoctorbob.org/
http://patrickjmt.com/
http://www.ltcconline.net/greenl/courses/105/videos/VideoIndex.htm
http://www.ltcconline.net/greenl/courses/105/videos/VideoIndex.htm
http://www.mathispower4u.com/
http://www.yaymath.org/
https://youtu.be/ILNfpJTZLxk
https://youtu.be/ILNfpJTZLxk


As of this wriƟng, the only pdf viewers that support these 3D graphics are
Adobe Reader & Acrobat (and only the versions for PC / Mac / Unix / Linux com-
puters, not tablets or smartphones). To acƟvate the interacƟve mode, click on
the image. Once acƟvated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom in/out. (A great way to invesƟgate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object leŌ/right or up/down. By right-clicking on the graph one can access
a menu of other opƟons, such as changing the lighƟng scheme or perspecƟve.
One can also revert the graph back to its default view. If you wish to deacƟvate
the interacƟvity, one can right-click and choose the “Disable Content” opƟon.

Thanks
There are many people who deserve recogniƟon for the important role they
have played in the development of this text. First, I thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my Ɵme
and aƩenƟon at home. Many thanks to Troy Siemers, whose most important
contribuƟons extend far beyond the secƟons he wrote or the 227 figures he
coded in Asymptote for 3D interacƟon. He provided incredible support, advice
and encouragement for which I am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contribuƟons and to Jennifer Bowen for
reading through somuchmaterial and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica LiberƟni and other faculty of VMI who have given me
numerous suggesƟons and correcƟons based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their paƟence in teaching
Calc III while I was sƟll wriƟng the Calc III material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the soluƟons, and thanks to the tutors for spending their Ɵme doing so.
A very special thanks to KrisƟ Brown and Paul Janiczek who took this opportu-
nity far above & beyond what I expected, meƟculously checking every soluƟon
and carefully reading every example. Their comments have been extraordinarily
helpful. I am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra Ɵme to work on this project. I am blessed to
have so many people give of their Ɵme to make this book beƩer.

APEX — Affordable Print and Electronic teXts
APEX is a consorƟum of authors who collaborate to produce high–quality, low–
cost textbooks. The current textbook–wriƟng paradigm is facing a potenƟal
revoluƟon as desktop publishing and electronic formats increase in popularity.
However, wriƟng a good textbook is no easy task, as the Ɵme requirements
alone are substanƟal. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboraƟon, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is enƟrely free; someone always bears some cost. This text
“cost” the authors of this book their Ɵme, and that was not enough. APEX Cal-
culuswould not exist had not the Virginia Military InsƟtute, through a generous
Jackson–Hope grant, given the lead author significant Ɵme away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a CreaƟve Commons AƩri-
buƟon — Noncommercial 4.0 copyright. That means you can give the .pdf to



anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the laƩer, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add secƟons that are “missing” or remove secƟons that your students won’t
need. The source files can be found at https://github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.
Greg Hartman

CreaƟng APEX LT
StarƟng with the source at https://github.com/APEXCalculus, faculty at
the University of North Dakota made several substanƟal changes to create APEX
Late Transcendentals. The most obvious change was to rearrange the text to
delay proving the derivaƟve of transcendental funcƟons unƟl Calculus 2. UND
added SecƟons 7.1 and 7.3, adapted several secƟons from other resources, cre-
ated the prerequisite secƟons, included links to videos andGeogebra, and added
several examples and exercises. In the end, every secƟon had some changes
(some more substanƟal than others), resulƟng in a document that is about 20%
longer. The source files can now be found at
https://github.com/teepeemm/APEXCalculusLT_Source.

Extra thanks are due to Michael Corral for allowing us to use porƟons of
his Vector Calculus, available at www.mecmath.net/ (specifically, SecƟons 11.7,
13.9, and 14.7, and Chapter 15) and to Paul Dawkins for allowing us to use
porƟons of his online math notes from tutorial.math.lamar.edu/ (specifi-
cally, SecƟons 8.5 and 9.7, as well as “Area with Parametric EquaƟons” in Sec-
Ɵon 10.3). The work on Calculus III was parƟally supported by the NDUS OER
IniƟaƟve.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX
https://github.com/APEXCalculus
https://github.com/teepeemm/APEXCalculusLT_Source
http://www.mecmath.net/
http://tutorial.math.lamar.edu/


Calculus I





1.0 Chapter Prerequisites

The material in this secƟon provides a basic review of and pracƟce problems for
pre-calculus skills essenƟal to your success in Calculus. You should take Ɵme to
review this secƟon and work the suggested problems (checking your answers
against those in the back of the book). Since this content is a pre-requisite for
Calculus, reviewing andmastering these skills are considered your responsibility.
Thismeans thatminimal, and in some cases no, class Ɵmewill be devoted to this
secƟon. When you idenƟfy areas that you need help with we strongly urge you
to seek assistance outside of class from your instructor or other student tutoring
service.

FuncƟons

A funcƟon f is a rule that assigns each element x from a set (called the domain)
to exactly one element, called f(x), in another set. Unless we say otherwise, the
domain is the set of all real numbers for which the rule makes sense and defines
a real number. All possible values of f(x) are called the range of f. We use four
ways to represent a funcƟon.

• By a graph

• By an explicit formula

• By a table of values

• By a verbal descripƟon
Throughout the book we will use several representaƟons of any given func-

Ɵon to help give us a beƩer understanding of the problem. The graphs in Fig-
ure 1.1 contain most of the base funcƟons we can use to build other funcƟons
using transformaƟons.
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We will oŌen transform these funcƟons into other funcƟons as given in the
next two figures.

The funcƟon shiŌs f(x)

y = f(x) + c c units upward
y = f(x)− c c units downward
y = f(x+ c) c units leŌ
y = f(x− c) c units right

Figure 1.2: TranslaƟons of Basic FuncƟons with c > 0
The funcƟon transforms f(x) by

y = cf(x) stretching verƟcally by a factor of c
y = 1

c f(x) shrinking verƟcally by a factor of c
y = f(cx) shrinking horizontally by a factor of c
y = f( xc ) stretching horizontally by a factor of c
y = −f(x) reflecƟng about the x-axis
y = f(−x) reflecƟng about the y-axis

Figure 1.3: Scaling Basic FuncƟons with c > 1

Domain

We said above that domain is the set of real numbers for which the funcƟon
(rule) defines a real number and makes sense. Ask yourself, ”what values can
I put into the funcƟon and get a real value out?” There are generally two key
expressions that will limit the domain of a funcƟon from all real numbers. We
may not divide by zero and we may not have a negaƟve number underneath an
even root. The following examples illustrate how we restrict the domain when
we see these expressions.

Example 1 Finding a domain
Find the domain of the funcƟon f(x) =

√
x− 4.

SÊ½çã®ÊÄ The square root of a negaƟve number is not defined as a real
number so the domain of f will be all real numbers for which x− 4 ≥ 0 which is
x ≥ 4. In interval notaƟon, this is [4,∞).

Example 2 Finding a domain
Find the domain of the funcƟon g(x) =

3
x2 − 9

.

Notes:

4



1.0 Chapter Prerequisites

SÊ½çã®ÊÄ We cannot divide by zero so we factor the denominator of
g and exclude those values where the denominator is zero.

g(x) =
3

x2 − 9
=

3
(x− 3)(x+ 3)

We see that x ̸= 3,−3 for g to be defined, which is wriƩen in interval notaƟon
as (−∞,−3) ∪ (−3, 3) ∪ (3,∞).

Example 3 Finding a domain
Find the domain of the funcƟon h(x) =

1√
x2 − 4

SÊ½çã®ÊÄ For h to be defined as a real number we must have x2− 4 >
0. This is equivalent to (x− 2)(x+ 2) > 0 and we create a sign chart:

−2 2
x

x2 − 4 + − +

This shows that x2 − 4 will be greater than zero on (−∞,−2) ∪ (2,∞).

Notes:

5



Exercises 1.0
Problems
In Exercises 1–10, find the domain of the given funcƟon.

1. g(x) = (x− 3)2 + 5
2. f(x) =

√
x+ 7− 3

3. f(x) =
√
x2 − 6x− 7

4. f(x) = 3 |x− 2|+ 4

5. f(x) = x− 3
x2 − 4x+ 4

6. g(x) = x− 3
x2 − x+ 6

7. h(x) = sin(x+ 3π)

8. f(x) = 4x+ 1√
x2 − 4

9. h(x) = cos x
x

10. g(x) =
∣∣x2 − x− 6

∣∣
In Exercises 11–14, graph the given f.

11. f(x) =

{
x2 − 3 x < 2
x− 4 x ≥ 2

12. f(x) =


3 x ≤ −1
2− x2 −1 < x < 2
−3 x ≥ 2

13. f(x) =


x+ 3 x < −2
x2 + 4 −2 ≤ x ≤ 3
e−x x > 3

14. f(x) =

{
sin x x ≤ 0
1
2 x+ 1 x > 0

In Exercises 15–17, evaluate the expressions for the given f.

15. f(x) = 3x2 − 2x+ 6
(a) f(2)

(b) f(−1)

(c) f(a)

(d) f(x+ h)

(e) f(x+ h)− f(x)
h

16. f(x) =
√
x− 2

(a) f(4)

(b) f(−3)

(c) f(t)

(d) f(x+ h)

(e) f(x+ h)− f(x)
h

17. f(x) = 1
x

(a) f(−1)

(b) f(9)

(c) f(t+ 3)

(d) f(x+ h)

(e) f(x+ h)− f(x)
h

In Exercises 18–21, use sign diagrams to find the soluƟons to
the nonlinear inequaliƟes.

18. (x− 2.13)(x− 2.12)2

(2.15− x)(x− 2.14)3
≤ 0

19. (5.678− x)3(x− 5.677)
(x− 5.679)2

≤ 0

20. 1
x− 0.3

≥ 2

21. x
0.1− x

≤ −2

6



1: L®Ã®ãÝ
Calculus means “a method of calculaƟon or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathemaƟcs that had taken place into
the first half of the 17th century, mathemaƟcians and scienƟsts were keenly
aware of what they could not do. (This is true even today.) In parƟcular, two
important concepts eluded mastery by the great thinkers of that Ɵme: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as theywere then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate× Ɵme.” But what if the rate is not constant
— can distance sƟll be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathemaƟcians, Sir
IsaacNewton andGoƪried Leibniz, are creditedwith independently formulaƟng
a system of compuƟng that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The foundaƟon of “the calculus” is the limit. It is a tool to describe a par-
Ɵcular behavior of a funcƟon. This chapter begins our study of the limit by ap-
proximaƟng its value graphically and numerically. AŌer a formal definiƟon of
the limit, properƟes are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

1.1 An IntroducƟon To Limits
We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the funcƟon y = sin x
x . When x is near the value 1, what value (if

any) is y near?
While our quesƟon is not precisely formed (what consƟtutes “near the value

1”?), the answer does not seem difficult to find. One might think first to look
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at a graph of this funcƟon to approximate the appropriate y values. Consider
Figure 1.4(a), where y = sin x

x is graphed. For values of x near 1, it seems that
y takes on values near 0.85. In fact, when x = 1, then y = sin 1

1 ≈ 0.84, so it
makes sense that when x is “near” 1, y will be “near” 0.84.

0.5 1 1.5

0.6

0.8

1

x

y

(a)

−1 1

0.8

0.9

1

x

y

(b)

Figure 1.4: sin(x)/x near x = 1 (top) and
x = 0 (boƩom).

Consider this again at a different value for x. When x is near 0, what value
(if any) is y near? By considering Figure 1.4(b), one can see that it seems that y
takes on values near 1. But what happens when x = 0? We have

y→ sin 0
0
→

“ 0
0
”
.

The expression “0/0” has no value; it is indeterminate. Such an expression gives
no informaƟon about what is going on with the funcƟon nearby. We cannot find
out how y behaves near x = 0 for this funcƟon simply by leƫng x = 0.

Finding a limit entails understanding how a funcƟon behaves near a parƟcu-
lar value of x. Before conƟnuing, it will be useful to establish some notaƟon. Let
y = f(x); that is, let y be a funcƟon of x for some funcƟon f. The expression “the
limit of y as x approaches 1” describes a number, oŌen referred to as L, that y
nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete definiƟon (that will come in the next secƟon); this is a
pseudo-definiƟon that will allow us to explore the idea of a limit.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin x
x
≈ 0.84 and lim

x→0

sin x
x
≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-definiƟon of a limit, not the actual definiƟon.)

x sin(x)/x

0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471
1.001 0.841170
1.01 0.838447
1.1 0.810189

(a)
x sin(x)/x

-0.1 0.9983341665
-0.01 0.9999833334
-0.001 0.9999998333
0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

(b)

Figure 1.5: Values of sin(x)/x with x near
1 and near 0.

Once we have the true definiƟon of a limit, we will find limits analyƟcally;
that is, exactly using a variety of mathemaƟcal tools. For now, we will approx-
imate limits both graphically and numerically. Graphing a funcƟon can provide
a good approximaƟon, though oŌen not very precise. Numerical methods can
provide a more accurate approximaƟon. We have already approximated limits
graphically, so we now turn our aƩenƟon to numerical approximaƟons.

Consider again limx→1 sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Fig-
ure 1.5(a).

NoƟce that for values of xnear 1, wehave sin(x)/xnear 0.841. The x = 1 row
is in bold to highlight the fact thatwhen considering limits, we are not concerned
with the value of the funcƟon at that parƟcular x value; we are only concerned
with the values of the funcƟon when x is near 1.

Notes:
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1.1 An IntroducƟon To Limits

Now approximate limx→0 sin(x)/x numerically. We already approximated
the value of this limit as 1 graphically in Figure 1.4(b). The table in Figure 1.5(b)
shows the value of sin(x)/x for values of x near 0. Ten places aŌer the decimal
point are shown to highlight how close to 1 the value of sin(x)/x gets as x takes
on values very near 0. We include the x = 0 row in bold again to stress that we
are not concerned with the value of our funcƟon at x = 0, only on the behavior
of the funcƟon near 0.

This numerical method gives confidence to say that 1 is a good approxima-
Ɵon of limx→0 sin(x)/x; that is,

lim
x→0

sin(x)/x ≈ 1.

Later we will be able to prove that the limit is exactly 1.

Watch the video:
IntroducƟon to limits at
https://youtu.be/riXcZT2ICjA

We now consider several examples that allow us to explore different aspects
of the limit concept.

2.5 3 3.5

0.26

0.28

0.3

0.32

0.34

x

y

(a)
x x2−x−6

6x2−19x+3

2.9 0.298780
2.99 0.294569
2.999 0.294163
3 not defined
3.001 0.294073
3.01 0.293669
3.1 0.289773

(b)

Figure 1.6: Graphically and numerically
approximaƟng a limit in Example 1.

Example 1 ApproximaƟng the value of a limit
Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

.

SÊ½çã®ÊÄ To graphically approximate the limit, graph

y = (x2 − x− 6)/(6x2 − 19x+ 3)

on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figure 1.6.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a beƩer approximaƟon.
The graph and the table imply that

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

≈ 0.294.

Notes:

9
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This example may bring up a few quesƟons about approximaƟng limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximaƟon as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximaƟon?

Graphs are useful since they give a visual understanding concerning the be-
havior of a funcƟon. SomeƟmes a funcƟon may act “erraƟcally” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing uƟliƟes are very accessible, itmakes sense tomake proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in quesƟon. In Example 1, we used both values less
than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do beƩer. Using values “on both sides of 3” helps us idenƟfy trends.

−1 −0.5 0.5 1

0.5

1

x

y

(a)
x f(x)

−0.1 0.9
−0.01 0.99
−0.001 0.999
0.001 0.999999
0.01 0.9999
0.1 0.99

(b)

Figure 1.7: Graphically and numerically
approximaƟng a limit in Example 2.

Example 2 ApproximaƟng the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

f(x) =

{
x+ 1 x < 0
−x2 + 1 x > 0

.

SÊ½çã®ÊÄ Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined funcƟon, so it
behaves differently on either side of 0. Figure 1.7(a) shows a graph of f(x), and
on either side of 0 it seems the y values approach 1. Note that f(0) is not actually
defined, as indicated in the graph with the open circle.

The table shown in Figure 1.7(b) shows values of f(x) for values of x near 0.
It is clear that as x takes on values very near 0, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we are
probably very sure it equals 1.

IdenƟfying When Limits Do Not Exist
A funcƟon may not have a limit for all values of x. That is, we may not be able to
say lim

x→c
f(x) = L for some numbers L for all values of c, because there may not

Notes:
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1.1 An IntroducƟon To Limits

be a number that f(x) is approaching. There are three ways in which a limit may
fail to exist.

1. The funcƟon f(x)may approach different values on either side of c.

2. The funcƟon may grow without upper or lower bound as x approaches c.

3. The funcƟon may oscillate as x approaches c.

We’ll explore each of these in turn.

Example 3 Different Values Approached From LeŌ and Right
Explore why lim

x→1
f(x) does not exist, where

f(x) =

{
x2 − 2x+ 3 x ≤ 1
x x > 1

.

SÊ½çã®ÊÄ A graph of f(x) around x = 1 and a table are given in Fig-
ure 1.8. It is clear that as x approaches 1, f(x) does not seem to approach a

0.5 1 1.5 2

1

2

3

x

y

(a)
x f(x)

0.9 2.01
0.99 2.0001
0.999 2.000001
1.001 1.001
1.01 1.01
1.1 1.1

(b)

Figure 1.8: Graphically and numerically
observing no limit as x → 1 in Example 3.

single number. Instead, it seems as though f(x) approaches two different num-
bers. When considering values of x less than 1 (approaching 1 from the leŌ), it
seems that f(x) is approaching 2; when considering values of x greater than 1
(approaching 1 from the right), it seems that f(x) is approaching 1. Recognizing
this behavior is important; we’ll study this in greater depth later. Right now,
it suffices to say that the limit does not exist since f(x) is not approaching one
value as x approaches 1.

0.5 1 1.5 2

50

100

x

y

(a)
x f(x)

0.9 100
0.99 10000
0.999 1× 106
1.001 1× 106
1.01 10000
1.1 100

(b)

Figure 1.9: Graphically and numerically
observing no limit as x → 1 in Example 4.

Example 4 The FuncƟon Grows Without Bound
Explore why lim

x→1
1/(x− 1)2 does not exist.

SÊ½çã®ÊÄ A graph and table of f(x) = 1/(x−1)2 are given in Figure 1.9.
Both show that as x approaches 1, f(x) grows larger and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x− 1)2 is very small, and:

1
very small number

= very large number.

Since f(x) is not approaching a single number, we conclude that lim
x→1

1
(x− 1)2

does not exist.

Notes:
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Example 5 The FuncƟon Oscillates
Explore why lim

x→0
sin(1/x) does not exist.

SÊ½çã®ÊÄ Two graphs of f(x) = sin(1/x) are given in Figure 1.10. Fig-
ure 1.10(a) shows f(x) on the interval [−1, 1]; noƟce how f(x) seems to oscillate
near x = 0. One might think that despite the oscillaƟon, as x approaches 0,
f(x) approaches 0. However, Figure 1.10(b) zooms in on sin(1/x), on the inter-
val [−0.1, 0.1]. Here the oscillaƟon is even more pronounced. Finally, in the
table in Figure 1.10(c), we see sin(x)/x evaluated for values of x near 0. As x
approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between−1 and1 infinitelymanyƟmes! Because of this oscillaƟon, lim

x→0
sin(1/x)

does not exist.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

−0.1 −5 · 10−2 5 · 10−2 0.1

−1

−0.5

0.5

1

x

y

x sin(1/x)

0.1 −0.544021
0.01 −0.506366
0.001 0.826880
0.0001 −0.305614
1.0× 10−5 0.035749
1.0× 10−6 −0.349994
1.0× 10−7 0.420548

(a) (b) (c)

Figure 1.10: Observing that f(x) = sin(1/x) has no limit as x → 0 in Example 5.

Limits of Difference QuoƟents

2 4 6

10

20

x

f

Figure 1.11: InterpreƟng a difference
quoƟent as the slope of a secant line.

We have approximated limits of funcƟons as x approached a parƟcular number.
Wewill consider another important kind of limit aŌer explaining a few key ideas.

Let f(x) represent the posiƟon funcƟon, in feet, of some parƟcle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that when x = 1,
the parƟcle is at posiƟon 10 Ō., and when x = 5, the parƟcle is at 20 Ō. Another
way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the parƟcle traveled 10 feet in 4 seconds, we can say the parƟcle’s average
velocity was 2.5 Ō/s. We write this calculaƟon using a “quoƟent of differences,”
or, a difference quoƟent:

f(5)− f(1)
5− 1

=
10
4

= 2.5Ō/s.

Notes:
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This difference quoƟent can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essenƟally what we are doing:
given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 1.11.

2 4 6

10

20

x

f

(a)

2 4 6

10

20

x

f

(b)

2 4 6

10

20

x

f

(c)

Figure 1.12: Secant lines of f(x) at x = 1
and x = 1 + h, for shrinking values of h
(i.e., h → 0).

Now consider finding the average speed on another Ɵme interval. We again
start at x = 1, but consider the posiƟon of the parƟcle h seconds later. That is,
consider the posiƟons of the parƟcle when x = 1 and when x = 1 + h. The
difference quoƟent is now

f(1+ h)− f(1)
(1+ h)− 1

=
f(1+ h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quoƟent for all values of h (even
negaƟve values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quoƟent computes the
average velocity of the parƟcle over an interval of Ɵme of length h starƟng at
x = 1.

For small values of h, i.e., values of h close to 0, we get average velociƟes
over very short Ɵme periods and compute secant lines over small intervals. See
Figure 1.12. This leads us to wonder what the limit of the difference quoƟent is
as h approaches 0. That is,

lim
h→0

f(1+ h)− f(1)
h

= ?

As we do not yet have a true definiƟon of a limit nor an exact method for
compuƟng it, we seƩle for approximaƟng the value. While we could graph the
difference quoƟent (where the x-axis would represent h values and the y-axis
would represent values of the difference quoƟent) we seƩle for making a table.
See Figure 1.13. The table gives us reason to assume the value of the limit is
about 8.5.

h f(1+h)−f(1)
h

−0.5 9.250
−0.1 8.650
−0.01 8.515
0.01 8.485
0.1 8.350
0.5 7.750

Figure 1.13: The difference quoƟent for
f(x) = −1.5x2 + 11.5x evaluated at val-
ues of h near 0.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathemaƟcal things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathemaƟcal curiosiƟes; they allow us to link posiƟon, velocity and
acceleraƟon together, connect cross-secƟonal areas to volume, find the work
done by a variable force, and much more.

In the next secƟon we give the formal definiƟon of the limit and begin our
study of finding limits analyƟcally. In the following exercises, we conƟnue our
introducƟon and approximate the value of limits.

Notes:
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Exercises 1.1
Terms and Concepts
1. In your own words, what does it mean to “find the limit of

f(x) as x approaches 3”?
2. An expression of the form 0

0 is called .
3. T/F: The limit of f(x) as x approaches 5 is f(5).
4. Describe three situaƟons where lim

x→c
f(x) does not exist.

5. In your own words, what is a difference quoƟent?

Problems
In Exercises 6–15, approximate the given limits both numeri-
cally and graphically.
6. lim

x→1
x2 + 3x− 5

7. lim
x→0

x3 − 3x2 + x− 5

8. lim
x→0

x+ 1
x2 + 3x

9. lim
x→3

x2 − 2x− 3
x2 − 4x+ 3

10. lim
x→−1

x2 + 8x+ 7
x2 + 6x+ 5

11. lim
x→2

x2 + 7x+ 10
x2 − 4x+ 4

12. lim
x→2

f(x), where f(x) =

{
x+ 2 x ≤ 2
3x− 5 x > 2

.

13. lim
x→3

f(x), where f(x) =

{
x2 − x+ 1 x ≤ 3
2x+ 1 x > 3

.

14. lim
x→0

f(x), where f(x) =

{
cos x x ≤ 0
x2 + 3x+ 1 x > 0

.

15. lim
x→π/2

f(x), where f(x) =

{
sin x x ≤ π/2
cos x x > π/2

.

In Exercises 16–24, a funcƟon f and a value a are giv-
en. Approximate the limit of the difference quoƟent,

lim
h→0

f(a+ h)− f(a)
h

, using h = ±0.1,±0.01.

16. f(x) = −7x+ 2, a = 3

17. f(x) = 9x+ 0.06, a = −1

18. f(x) = x2 + 3x− 7, a = 1

19. f(x) = 1
x+ 1

, a = 2

20. f(x) = −4x2 + 5x− 1, a = −3

21. f(x) = ln x, a = 5

22. f(x) = sin x, a = π

23. f(x) = cos x, a = π

24. f(x) =
√
x+ 4, a = 0

14



1.2 Epsilon-Delta DefiniƟon of a Limit

1.2 Epsilon-Delta DefiniƟon of a Limit
This secƟon introduces the formal definiƟon of a limit. Many refer to this as “the
epsilon–delta,” definiƟon, referring to the leƩers ε and δ of the Greek alphabet.

Before we give the actual definiƟon, let’s consider a few informal ways of
describing a limit. Given a funcƟon y = f(x) and an x-value, c, we say that “the
limit of the funcƟon f, as x approaches c, is a value L”:

1. if “y tends to L” as “x tends to c.”

2. if “y approaches L” as “x approaches c.”

3. if “y is near L” whenever “x is near c.”

The problem with these definiƟons is that the words “tends,” “approach,”
and especially “near” are not exact. In what way does the variable x tend to, or
approach, c? How near do x and y have to be to c and L, respecƟvely?

The definiƟon we describe in this secƟon comes from formalizing 3. A quick
restatement gets us closer to what we want:

3′. If x is within a certain tolerance level of c, then the corresponding value y =
f(x) is within a certain tolerance level of L.

The tradiƟonal notaƟon for the x-tolerance is the lowercase Greek leƩer
delta, or δ, and the y-tolerance is denoted by lowercase epsilon, or ε. One more
rephrasing of 3′ nearly gets us to the actual definiƟon:

3′′. If x is within δ units of c, then the corresponding value of y is within ε units
of L.

We can write “x is within δ units of c” mathemaƟcally as

|x− c| < δ, which is equivalent to c− δ < x < c+ δ.

Leƫng the symbol “−→” represent the word “implies,” we can rewrite 3′′ as

|x− c| < δ −→ |y− L| < ε or c−δ < x < c+δ −→ L−ε < y < L+ε.

The point is that δ and ε, being tolerances, can be any posiƟve (but typically
small) values. Finally, we have the formal definiƟon of the limit with the notaƟon
seen in the previous secƟon.

Notes:
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Chapter 1 Limits

DefiniƟon 1 The Limit of a FuncƟon f
Let I be an open interval containing c, and let f be a funcƟon defined on
I, except possibly at c. The limit of f(x), as x approaches c, is L, denoted
by

lim
x→c

f(x) = L,

means that given any ε > 0, there exists δ > 0 such that for all x ̸= c,
if |x− c| < δ, then |f(x)− L| < ε.

(MathemaƟcians oŌen enjoy wriƟng ideas without using any words. Here is
the wordless definiƟon of the limit:

lim
x→c

f(x) = L ⇐⇒ ∀ ε > 0,∃ δ > 0 s.t. 0 < |x− c| < δ −→ |f(x)− L| < ε.)

Note the order in which ε and δ are given. In the definiƟon, the y-tolerance
ε is given first and then the limit will exist if we can find an x-tolerance δ that
works.

Watch the video:
Limits 1b — Delta-Epsilon FormulaƟon at
https://youtu.be/v5zsbgYrunM

Anexamplewill help us understand this definiƟon. Note that the explanaƟon
is long, but it will go through all steps necessary to understand the ideas.

Example 1 EvaluaƟng a limit using the definiƟon
Show that lim

x→4

√
x = 2.

SÊ½çã®ÊÄ Beforeweuse the formal definiƟon, let’s try somenumerical
tolerances. What if the y tolerance is 0.5, or ε = 0.5? How close to 4 does x
have to be so that y is within 0.5 units of 2, i.e., 1.5 < y < 2.5? In this case, we
can proceed as follows:

1.5 < y < 2.5
1.5 <

√
x < 2.5

1.52 < x < 2.52
2.25 < x < 6.25.

Notes:
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1.2 Epsilon-Delta DefiniƟon of a Limit

So, what is the desired x tolerance? Remember, wewant to find a symmetric
interval of x values, namely 4− δ < x < 4+ δ. The lower bound of 2.25 is 1.75
units from 4; the upper bound of 6.25 is 2.25 units from 4. We need the smaller
of these two distances; we must have δ ≤ 1.75. See Figure 1.14.

2 4 6

1

2 }
ε=.5

}
ε=.5

Choose ε > 0. Then ...

x

y

2 4 6

1

2 }
ε=.5

}
ε=.5

width
= 1.75︷ ︸︸ ︷ width

= 2.25︷ ︸︸ ︷

... choose δ smaller
than each of these

x

y

With ε = 0.5, we pick any δ < 1.75.

Figure 1.14: IllustraƟng the ε− δ process.

Given the y tolerance ε = 0.5, we have found an x tolerance, δ ≤ 1.75, such
that whenever x is within δ units of 4, then y is within ε units of 2. That’s what
we were trying to find.

Let’s try another value of ε.

What if the y tolerance is 0.01, i.e., ε = 0.01? How close to 4 does x have to
be in order for y to be within 0.01 units of 2 (or 1.99 < y < 2.01)? Again, we
just square these values to get 1.992 < x < 2.012, or

3.9601 < x < 4.0401.

What is the desired x tolerance? In this case we must have δ ≤ 0.0399, which
is the minimum distance from 4 of the two bounds given above.

What we have so far: if ε = 0.5, then δ ≤ 1.75 and if ε = 0.01, then δ ≤
0.0399. A paƩern is not easy to see, so we switch to general ε try to determine
δ symbolically. We start by assuming y =

√
x is within ε units of 2:

|y− 2| < ε

−ε < y− 2 < ε (DefiniƟon of absolute value)
−ε <

√
x− 2 < ε (y =

√
x)

2− ε <
√
x < 2+ ε (Add 2)

(2− ε)2 < x < (2+ ε)2 (Square all)
4− 4ε+ ε2 < x < 4+ 4ε+ ε2 (Expand)

4− (4ε− ε2) < x < 4+ (4ε+ ε2) (Rewrite in the desired form)
−(4ε− ε2) < x− 4 < (4ε+ ε2) (Rewrite in the desired form)

The “desired form” in the last step is “−something < x − 4 < something.”
Sincewewant this last interval to describe an x tolerance around 4, we have that
either δ ≤ 4ε− ε2 or δ ≤ 4ε+ ε2, whichever is smaller:

δ ≤ min{4ε− ε2, 4ε+ ε2}.

Since ε > 0, the minimum is δ ≤ 4ε − ε2. That’s the formula: given an ε, set
δ ≤ 4ε− ε2.

Notes:
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Chapter 1 Limits

We can check this for our previous values. If ε = 0.5, the formula gives
δ ≤ 4(0.5)−(0.5)2 = 1.75 andwhen ε = 0.01, the formula gives δ ≤ 4(0.01)−
(0.01)2 = 0.399.

So given any ε > 0, set δ ≤ 4ε − ε2. Then if |x− 4| < δ (and x ̸= 4), then
|f(x)− 2| < ε, saƟsfying the definiƟon of the limit. We have shown formally
(and finally!) that lim

x→4

√
x = 2.

The previous example was a liƩle long in that we sampled a few specific
cases of ε before handling the general case. Normally this is not done. The
previous example is also a bit unsaƟsfying in that

√
4 = 2; why work so hard

to prove something so obvious? Many ε-δ proofs are long and difficult to do.
In this secƟon, we will focus on examples where the answer is, frankly, obvious,
because the non–obvious examples are even harder. In the next secƟon we will
learn some theorems that allowus to evaluate limits analyƟcally, that is, without
using the ε-δ definiƟon.

We will follow a general paƩern to work through δ-ε problems. In some
sense, each starts out “backwards.” That is, while we want to

1. start with |x− c| < δ and conclude that

2. |f(x)− L| < ε,

we actually start by assuming

1. |f(x)− L| < ε, then perform some algebraic manipulaƟons to give an in-
equality of the form

2. |x− c| < something.

When we have properly done this, the something on the “greater than” side of
the inequality becomes our δ. We can refer to this as the “scratch–work” phase
of our proof. Once we have δ, we can formally start with |x− c| < δ and use
algebraic manipulaƟons to conclude that |f(x)− L| < ε, usually by using the
same steps of our “scratch–work” in reverse order.

We will highlight this process in the following examples.

Example 2 EvaluaƟng a limit using the definiƟon
Show that lim

x→1
3x− 5 = −2

SÊ½çã®ÊÄ Let’s do this example symbolically from the start.
Scratch-Work:
We start our scratch-work by considering |f(x)− (−2)| < ε:

Notes:
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1.2 Epsilon-Delta DefiniƟon of a Limit

|f(x)− (−2)| < ε

|3x− 5+ 2| < ε

|3x− 3| < ε

3 |x− 1| < ε

|x− 1| < ε

3

This suggests that we set δ = ε
3 ,

Proof
Given ε > 0, choose δ =

ε

3
. We assume |x− 1| < δ

|x− 1| < δ

|x− 1| < ε

3
(Our choice of δ)

3 |x− 1| < ε

3
· 3 (MulƟply by 3)

|3x− 3| < ε (Simplify)
|3x− 5+ 2| < ε

|3x− 5− (−2)| < ε,

which is what we wanted to show. Thus lim
x→1

3x− 5 = −2. □

Example 3 EvaluaƟng a limit using the definiƟon
Show that lim

x→2
4− 3

2
x = 1.

SÊ½çã®ÊÄ Scratch-Work:
We start our scratch-work by considering |f(x)− 1| < ε:

Notes:
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Chapter 1 Limits

|f(x)− 1| < ε∣∣∣∣4− 3
2
x− 1

∣∣∣∣ < ε∣∣∣∣3− 3
2
x
∣∣∣∣ < ε∣∣∣∣−3

2
(−2+ x)

∣∣∣∣ < ε

3
2
|x− 2| < ε

|x− 2| < 2ε
3

This suggests that we set δ = 2ε
3 ,

Proof
Given ε > 0, choose δ =

2ε
3
. We assume |x− 2| < δ

|x− 2| < δ

|x− 2| < 2ε
3

3
2
|x− 2| < 2ε

3
· 3
2∣∣∣∣−3

2
(x− 2)

∣∣∣∣ < ε∣∣∣∣−3
2
x+ 3

∣∣∣∣ < ε∣∣∣∣4− 3
2
x− 1

∣∣∣∣ < ε,

which is what we wanted to show. Thus lim
x→2

4− 3
2
x = 1. □

Example 4 EvaluaƟng a limit using the definiƟon
Show that lim

x→2
x2 = 4.

Notes:
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1.2 Epsilon-Delta DefiniƟon of a Limit

SÊ½çã®ÊÄ Scratch-Work: We start our scratch-work by considering
|f(x)− 4| < ε:

|f(x)− 4| < ε∣∣x2 − 4
∣∣ < ε (Now factor)

|(x− 2)(x+ 2)| < ε

|x− 2| < ε

|x+ 2|
. (1.1)

We are at the phase of saying that |x− 2| < something, where something=
ε/ |x+ 2|. Wewant to turn that something into δ. Couldwenot set δ =

ε

|x+ 2|
?

Weare close to an answer, but the catch is that δmust be a constant value (so
it can’t contain x). There is a way towork around this, but we do have tomake an
assumpƟon. Remember that ε is supposed to be a small number, which implies
that δ will also be a small value. In parƟcular, we can (probably) assume that
δ < 1. If this is true, then |x− 2| < δ would imply that |x− 2| < 1, giving
1 < x < 3.

Now, back to the fracƟon
ε

|x+ 2|
. If 1 < x < 3, then 3 < x + 2 < 5 (add 2

to all terms in the inequality). Taking reciprocals, we have

1
5
<

1
|x+ 2|

<
1
3

which implies

1
5
<

1
|x+ 2|

which implies

ε

5
<

ε

|x+ 2|
. (1.2)

This suggests that we set δ ≤ ε

5
. This ends our scratch–work, and we begin

the formal proof (which also helps us understand why this was a good choice of
δ).

Proof
Given ε, let δ ≤ ε/5. Wewant to show thatwhen |x− 2| < δ, then

∣∣x2 − 4
∣∣ < ε.

Notes:
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Chapter 1 Limits

We start with |x− 2| < δ:

|x− 2| < δ

|x− 2| < ε

5
|x− 2| < ε

5
<

ε

|x+ 2|
(for x near 2, from EquaƟon (1.2))

|x− 2| · |x+ 2| < ε

|(x− 2)(x+ 2)| < ε∣∣x2 − 4
∣∣ < ε,

which is what we wanted to show. Thus lim
x→2

x2 = 4. □

We have arrived at
∣∣x2 − 4

∣∣ < ε as desired. Note again, in order to make this
happen we needed δ to first be less than 1. That is a safe assumpƟon; we want
ε to be arbitrarily small, forcing δ to also be small.

We have also picked δ to be smaller than “necessary.” We could get by with
a slightly larger δ, as shown in Figure 1.15. The dashed outer lines show the
boundaries defined by our choice of ε. The doƩed inner lines show the bound-
aries defined by seƫng δ = ε/5. Note how these doƩed lines are within the
dashed lines. That is perfectly fine; by choosing xwithin the doƩed lines we are
guaranteed that f(x) will be within ε of 4.

2

4

}
ε

δ︷ ︸︸ ︷

length of ε

length of
δ = ε/5

x

y

Figure 1.15: Choosing δ = ε/5 in Exam-
ple 4.

In summary, given ε > 0, set δ ≤ ε/5. Then |x− 2| < δ implies
∣∣x2 − 4

∣∣ < ε

(i.e. |y− 4| < ε) as desired. This shows that lim
x→2

x2 = 4. Figure 1.15 gives a
visualizaƟon of this; by restricƟng x to values within δ = ε/5 of 2, we see that
f(x) is within ε of 4.

To beƩer understand the definiƟon of a limit, exper-
iment with the Geogebra app at
http://ggbm.at/RtY27ybS.

This formal definiƟon of the limit is not an easy concept grasp. Our examples
are actually “easy” examples, using “simple” funcƟons like polynomials, square–
roots and exponenƟals. It is very difficult to prove, using the techniques given
above, that lim

x→0
(sin x)/x = 1, as we approximated in the previous secƟon.

There is hope. The next secƟon shows how one can evaluate complicated
limits using certain basic limits as building blocks. While limits are an incredibly

Notes:
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1.2 Epsilon-Delta DefiniƟon of a Limit

important part of calculus (and hence much of higher mathemaƟcs), rarely are
limits evaluated using the definiƟon. Rather, the techniques of the following
secƟon are employed.

Notes:
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Exercises 1.2
Terms and Concepts
1. What is wrong with the following “definiƟon” of a limit?

“The limit of f(x), as x approaches a, is K”
means that given any δ > 0 there exists ε > 0
such that whenever |f(x)− K| < ε, we have
|x− a| < δ.

2. Which is given first in establishing a limit, the x–tolerance
or the y–tolerance?

3. T/F: εmust always be posiƟve.
4. T/F: δ must always be posiƟve.

Problems
5. Use the graph below of f to find a number δ such that if

0 < |x− 2| < δ, then |f(x)− 1| < 0.5.

1 1.41 2 2.45

0.5

1

1.5

2

x

y

6. Use the graph below of f to find a number δ such that if
0 < |x− 2| < δ, then |f(x)− 1| < 0.3.

1 1.29 2 2.95

0.7

1

1.3

x

y

In Exercises 7–14, prove the given limit using an ε− δ proof.

7. lim
x→5

3− x = −2

8. lim
x→5

4x− 12 = 8

9. lim
x→3

5− 2x = −1

10. lim
x→3

x2 − 3 = 6

11. lim
x→4

x2 + x− 5 = 15

12. lim
x→2

x3 − 1 = 7

13. lim
x→2

5 = 5

14. lim
x→0

sin x = 0 (Hint: use the fact that |sin x| ≤ |x|, with
equality only when x = 0.)
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1.3 Finding Limits AnalyƟcally

1.3 Finding Limits AnalyƟcally
In SecƟon 1.1 we explored the concept of the limit without a strict definiƟon,
meaning we could only make approximaƟons. In the previous secƟon we gave
the definiƟon of the limit and demonstrated how to use it to verify our approxi-
maƟons were correct. Thus far, our method of finding a limit is (1) make a really
good approximaƟon either graphically or numerically, and (2) verify our approx-
imaƟon is correct using an ε-δ proof.

Recognizing that ε-δ proofs are cumbersome, this secƟon gives a series of
theorems which allow us to find limits much more quickly and intuiƟvely.

Suppose that lim
x→2

f(x) = 2 and lim
x→2

g(x) = 3. What is lim
x→2

(f(x) + g(x))?
IntuiƟon tells us that the limit should be 5, as we expect limits to behave in a
niceway. The following theorem states that already established limits do behave
nicely.

Theorem 1 Basic Limit ProperƟes
Let b, c, L and K be real numbers, let n be a posiƟve integer, and let f
and g be funcƟons with the following limits:

lim
x→c

f(x) = L and lim
x→c

g(x) = K.

The following limits hold.

1. Constants: lim
x→c

b = b

2. IdenƟty: lim
x→c

x = c

3. Sums/Differences: lim
x→c

(f(x)± g(x)) = L± K

4. Scalar MulƟples: lim
x→c

b · f(x) = bL

5. Products: lim
x→c

f(x) · g(x) = LK

6. QuoƟents: lim
x→c

f(x)/g(x) = L/K, (K ̸= 0)

7. Powers: lim
x→c

[f(x)]n = Ln

8. Roots: lim
x→c

n
√

f(x) = n
√
L (when n is odd or L ≥ 0)

We will now prove the Sum Property using the formal definiƟon of a limit

Notes:
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Chapter 1 Limits

from the previous secƟon. We know that lim
x→c

f(x) = L and lim
x→c

g(x) = K. We
want to show that lim

x→c
f(x) + g(x) = L+ K.

Proof
We must show that given any ε > 0, we can find a δ > 0 such that

if 0 < |x− c| < δ, then |f(x) + g(x)− (L+ K)| < ε.

We know lim
x→c

f(x) = L. So for any ε1 > 0, we can find δ1 > 0 such that if 0 <

|x− c| < δ1, then |f(x)− L| < ε1. Similarly we know lim
x→c

g(x) = K so for any
ε2 > 0, we can find δ2 > 0 such that if 0 < |x− c| < δ2, then |g(x)− K| < ε2.
We will let both ε1 and ε2 be ε

2 . Now, we have a δ1 > 0 and a δ2 > 0 such that:

if 0 < |x− c| < δ1, then |f(x)− L| < ε

2
and

if 0 < |x− c| < δ2, then |g(x)− K| < ε

2

We will choose δ = min(δ1, δ2) > 0. If 0 < |x− c| < δ, then |f(x)− L| < ε
2 and

|g(x)− K| < ε
2 . Add the two inequaliƟes together so that

|f(x)− L|+ |g(x)− K| < ε

2
+

ε

2
= ε.

We will now use the triangle inequality: |A+ B| ≤ |A|+ |B|.

|f(x)− L+ g(x)− K| ≤ |f(x)− L|+ |g(x)− K| < ε

Thus |(f(x) + g(x))− (L+ K)| < ε, which is what we were trying to show. □

The other Basic Limit ProperƟes can be proven in a similar way and are leŌ
for the reader. Our next theorem requires a few more condiƟons.

Theorem 2 Limits of ComposiƟon
Suppose that

lim
x→c

f(x) = L and lim
x→L

g(x) = g(L) = K.

Then lim
x→c

g(f(x)) = K.

Notes:
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1.3 Finding Limits AnalyƟcally

Watch the video:
Limit Laws to Evaluate a Limit, Example 1 at
https://youtu.be/v_Nz6UUQ4HQ

We apply the theorem to an example.

Example 1 Using basic limit properƟes
Let

lim
x→2

f(x) = 2, lim
x→2

g(x) = 3 and p(x) = 3x2 − 5x+ 7.

Find the following limits:

1. lim
x→2

(
f(x) + g(x)

)
2. lim

x→2

(
5f(x) + g(x)2

) 3. lim
x→2

p(x)

SÊ½çã®ÊÄ

1. Using the Sum/Difference rule, we know that lim
x→2

(
f(x)+g(x)

)
= 2+3 =

5.

2. Using the Scalar MulƟple and Sum/Difference rules, we find that
lim
x→2

(
5f(x) + g(x)2

)
= 5 · 2+ 32 = 19.

3. Here we combine the Power, Scalar MulƟple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-
ted:

lim
x→2

p(x) = lim
x→2

(3x2 − 5x+ 7)

= lim
x→2

3x2 − lim
x→2

5x+ lim
x→2

7

= 3 · 22 − 5 · 2+ 7
= 9.

Notes:
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Chapter 1 Limits

Part 3 of the previous example demonstrates how the limit of a quadraƟc
polynomial can be determined using the properƟes of Theorem1. Not only that,
recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 was found just by plugging 2 into the funcƟon. This holds
true for all polynomials, and also for raƟonal funcƟons (which are quoƟents of
polynomials), as stated in the following theorem.

Theorem 3 Limits of Polynomial and RaƟonal FuncƟons
Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x)

=
p(c)
q(c)

, where q(c) ̸= 0.

Example 2 Finding a limit of a raƟonal funcƟon
Using Theorem 3, find

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

.

SÊ½çã®ÊÄ Using Theorem 3, we can quickly state that

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

=
3(−1)2 − 5(−1) + 1
(−1)4 − (−1)2 + 3

=
9
3
= 3.

It was likely frustraƟng in SecƟon 1.2 to do a lot of work to prove that

lim
x→2

x2 = 4

as it seemed fairly obvious. The previous theorems state that many funcƟons
behave in such an “obvious” fashion, as demonstrated by the raƟonal funcƟon
in Example 2.

Polynomial and raƟonal funcƟons are not the only funcƟons to behave in
such a predictable way. The following theorem gives a list of funcƟons whose
behavior is parƟcularly “nice” in terms of limits. In the next secƟon, we will give
a formal name to these funcƟons that behave “nicely.”

Notes:
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1.3 Finding Limits AnalyƟcally

Theorem 4 Limits of Basic FuncƟons
Let c be a real number in the domain of the given funcƟon and let n be a posiƟve integer. The
following limits hold:

1. lim
x→c

sin x = sin c

2. lim
x→c

cos x = cos c

3. lim
x→c

tan x = tan c

4. lim
x→c

csc x = csc c

5. lim
x→c

sec x = sec c

6. lim
x→c

cot x = cot c

7. lim
x→c

ax = ac (a > 0)

8. lim
x→c

ln x = ln c

9. lim
x→c

n
√
x = n
√
c

Many Ɵmes, we will combine this theoremwith Theorems 1 and 2. If our ex-
pression can be built up from the pieces in those theorems, then we can quickly
evaluate the limit.

Example 3 EvaluaƟng limits analyƟcally
Evaluate the following limits.

1. lim
x→π

cos x

2. lim
x→3

(sec2 x− tan2 x)

3. lim
x→ π

2

cos x sin x

4. lim
x→1

eln x

5. lim
x→0

sin x
x

SÊ½çã®ÊÄ

1. This is a straighƞorward applicaƟon of Theorem 4: lim
x→π

cos x = cos π =

−1.

2. We can approach this in at least two ways. First, by directly applying The-
orems 1 and 4, we have:

lim
x→3

(sec2 x− tan2 x) = sec2 3− tan2 3.

Using the Pythagorean Theorem, this last expression is 1; therefore

lim
x→3

(sec2 x− tan2 x) = 1.

We can also use the Pythagorean Theorem from the start:

lim
x→3

(sec2 x− tan2 x) = lim
x→3

1 = 1,

using the Constant limit rule. Either way, we find the limit is 1.

Notes:
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3. Applying the Product limit rule of Theorem 1 and Theorem 4 gives

lim
x→π/2

cos x sin x = cos(π/2) sin(π/2) = 0 · 1 = 0.

4. Again, we can approach this in two ways. First, we can use the exponen-
Ɵal/logarithmic idenƟty that eln x = x and evaluate lim

x→1
eln x = lim

x→1
x = 1.

We can also use Theorem 2. Using Theorem 4, we have lim
x→1

ln x = ln 1 =

0. Applying the ComposiƟon rule,

lim
x→1

eln x = lim
x→0

ex = e0 = 1.

Both approaches are valid, giving the same result.

5. We encountered this limit in SecƟon 1.1. Applying our theorems, we at-
tempt to find the limit as

lim
x→0

sin x
x
→ sin 0

0
→

“ 0
0
”
.

This, of course, violates a condiƟon of Theorem 1, as the limit of the de-
nominator is not allowed to be 0. Therefore, we are sƟll unable to evaluate
this limit with tools we currently have at hand.

The secƟon could have been Ɵtled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of funcƟons, we can find limits involving sums,
products, powers, etc., of these funcƟons. We further the development of such
comparaƟve tools with the Squeeze Theorem, a clever and intuiƟve way to find
the value of some limits.

Before staƟng this theorem formally, suppose we have funcƟons f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f and h have the same limit at c, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states, as illustrated in Figure 1.16.

x

y

g(x)

h(x)

f(x)

c

Figure 1.16: The situaƟon of the squeeze
theorem

Notes:
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1.3 Finding Limits AnalyƟcally

Theorem 5 Squeeze Theorem
Let f, g and h be funcƟons on open intervals I and J on either side of c
such that for all x in I and J,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take somework to figure out appropriate funcƟons bywhich to “squeeze”
the given funcƟon of which you are trying to evaluate a limit. However, that is
generally the only place work is necessary; the theorem makes the “evaluaƟng
the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
lim
x→0

sin x
x

= 1.

Example 4 Using the Squeeze Theorem
Use the Squeeze Theorem to show that

lim
x→0

sin x
x

= 1.

SÊ½çã®ÊÄ We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos θ, sin θ) for some angle θ as shown in Figure 1.17.
Using similar triangles, we can extend the line from the origin through the point
to the point (1, tan θ), as shown. (Here we are assuming that 0 ≤ θ ≤ π/2.
Later we will show that we can also consider θ ≤ 0.) θ

(1, tan θ)

(cos θ, sin θ)

(1, 0)

Figure 1.17: The unit circle and related tri-
angles.

Figure 1.17 shows three regions have been constructed in the first quadrant,
two triangles and a sector of a circle, which are also drawn below. The area of
the large triangle is 1

2 tan θ; the area of the sector is θ/2; the area of the triangle
contained inside the sector is 1

2 sin θ. It is then clear from the diagram that

Notes:
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θ

tan θ

1
θ

1
θ

sin θ

1

tan θ
2

≥ θ

2
≥ sin θ

2

MulƟply all terms by
2

sin θ
, giving

1
cos θ

≥ θ

sin θ
≥ 1.

Taking reciprocals reverses the inequaliƟes, giving

cos θ ≤ sin θ
θ
≤ 1.

(These inequaliƟes hold for all values of θ near 0, even negaƟve values, since
cos(−θ) = cos θ and sin(−θ) = − sin θ.)

Now take limits.

lim
θ→0

cos θ ≤ lim
θ→0

sin θ
θ
≤ lim

θ→0
1

cos 0 ≤ lim
θ→0

sin θ
θ
≤ 1

1 ≤ lim
θ→0

sin θ
θ
≤ 1

Clearly this means that lim
θ→0

sin θ
θ

= 1.

Two notes about the previous example are worth menƟoning. First, one
might be discouraged by this applicaƟon, thinking “I would never have come up
with that onmy own. This is too hard!” Don’t be discouraged; within this text we
will guide you in your use of the Squeeze Theorem. As one gains mathemaƟcal
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the raƟo of x and sin x
approaches 1, meaning that they are approaching 0 in essenƟally the same way.
Another way of viewing this is: for small x, the funcƟons y = x and y = sin x are
essenƟally indisƟnguishable.

We include this special limit, along with three others, in the following theo-
rem.

Notes:
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Theorem 6 Special Limits

1. lim
x→0

sin x
x

= 1

2. lim
x→0

cos x− 1
x

= 0

3. lim
x→0

(1+ x)
1
x = e

4. lim
x→0

ex − 1
x

= 1

A short word on how to interpret the laƩer three limits. We know that as
x goes to 0, cos x goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equaling 1), and we know that 1 raised to any power
is sƟll 1. At the same Ɵme, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this parƟcular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x→ 0, resulƟng in a limit of 1.

Our final theorem for this secƟonwill bemoƟvatedby the following example.

Example 5 Using algebra to evaluate a limit
Evaluate the following limit:

lim
x→1

x2 − 1
x− 1

.

1 2

1

2

3

x

y

Figure 1.18: Graphing f in Example 5 to
understand a limit.

SÊ½çã®ÊÄ We would like to apply Theorems 1 and 4 and subsƟtute 1
for x in the quoƟent. This gives:

lim
x→1

x2 − 1
x− 1

=
12 − 1
1− 1

=
“ 0
0
”
,

an indeterminate form. We cannot apply the Theorem 1 because the denomi-
nator is 0.

By graphing the funcƟon, as in Figure 1.18, we see that the funcƟon seems
to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quoƟent can be factored:

Let f(x) =
x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
.

Notes:
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The funcƟon is not defined when x = 1, but for all other x,

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
=

(x− 1)(x+ 1)
x− 1

= x+ 1.

Clearly lim
x→1

x+1 = 2. Recall that when considering limits, we are not concerned
with the value of the funcƟon at 1, only the value the funcƟon approaches as x
approaches 1. Since (x2− 1)/(x− 1) and x+ 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can
conclude that

lim
x→1

x2 − 1
x− 1

= lim
x→1

(x− 1)(x+ 1)
x− 1

= lim
x→1

x+ 1 = 2.

The key to the above example is that the funcƟons y = (x2− 1)/(x− 1) and
y = x+1 are idenƟcal except at x = 1. Since limits describe a value the funcƟon
is approaching, not the value the funcƟon actually aƩains, the limits of the two
funcƟons are always equal.

Theorem 7 Limits of FuncƟons Equal At All But One Point
Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = lim
x→c

g(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

Ɵonal funcƟon of the form g(x)/f(x) and directly evaluaƟng the limit lim
x→c

g(x)
f(x)

returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, divide, then apply Theorem 7. Some useful alge-
braic techniques to rewrite funcƟons that return an indeterminate form when
evaluaƟng a limit are:

• factoring and dividing out common factors,

• raƟonalizing the numerator or denominator,

• simplifying the expression, and

• finding a common denominator.

We will demonstrate some of these techniques in the following examples.

Notes:
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Example 6 EvaluaƟng a limit using Theorem 7

Evaluate lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

.

SÊ½çã®ÊÄ Webegin by aƩempƟng to apply Theorems 1 and 4 and sub-
sƟtuƟng 3 for x. This returns the familiar indeterminate form of “0/0”. Since the
numerator and denominator are each polynomials, we know that (x−3) is factor
of each. Using whatever method is most comfortable to you, factor out (x− 3)
from each (using polynomial division, syntheƟc division, a computer algebra sys-
tem, etc.). We find that

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

=
(x− 3)(x2 + x− 2)

(x− 3)(2x2 + 9x− 5)
.

We can divide the (x−3) terms as long as x ̸= 3. Using Theorem 7we conclude:

lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

= lim
x→3

(x− 3)(x2 + x− 2)
(x− 3)(2x2 + 9x− 5)

= lim
x→3

(x2 + x− 2)
(2x2 + 9x− 5)

=
10
40

=
1
4
.

Example 7 EvaluaƟng a limit by raƟonalizing

Evaluate lim
x→0

√
x+ 4− 2

x
.

SÊ½çã®ÊÄ We begin by applying Theorem 4 and subsƟtuƟng 2 for x.
This returns the familiar indeterminate form of “0/0”. We see the radical in the
numerator so we will raƟonalize the numerator. Using Theorem 7 we find that

lim
x→0

√
x+ 4− 2

x
= lim

x→0

√
x+ 4− 2

x
·
√
x+ 4+ 2√
x+ 4+ 2

= lim
x→0

(x+ 4)− 4
x(
√
x+ 4+ 2)

= lim
x→0

x
x(
√
x+ 4+ 2)

Simplify the numerator.

= lim
x→0

1√
x+ 4+ 2

Divide out x.

=
1√
4+ 2

=
1
4
.

Notes:
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NoƟce that we didn’t distribute the denominator in the second line. Gen-
erally speaking, when we are hoping to divide out a factor in a fracƟon we will
need to undo any distribuƟng that we may have prematurely done.

We end this secƟon by revisiƟng a limit first seen in SecƟon 1.1, a limit of
a difference quoƟent. Let f(x) = −1.5x2 + 11.5x; we approximated the limit

lim
h→0

f(1+ h)− f(1)
h

≈ 8.5. We formally evaluate this limit in the following ex-
ample.

Example 8 EvaluaƟng the limit of a difference quoƟent

Let f(x) = −1.5x2 + 11.5x; find lim
h→0

f(1+ h)− f(1)
h

.

SÊ½çã®ÊÄ Since f is a polynomial, our first aƩempt should be to em-
ploy Theorem 4 and subsƟtute 0 for h. However, we see that this gives us “0/0.”
Knowing that we have a raƟonal funcƟon hints that some algebra will help. Con-
sider the following steps:

lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

−1.5(1+ h)2 + 11.5(1+ h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1+ 2h+ h2) + 11.5+ 11.5h− 10
h

= lim
h→0

−1.5h2 + 8.5h
h

= lim
h→0

h(−1.5h+ 8.5)
h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 7, as h ̸= 0)

= 8.5 (using Theorem 4)

This matches our previous approximaƟon.

This secƟon contains several valuable tools for evaluaƟng limits. One of the
main results of this secƟon is Theorem 4; it states that many funcƟons that we
use regularly behave in a very nice, predictable way. In SecƟon 1.6 we give a
name to this nice behavior; we label such funcƟons as conƟnuous. Defining that
term will require us to look again at what a limit is and what causes limits to not
exist.

Notes:
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Exercises 1.3
Terms and Concepts

1. Explain in your own words, without using ε-δ formality,
why lim

x→c
b = b.

2. Explain in your own words, without using ε-δ formality,
why lim

x→c
x = c.

3. What does the text mean when it says that certain func-
Ɵons’ “behavior is ‘nice’ in terms of limits”? What, in par-
Ɵcular, is “nice”?

4. Sketch a graph that visually demonstrates the Squeeze The-
orem.

5. You are given the following informaƟon:

(a) lim
x→1

f(x) = 0

(b) lim
x→1

g(x) = 0

(c) lim
x→1

f(x)/g(x) = 2

What can be said about the relaƟve sizes of f(x) and g(x)
as x approaches 1?

Problems

Use the following limits to evaluate the limits given in Exercises
6–13, where possible. If it is not possible, state so.

lim
x→9

f(x) = f(9) = 6 lim
x→6

f(x) = f(6) = 9
lim
x→9

g(x) = g(9) = 3 lim
x→6

g(x) = g(6) = 3

6. lim
x→9

(f(x) + g(x))

7. lim
x→9

(3f(x)/g(x))

8. lim
x→9

(
f(x)− 2g(x)

g(x)

)

9. lim
x→6

(
f(x)

3− g(x)

)
10. lim

x→9
g
(
f(x)
)

11. lim
x→6

f
(
g(x)

)
12. lim

x→6
g
(
f(f(x))

)
13. lim

x→6
f(x)g(x)− f 2(x) + g2(x)

Use the following limits to evaluate the limits given in Exercises
14–17, where possible. If it is not possible, state so.

lim
x→1

f(x) = f(1) = 2 lim
x→10

f(x) = f(10) = 1
lim
x→1

g(x) = g(1) = 0 lim
x→10

g(x) = g(10) = π

14. lim
x→1

f(x)g(x)

15. lim
x→10

cos
(
g(x)

)
16. lim

x→1
f(x)g(x)

17. lim
x→1

g
(
5f(x)

)
In Exercises 18–38, evaluate the given limit.

18. lim
x→3

x2 − 3x+ 7

19. lim
x→π

(
x− 3
x− 5

)7

20. lim
x→π/4

cos x sin x

21. lim
x→0

ln x

22. lim
x→3

4x
3−8x

23. lim
x→π/6

csc x

24. lim
x→0

ln(1+ x)

25. lim
x→π

x2 + 3x+ 5
5x2 − 2x− 3

26. lim
x→π

3x+ 1
1− x

27. lim
x→6

x2 − 4x− 12
x2 − 13x+ 42

28. lim
x→0

x2 + 2x
x2 − 2x

29. lim
x→2

x2 + 6x− 16
x2 − 3x+ 2

30. lim
x→2

x2 − 10x+ 16
x2 − x− 2

31. lim
x→−2

x2 − 5x− 14
x2 + 10x+ 16

32. lim
x→−1

x2 + 9x+ 8
x2 − 6x− 7

33. lim
t→9

√
t− 3
t− 9

34. lim
x→0

√
x2 + 4− 2

x2

35. lim
t→3

1
t −

1
3

t− 3

36. lim
x→0

1
x
− 1

x2 + x

37. lim
t→0

(t− 4)2 − 16
t
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38. lim
x→13

√
x+ 3− 4
x− 13

Use the Squeeze Theorem in Exercises 39–43, where appropri-
ate, to evaluate the given limit.
Hint: −1 ≤ sin x ≤ 1 and−1 ≤ cos x ≤ 1.

39. lim
x→0

x sin
(
1
x

)
40. lim

x→0
sin x cos

(
1
x2

)
41. lim

x→1
f(x), where 3x− 2 ≤ f(x) ≤ x3.

42. lim
x→3

f(x), where 6x− 9 ≤ f(x) ≤ x2.

43. lim
x→0

x2 cos
(
1
x

)

Exercises 44–49 challenge your understanding of limits that
can be evaluated using the knowledge gained in this secƟon.

44. lim
x→0

sin 3x
x

45. lim
x→0

sin 5x
8x

46. lim
x→0

ln(1+ x)
x

47. lim
x→0

sin x
x

, where x is measured in degrees, not radians.

48. lim
x→0

tan 4x
tan 3x

49. lim
x→0

tan 5x
sin 7x

50. Verify lim
x→0

cos x− 1
x

= 0 Hint: MulƟply by cos x+ 1
cos x+ 1
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1.4 One Sided Limits

1.4 One Sided Limits
In SecƟon 1.1 we explored the three ways in which limits of funcƟons failed to
exist:

1. The funcƟon approached different values from the leŌ and right,

2. The funcƟon grows without bound, and

3. The funcƟon oscillates.

In this secƟon we explore in depth the concepts behind #1 by introducing
the one-sided limit. We begin with formal definiƟons that are very similar to the
definiƟon of the limit given in SecƟon 1.2, but the notaƟon is slightly different
and “x ̸= c” is replaced with either “x < c” or “x > c.” We will consider #2 in
more detail in SecƟon 1.5.

DefiniƟon 2 One Sided Limits
LeŌ-Hand Limit
Let I be an open interval with right endpoint c, and let f be a funcƟon
defined on I. The limit of f(x), as x approaches c from the leŌ, is L, or,
the leŌ–hand limit of f at c is L, denoted by

lim
x→c−

f(x) = L,

means that given any ε > 0, there exists δ > 0 such that for all x < c,
if |x− c| < δ, then |f(x)− L| < ε.

Right-Hand Limit
Let I be an open interval with leŌ endpoint c, and let f be a funcƟon
defined on I. The limit of f(x), as x approaches c from the right, is L, or,
the right–hand limit of f at c is L, denoted by

lim
x→c+

f(x) = L,

means that given any ε > 0, there exists δ > 0 such that for all x > c,
if |x− c| < δ, then |f(x)− L| < ε.

PracƟcally speaking, when evaluaƟng a leŌ-hand limit, we consider only val-
ues of x “to the leŌ of c,” i.e., where x < c. The admiƩedly imperfect notaƟon
x → c− is used to imply that we look at values of x to the leŌ of c. The nota-
Ɵon has nothing to do with posiƟve or negaƟve values of either x or c. A similar

Notes:
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statement holds for evaluaƟng right-hand limits; there we consider only values
of x to the right of c, i.e., x > c. We can use the theorems from previous secƟons
to help us evaluate these limits; we just restrict our view to one side of c.

Watch the video:
One-sided limits from graphs at
https://youtu.be/nOnd3SiYZqM

We pracƟce evaluaƟng leŌ and right-hand limits through a series of exam-
ples.

Example 1 EvaluaƟng one sided limits

Let f(x) =

{
2x 0 ≤ x ≤ 1
6− 2x 1 < x < 2

, as shown in Figure 1.19. Find each of the

following:

1 2

2

4

x

y

Figure 1.19: A graph of f in Example 1.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

SÊ½çã®ÊÄ For these problems, the visual aid of the graph is likely more
effecƟve in evaluaƟng the limits than using f itself. Therefore we will refer oŌen
to the graph.

1. As x goes to 1 from the leŌ, we see that f(x) is approaching the value of 2.
Therefore lim

x→1−
f(x) = 2.

2. As x goes to 1 from the right, we see that f(x) is approaching the value of 4.
Recall that it does not maƩer that there is an “open circle” there; we are
evaluaƟng a limit, not the value of the funcƟon. Therefore lim

x→1+
f(x) = 4.

3. The limit of f as x approaches 1 does not exist, as discussed in the first
secƟon. The funcƟon does not approach one parƟcular value, but two
different values from the leŌ and the right.

Notes:
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4. Using the definiƟon and by looking at the graph we see that f(1) = 2.

5. As x goes to 0 from the right, we see that f(x) is also approaching 0. There-
fore lim

x→0+
f(x) = 0. Note we cannot consider a leŌ-hand limit at 0 as f is

not defined for values of x < 0.

6. Using the definiƟon and the graph, f(0) = 0.

7. As x goes to 2 from the leŌ, we see that f(x) is approaching the value of
2. Therefore lim

x→2−
f(x) = 2.

8. The graph and the definiƟon of the funcƟon show that f(2) is not defined.

Note how the leŌ and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuiƟve: the limit exists precisely when the leŌ and right-hand limits are equal.

Theorem 8 Limits and One Sided Limits
Let f be a funcƟon defined on an open interval I containing c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the leŌ and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
leŌ and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 1 – 4 is that the value of the funcƟon may
or may not be equal to the value(s) of its leŌ- or right-hand limits, even when
these limits agree.

Example 2 EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =

{
2− x 0 < x < 1
(x− 2)2 1 < x < 2

, as shown in Figure 1.20. Evaluate the fol-

lowing.

Notes:
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Chapter 1 Limits

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

1 2

1

2

x

y

Figure 1.20: A graph of f from Example 2

SÊ½çã®ÊÄ Againwewill evaluate each using both the definiƟon of f and
its graph.

1. As x approaches 1 from the leŌ, we see that f(x) approaches 1. Therefore
lim

x→1−
f(x) = 1.

2. As x approaches 1 from the right, we see that again f(x) approaches 1.
Therefore lim

x→1+
f(x) = 1.

3. The limit of f as x approaches 1 exists and is 1, as f approaches 1 from both
the right and leŌ. Therefore lim

x→1
f(x) = 1.

4. f(1) is not defined. Note that 1 is not in the domain of f as defined by the
problem, which is indicated on the graph by an open circle when x = 1.

5. As x goes to 0 from the right, f(x) approaches 2. So lim
x→0+

f(x) = 2.

6. f(0) is not defined as 0 is not in the domain of f.

7. As x goes to 2 from the leŌ, f(x) approaches 0. So lim
x→2−

f(x) = 0.

8. f(2) is not defined as 2 is not in the domain of f.

Example 3 EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =

{
(x− 1)2 0 ≤ x ≤ 2, x ̸= 1
1 x = 1

, as shown in Figure 1.21. Evaluate the

following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)1 2

0.5

1

x

y

Figure 1.21: Graphing f in Example 3

Notes:
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1.4 One Sided Limits

SÊ½çã®ÊÄ It is clear by looking at the graph that both the leŌ and right-
hand limits of f, as x approaches 1, is 0. Thus it is also clear that the limit is 0;
i.e., lim

x→1
f(x) = 0. It is also clearly stated that f(1) = 1.

Example 4 EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =

{
x2 0 ≤ x ≤ 1
2− x 1 < x ≤ 2

. Evaluate the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SÊ½çã®ÊÄ In this example, we will evaluate the limit by only consider-
ing the definiƟon of f.

1. As x approaches 1 from the leŌ, f(x) is defined to be x2. Therefore

lim
x→1−

f(x) = lim
x→1−

x2 = 1.

2. As x approaches 1 from the right, f(x) is defined to be 2− x. Therefore

lim
x→1+

f(x) = lim
x→1+

2− x = 1.

3. Since the right and leŌ hand limits are equal at x = 1, i.e., lim
x→1−

f(x) =

lim
x→1+

f(x) = 1, this tells us lim
x→1

f(x) = 1.

4. To find f(1), we use the x2 piece of our funcƟon, so f(1) = 1.

Example 5 EvaluaƟng limits of an absolute value funcƟon

Let f(x) =
|x− 1|
x− 1

. Evaluate the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

Notes:
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Chapter 1 Limits

SÊ½çã®ÊÄ We begin by rewriƟng |x− 1| as a piecewise funcƟon.

|x− 1| =

{
x− 1 x ≥ 1
−(x− 1) x ≤ 1

1. lim
x→1−

f(x) = lim
x→1−

−(x− 1)
x− 1

= lim
x→1−

−1 = −1

2. lim
x→1+

f(x) = lim
x→1+

x− 1
x− 1

= lim
x→1+

1 = 1

3. lim
x→1

f(x) does not exist because the leŌ and right hand limits are not equal.

4. f(1) is undefined.

In Examples 1 – 5 we were asked to find both lim
x→1

f(x) and f(1). Consider the
following table:

lim
x→1

f(x) f(1)

Example 1 does not exist 2
Example 2 1 not defined
Example 3 0 1
Example 4 1 1
Example 5 does not exist not defined

Only in Example 4 do both the funcƟon and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situaƟon
which we explore in SecƟon 1.6, enƟtled “ConƟnuity.” In short, a conƟnuous
funcƟon is one in which when a funcƟon approaches a value as x → c (i.e.,
when lim

x→c
f(x) = L), it actually aƩains that value at c. Such funcƟons behave

nicely as they are very predictable.
In the next secƟon we examine onemore aspect of limits: limits that involve

infinity.

Notes:
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Exercises 1.4
Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. T/F: If lim
x→1−

f(x) = 5, then lim
x→1

f(x) = 5

3. T/F: If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5

4. T/F: If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5

Problems

In Exercises 5–11, evaluate each expression using the given
graph of f(x).

5.

0.5 1 1.5 2

0.5

1

1.5

2

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→0−

f(x)

(f) lim
x→0+

f(x)

6.

0.5 1 1.5 2

0.5

1

1.5

2

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

7.

0.5 1 1.5 2

0.5

1

1.5

2

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

8.

0.5 1 1.5 2

0.5

1

1.5

2

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

9.
−4 −3 −2 −1 1 2 3 4

−4

−2

2

4

x

y

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

10.
−4 −3 −2 −1 1 2 3 4

−4

−2

2

4

x

y

(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)

11.
−4 −3 −2 −1 1 2 3 4

−4

−2

2

4

x

y

Let−3 ≤ a ≤ 3 be an integer.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

In Exercises 12–15, evaluate the given limit.

12. lim
x→7−

√
x2 − 49.
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13. lim
x→5+

√
x2 − 25.

14. lim
x→−10−

√
100− x2.

15. lim
x→−8+

√
x2 − 64.

In Exercises 16–26, evaluate the given limits of the piecewise
defined funcƟons f.

16. f(x) =

{
x+ 1 x ≤ 1
x2 − 5 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

17. f(x) =

{
2x2 + 5x− 1 x < 0
sin x x ≥ 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

18. f(x) =


x2 − 1 x < −1
x3 + 1 −1 ≤ x ≤ 1
x2 + 1 x > 1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

(e) lim
x→1−

f(x)

(f) lim
x→1+

f(x)

(g) lim
x→1

f(x)

(h) f(1)

19. f(x) =

{
cos x x < π

sin x x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

20. f(x) =

{
1− cos2 x x < a
sin2 x x ≥ a

,

where a is a real number.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

21. f(x) =


x+ 1 x < 1
1 x = 1
x− 1 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

22. f(x) =


x2 x < 2
x+ 1 x = 2
−x2 + 2x+ 4 x > 2

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

23. f(x) =

{
a(x− b)2 + c x < b
a(x− b) + c x ≥ b

,

where a, b and c are real numbers.

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

24. f(x) =

{
|x|
x x ̸= 0
0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

25. f(x) = lim
x→4

|4− x|
x− 4

(a) lim
x→4−

f(x)

(b) lim
x→4+

f(x)

(c) lim
x→4

f(x)

(d) f(4)

26. f(x) = lim
x→−2

x+ 2
|x+ 2|

(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

In Exercises 27–30, sketch the graph of a funcƟon f that saƟs-
fies all of the given condiƟons.

27. lim
x→1−

f(x) = 2, lim
x→1+

f(x) = −3, f(1) = 0.

28. lim
x→−1

f(x) = 3, lim
x→3−

f(x) = 1, lim
x→3+

f(x) = −2,

f(−1) = 1, f(3) = −2.

29. lim
x→−2−

f(x) = 1, lim
x→−2+

f(x) = 0, lim
x→0−

f(x) = 3,

lim
x→0+

f(x) = −1, f(−2) = 4, f(0) = −3.

30. lim
x→0−

f(x) = 0, lim
x→0+

f(x) = 2, lim
x→4−

f(x) = −2,

lim
x→4+

f(x) = 1, f(0) = 2, f(4) = −2.

Review

31. Evaluate the limit: lim
x→−1

x2 + 5x+ 4
x2 − 3x− 4

.

32. Evaluate the limit: lim
x→−4

x2 − 16
x2 − 4x− 32

.

33. Evaluate the limit: lim
h→0

√
3+ h−

√
3

h
.

34. Approximate the limit numerically: lim
h→0

(2+ h)2 − 4
h

.

35. Approximate the limit numerically: lim
x→0.2

x2 + 5.8x− 1.2
x2 − 4.2x+ 0.8

.
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1.5 Limits Involving Infinity

1.5 Limits Involving Infinity
In DefiniƟon 1 we stated that in the equaƟon lim

x→c
f(x) = L, both c and L were

numbers. In this secƟon we relax that definiƟon a bit by considering situaƟons
when it makes sense to let c and/or L be “infinity.”

As a moƟvaƟng example, consider f(x) = 1/x2, as shown in Figure 1.22.
Note how, as x approaches 0, f(x) grows very, very large. It seems appropriate,
and descripƟve, to state that

lim
x→0

1
x2

=∞.

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with notaƟon such as

lim
x→∞

1
x2

= 0.

−1 −0.5 0.5 1

50

100

x

y

Figure 1.22: Graphing f(x) = 1/x2 for val-
ues of x near 0.

We explore both types of use of∞ in turn.

DefiniƟon 3 Limit of Infinity,∞
We say lim

x→c
f(x) =∞ if for everyM > 0 there exists δ > 0 such that for

all x ̸= c, if |x− c| < δ, then f(x) ≥ M.

This is just like the ε–δ definiƟon from SecƟon 1.2. In that definiƟon, given
any (small) value ε, if we let x get close enough to c (within δ units of c) then f(x)
is guaranteed to be within ε of f(c). Here, given any (large) valueM, if we let x
get close enough to c (within δ units of c), then f(x) will be at least as large as
M. In other words, if we get close enough to c, then we can make f(x) as large
as we want. We can define limits equal to−∞ in a similar way.

It is important to note that by saying lim
x→c

f(x) = ∞ we are implicitly stat-
ing that the limit of f(x), as x approaches c, does not exist. A limit only exists
when f(x) approaches an actual numeric value. We use the concept of limits
that approach infinity because it is helpful and descripƟve.

Watch the video:
Calculus — Infinite Limits at
https://youtu.be/-vwcLvb9A0s

Notes:
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Chapter 1 Limits

Example 1 EvaluaƟng limits involving infinity
Find lim

x→1

1
(x− 1)2

as shown in Figure 1.23.

0.5 1 1.5 2

50

100

x

y

Figure 1.23: Observing infinite limit as
x → 1 in Example 1.

SÊ½çã®ÊÄ In Example 1.1.4 of SecƟon 1.1, by inspecƟng values of x
close to 1 we concluded that this limit does not exist. That is, it cannot equal any
real number. But the limit could be infinite. And in fact, we see that the funcƟon
does appear to be growing larger and larger, as f(.99) = 104, f(.999) = 106,
f(.9999) = 108. A similar thing happens on the other side of 1. In general,
let a “large” value M be given. Let δ = 1/

√
M. If x is within δ of 1, i.e., if

|x− 1| < 1/
√
M, then:

|x− 1| < 1√
M

(x− 1)2 <
1
M

1
(x− 1)2

> M,

which is what we wanted to show. So we may say lim
x→1

1/(x− 1)2 =∞.

Example 2 EvaluaƟng limits involving infinity
Find lim

x→0

1
x
, as shown in Figure 1.24.
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Figure 1.24: EvaluaƟng lim
x→0

1
x
.

SÊ½çã®ÊÄ It is easy to see that the funcƟon grows without bound near
0, but it does so in different ways on different sides of 0. Since its behavior is not
consistent, we cannot say that lim

x→0

1
x
=∞. However, we can make a statement

about one–sided limits. We can state that lim
x→0+

1
x
=∞ and lim

x→0−

1
x
= −∞.

VerƟcal asymptotes

DefiniƟon 4 VerƟcal Asymptote
The funcƟon f(x) has a verƟcal asymptote at x = c if any one of the
following is true:

lim
x→c−

f(x) = ±∞, lim
x→c+

f(x) = ±∞, or lim
x→c

f(x) = ±∞

Notes:
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1.5 Limits Involving Infinity

Example 3 Finding verƟcal asymptotes
Find the verƟcal asymptotes of f(x) =

3x
x2 − 4

.

SÊ½çã®ÊÄ VerƟcal asymptotes occurwhere the funcƟon growswithout
bound; this can occur at values of cwhere the denominator is 0. When x is near
c, the denominator is small, which in turn can make the funcƟon take on large
values. In the case of the given funcƟon, the denominator is 0 at x = ±2. We
will consider the limits as x approaches±2 from the leŌ and right to determine
the verƟcal asymptotes.
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−10
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y

Figure 1.25: Graphing f(x) = 3x
x2 − 4

.

lim
x→2+

3x
(x− 2)(x+ 2)

=∞

lim
x→2−

3x
(x− 2)(x+ 2)

= −∞

lim
x→−2+

3x
(x− 2)(x+ 2)

=∞

lim
x→−2−

3x
(x− 2)(x+ 2)

= −∞

We can graphically confirm the limits above by looking at Figure 1.25. Thus the
verƟcal asymptotes are at x = ±2.

When a raƟonal funcƟon has a verƟcal asymptote at x = c, we can conclude
that the denominator is 0 at x = c. However, just because the denominator
is 0 at a certain point does not mean there is a verƟcal asymptote there. For
instance, f(x) = (x2 − 1)/(x − 1) does not have a verƟcal asymptote at x = 1,
as shown in Figure 1.26.

−1 1 2

1

2

3

x

y

Figure 1.26: Graphically showing that

f(x) =
x2 − 1
x− 1

does not have an asymp-
tote at x = 1.

While the denominator does get small near x = 1, the numerator gets small
too, matching the denominator step for step. In fact, factoring the numerator,
we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Dividing out common term, we get that f(x) = x+1 for x ̸= 1. So there is clearly
no asymptote, rather a hole exists in the graph at x = 1.

The above example may seem a liƩle contrived. Another example demon-
straƟng this important concept is f(x) = (sin x)/x. We have considered this

funcƟon several Ɵmes in the previous secƟons. We found that lim
x→0

sin x
x

= 1;
i.e., there is no verƟcal asymptote. No simple algebraic manipulaƟonmakes this
fact obvious; we used the Squeeze Theorem in SecƟon 1.3 to prove this.

Notes:
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Chapter 1 Limits

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a verƟcal asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a verƟcal asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.

Indeterminate Forms

We have seen how the limits

lim
x→0

sin x
x

and lim
x→1

x2 − 1
x− 1

each return the indeterminate form “0/0” when we blindly plug in x = 0 and
x = 1, respecƟvely. However, 0/0 is not a valid arithmeƟcal expression. It gives
no indicaƟon that the respecƟve limits are 1 and 2.

With a liƩle cleverness, one can come up with 0/0 expressions which have
a limit of∞, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to 0 while the denominator is also shrinking to 0.
The respecƟve rates at which they do this are very important and determine the
actual value of the limit.

An indeterminate form indicates that one needs to domore work in order to
compute the limit. That work may be algebraic (such as factoring and dividing)
or it may require a tool such as the Squeeze Theorem. In a later secƟon we will
learn a technique called L’Hôpital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of evaluaƟng a
limit, and each, in and of itself, has no meaning. The expression∞−∞ does
not really mean “subtract infinity from infinity.” Rather, it means “One quanƟty
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between−∞ and∞

Note that 1/0 and∞/0 are not indeterminate forms, though they are not
exactly valid mathemaƟcal expressions, either. In each, the funcƟon is growing
without bound, indicaƟng that the limit will be∞,−∞, or simply not exist if the
leŌ- and right-hand limits do not match.

Notes:
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1.5 Limits Involving Infinity

Limits at Infinity and Horizontal Asymptotes
At the beginning of this secƟon we briefly considered what happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behavior of the funcƟon to
the “far right” of the graph. We make this noƟon more explicit in the following
definiƟon.

DefiniƟon 5 Limits at Infinity

1. We say lim
x→∞

f(x) = L if for every ε > 0 there exists M > 0 such
that if x ≥ M, then |f(x)− L| < ε.

2. We say lim
x→−∞

f(x) = L if for every ε > 0 there existsM < 0 such
that if x ≤ M, then |f(x)− L| < ε.

DefiniƟon 6 Horizontal Asymptote
The funcƟon f(x) has a horizontal asymptote at y = L if either

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L

We can also define limits such as lim
x→∞

f(x) =∞ by combining this definiƟon
with DefiniƟon 3.
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(a)
x f(x)

10 0.9615
100 0.9996

10000 0.999996
−10 0.9615

−100 0.9996
−10000 0.999996

(b)

Figure 1.27: Using a graph and a table
to approximate a horizontal asymptote in
Example 4.

Example 4 ApproximaƟng horizontal asymptotes

Approximate the horizontal asymptote(s) of f(x) =
x2

x2 + 4
.

SÊ½çã®ÊÄ We will approximate the horizontal asymptotes by approxi-
maƟng the limits

lim
x→−∞

x2

x2 + 4
and lim

x→∞

x2

x2 + 4
.

Figure 1.27(a) shows a sketch of f, and part (b) gives values of f(x) for large mag-
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = 1.

Later, we will show how to determine this analyƟcally.

Notes:
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Chapter 1 Limits

Horizontal asymptotes can take on a variety of forms. Figure 1.28(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 1.28(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymptotes;

one at y = 1 and the other at y = −1.
Figure 1.28(c) shows that f(x) = (sin x)/x has even more interesƟng behav-

ior than at just x = 0; as x approaches±∞, f(x) approaches 0, but oscillates as
it does this.
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Figure 1.28: Considering different types of horizontal asymptotes.
We can analyƟcally evaluate limits at infinity for raƟonal funcƟons once we

understand lim
x→∞

1/x. As x gets larger and larger, the 1/x gets smaller and small-
er, approaching 0. We can, in fact, make 1/x as small as we want by choosing a
large enough value of x. Given ε, we can make 1/x < ε by choosing x > 1/ε.
Thus we have limx→∞ 1/x = 0. It is now not much of a jump to conclude the
following:

Theorem 9 Limits of
1
xn

For any n > 0,

lim
x→∞

1
xn

= 0 and lim
x→−∞

1
xn

= 0

Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

.

A good way of approaching this is to divide through the numerator and denom-
inator by x3 (hence dividing by 1), which is the largest power of x to appear in

Notes:
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1.5 Limits Involving Infinity

the funcƟon. Doing this, we get

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

1/x3

1/x3
· x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1+ 2/x2 + 1/x3

4− 2/x+ 9/x3

=
1+ 0+ 0
4− 0+ 0

=
1
4
.

We used the rules for limits (which also hold for limits at infinity), as well as the
fact about limits of 1/xn. This procedure works for any raƟonal funcƟon and is
highlighted in the following Key Idea.

Key Idea 1 Finding Limits of RaƟonal FuncƟons at Infinity
Let f(x) be a raƟonal funcƟon of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.
To determine lim

x→∞
f(x) or lim

x→−∞
f(x):

1. Divide the numerator and denominator by xm.

2. Simplify as much as possible.

3. Use Theorem 9 to find the limit.

If the highest power of x is the same in both the numerator and denominator
(i.e. n = m), we will be in a situaƟon like the example above, where we will
divide by xn and in the limit all the terms will approach 0 except for anxn/xn and
bmxm/xn. Since n = m, this will leave us with the limit an/bm. If n < m, then
aŌer dividing through by xm, all the terms in the numerator will approach 0 in
the limit, leaving us with 0/bm or 0. If n > m, and we try dividing through by xn,
we end up with all the terms in the denominator tending toward 0, while the xn
term in the numerator does not approach 0. This is indicaƟve of some sort of
infinite limit.

IntuiƟvely, as x gets very large, all the terms in the numerator are small in
comparison to anxn, and likewise all the terms in the denominator are small

Notes:
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Chapter 1 Limits

compared to bnxm. If n = m, looking only at these two important terms, we
have (anxn)/(bnxm). This reduces to an/bm. If n < m, the funcƟon behaves
like an/(bmxm−n), which tends toward 0. If n > m, the funcƟon behaves like
anxn−m/bm, which will tend to either∞ or −∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

This procedure works for any raƟonal funcƟon. In fact, it gives us the follow-
ing key idea.

Key Idea 2 Limits of RaƟonal FuncƟons at Infinity
Let f(x) be a raƟonal funcƟon of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.

1. If n = m, then lim
x→∞

f(x) = lim
x→−∞

f(x) =
an
bm

.

2. If n < m, then lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

3. If n > m, then lim
x→∞

f(x) and lim
x→−∞

f(x) are both infinite.

Example 5 Horizontal Asymptotes Involving Square Roots
Find the horizontal asymptotes of

x√
x2 + 1

.

SÊ½çã®ÊÄ We must consider the limits as x → ±∞. When x is very
large, x2 + 1 ≈ x2 and thus

√
x2 + 1 ≈

√
x2 = |x|.

lim
x→∞

x√
x2 + 1

= lim
x→∞

x/x√
x2/x2 + 1/x2

= lim
x→∞

1√
1+ 1/x2

= 1

Notes:

54



1.5 Limits Involving Infinity

Therefore, y = 1 is a horizontal asymptote. Similarly,

lim
x→−∞

x√
x2 + 1

= lim
x→−∞

x/(−x)√
x2/x2 + 1/x2

= lim
x→−∞

−1√
1+ 1/x2

= −1

Therefore, y = −1 is also a horizontal asymptote.

Example 6 Finding a limit of a raƟonal funcƟon

Confirm analyƟcally that y = 1 is the horizontal asymptote of f(x) =
x2

x2 + 4
, as

approximated in Example 4.

SÊ½çã®ÊÄ Before using Key Idea 2, let’s use the technique of evaluaƟng
limits at infinity of raƟonal funcƟons that led to that theorem. The largest power
of x in f is 2, so divide the numerator and denominator of f by x2, then take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1
1+ 4/x2

=
1

1+ 0
= 1.

We can also use Key Idea 2 directly; in this case n = m so the limit is the raƟo
of the leading coefficients of the numerator and denominator, i.e., 1/1 = 1.

Example 7 Finding limits of raƟonal funcƟons
(a) AnalyƟcally evaluate the following limits, and (b) Use Key Idea 2 to evaluate
each limit.

1. lim
x→−∞

x2 + 2x− 1
x3 + 1

2. lim
x→∞

x2 + 2x− 1
1− x− 3x2

3. lim
x→∞

x2 − 1
3− x

Notes:
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Chapter 1 Limits

SÊ½çã®ÊÄ

1. (a) Divide numerator and denominator by x3.

lim
x→−∞

x2 + 2x− 1
x3 + 1

= lim
x→−∞

x2/x3 + 2x/x3 − 1/x3

x3/x3 + 1/x3

= lim
x→−∞

1/x+ 2/x2 − 1/x3

1+ 1/x3

=
0+ 0+ 0
1+ 0

= 0
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Figure 1.29: Visualizing the funcƟons in
Example 7.

(b) The highest power of x is in the denominator. Therefore, the limit is
0; see Figure 1.29(a).

2. (a) Divide numerator and denominator by x2.

lim
x→∞

x2 + 2x− 1
1− x− 3x2

= lim
x→∞

x2/x2 + 2x/x2 − 1/x2

1/x2 − x/x2 − 3x2/x2

= lim
x→∞

1+ 2/x− 1/x2

1/x2 − 1/x− 3

=
1+ 0− 0
0− 0− 3

= −1
3

(b) The highest power of x is x2, which occurs in both the numerator and
denominator. The limit is therefore the raƟo of the coefficients of x2,
which is−1/3. See Figure 1.29(b).

3. (a) Divide numerator and denominator by x.

lim
x→∞

x2 − 1
3− x

= lim
x→∞

x2/x− 1/x
3/x− x/x

= lim
x→∞

x− 1/x
3/x− 1

=∞

(b) The highest power of x is in the numerator so the limit will be∞ or
−∞. To see which, consider only the dominant terms from the nu-
merator and denominator, which are x2 and −x. The expression in
the limit will behave like x2/(−x) = −x for large values of x. There-
fore, the limit is−∞. See Figure 1.29(c).
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Exercises 1.5
Terms and Concepts

1. T/F: If lim
x→5

f(x) = ∞, then we are implicitly staƟng that the
limit exists.

2. T/F: If lim
x→∞

f(x) = 5, then we are implicitly staƟng that the
limit exists.

3. T/F: If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞

4. T/F: If lim
x→5

f(x) = ∞, then f has a verƟcal asymptote at
x = 5.

5. T/F:∞/0 is not an indeterminate form.

6. List 5 indeterminate forms.

7. Construct a funcƟonwith a verƟcal asymptote at x = 5 and
a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is/is not
conƟnuous at x = 7.

Problems

In Exercises 9–14, evaluate the given limits using the graph of
the funcƟon.

9. f(x) = 1
(x+ 1)2

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

−2 −1

50

100

x

y

10. f(x) = 1
(x− 3)(x− 5)2

.

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) lim
x→5−

f(x)

(e) lim
x→5+

f(x)

(f) lim
x→5

f(x)

2 4 6
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11. f(x) = 1
ex + 1

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)
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12. f(x) = x2 sin(πx)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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13. f(x) = cos(x)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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14. f(x) = 2x + 10

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

−10 −5 5

50

100

150

x

y

In Exercises 15–18, numerically approximate the following lim-
its:

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

15. f(x) = x2 − 1
x2 − x− 6

16. f(x) = x2 + 5x− 36
x3 − 5x2 + 3x+ 9

17. f(x) = x2 − 11x+ 30
x3 − 4x2 − 3x+ 18

18. f(x) = x2 − 9x+ 18
x2 − x− 6
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In Exercises 19–26, idenƟfy the horizontal and verƟcal asymp-
totes, if any, of the given funcƟon.

19. f(x) = 2x2 − 2x− 4
x2 + x− 20

20. f(x) = −3x2 − 9x− 6
5x2 − 10x− 15

21. f(x) = x2 + x− 12
7x3 − 14x2 − 21x

22. f(x) = x2 − 9
9x− 9

23. f(x) = x2 − 9
9x+ 27

24. f(x) = x2 − 1
−x2 − 1

25. f(x) = 2x4 + 3√
x8 + 9

26. f(x) = 3x3 + 4√
x6 + 3

In Exercises 27–34, evaluate the given limit.

27. lim
x→∞

x3 + 2x2 + 1
x− 5

28. lim
x→∞

x3 + 2x2 + 1
5− x

29. lim
x→−∞

x3 + 2x2 + 1
x2 − 5

30. lim
x→−∞

x3 + 2x2 + 1
5− x2

31. lim
x→−∞

√
4x2 − 3x+ 6
3x− 1

32. lim
x→−∞

√
9x6 + 4x2 + 25
3x3 + 4x+ 5

33. lim
x→−∞

√
10x10 − 4x4 + 9
2x5 + 2x2 + 3

34. lim
x→−∞

√
25x4 + 16x2 + 9
10x2 + 6x+ 12

Review
35. Use an ε− δ proof to show that

lim
x→1

5x− 2 = 3.

36. Let lim
x→2

f(x) = 3 and lim
x→2

g(x) = −1. Evaluate the follow-
ing limits.

(a) lim
x→2

(f+ g)(x)

(b) lim
x→2

(fg)(x)

(c) lim
x→2

(f/g)(x)

(d) lim
x→2

f(x)g(x)

37. Evaluate the limit: lim
x→e

ln x.
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1.6 ConƟnuity

1.6 ConƟnuity
As we have studied limits, we have gained the intuiƟon that limits measure
“where a funcƟon is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to 1,

f(x) is close to 3. We have seen, though, that this is not necessarily a good indi-
cator of what f(1) actually is. This can be problemaƟc; funcƟons can tend to one
value but aƩain another. This secƟon focuses on funcƟons that do not exhibit
such behavior.

DefiniƟon 7 ConƟnuous FuncƟon
Let f be a funcƟon defined on an open interval I containing c.

1. f is conƟnuous at c if lim
x→c

f(x) = f(c).

2. f is conƟnuous on I if f is conƟnuous at c for all values of c in I. If
f is conƟnuous on (−∞,∞), we say f is conƟnuous everywhere.

A useful way to establish whether or not a funcƟon f is conƟnuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

If f is defined near c but is not conƟnuous at c, then we say that f is dis-
conƟnuous at c or f has a disconƟnuity at c. We will discuss three types of
disconƟnuiƟes, as seen in Figure 1.30.
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Figure 1.30: Three types of disconƟnuiƟes

Removable disconƟnuity This type of disconƟnuity is called removable because
we could remove the disconƟnuity by redefining the funcƟon at a single
point.

Notes:
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Chapter 1 Limits

Infinite disconƟnuity The funcƟon is approaching±∞ at some x value.

Jump disconƟnuity The funcƟon “jumps” from one value to another.

Watch the video:
ConƟnuity and Limits Made Easy — Part 1 of 2 at
https://youtu.be/hlorAjS0xWE

Example 1 Finding intervals of conƟnuity
Let f be defined as shown in Figure 1.31. Give the interval(s) on which f is con-
Ɵnuous.
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Figure 1.31: A graph of f in Example 1.

SÊ½çã®ÊÄ We proceed by examining the three criteria for conƟnuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We know
immediately that f cannot be conƟnuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of course, for
c = 1.

We conclude that f is conƟnuous at every point of (0, 3) except at x = 1.
Therefore f is conƟnuous on (0, 1) ∪ (1, 3).
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Figure 1.32: A graph of the step funcƟon
in Example 2.

Example 2 Finding intervals of conƟnuity
The floor funcƟon, f(x) = ⌊x⌋, returns the largest integer smaller than or equal
to the input x. (For example, f(π) = ⌊π⌋ = 3.) The graph of f in Figure 1.32
demonstrates why this is oŌen called a “step funcƟon.”
Give the intervals on which f is conƟnuous.

SÊ½çã®ÊÄ We examine the three criteria for conƟnuity.

1. The limits limx→c f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

2. The funcƟon is defined for all values of c.

Notes:
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1.6 ConƟnuity

3. The limit lim
x→c

f(x) = f(c) for all values of cwhere the limit exist, since each
step consists of just a line.

We conclude that f is conƟnuous everywhere except at integer values of c. So
the intervals on which f is conƟnuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .

Our definiƟon of conƟnuity on an interval specifies the interval is an open
interval. At endpoints or points of disconƟnuitywemay consider conƟnuity from
the right or leŌ.

DefiniƟon 8 Right and LeŌ ConƟnuity
Right ConƟnuous
Let f be defined on a closed interval with leŌ endpoint a. We say that f
is conƟnuous from the right at a (or right conƟnuous at a) if

lim
x→a+

f(x) = f(a).

LeŌ ConƟnuous
Let f be defined on a closed interval with right endpoint b. We say that
f is conƟnuous from the leŌ at b (or leŌ conƟnuous at b) if

lim
x→b−

f(x) = f(b).

We can then extend the definiƟon of conƟnuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

DefiniƟon 9 ConƟnuity on Closed Intervals
Let f be defined on the closed interval [a, b] for some real numbers a, b.
Then f is conƟnuous on [a, b] if:

1. f is conƟnuous on (a, b),

2. f is right conƟnuous at a and

3. f is leŌ conƟnuous at b.

Notes:
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Chapter 1 Limits

We can make the appropriate adjustments to talk about conƟnuity on half–
open intervals such as [a, b) or (a, b] if necessary.

ConƟnuity is inherently Ɵed to the properƟes of limits. Because of this, the
properƟes of limits found in Theorems 1 and 3 apply to conƟnuity as well. We
will uƟlize these properƟes in the following example.

Example 3 Determining intervals on which a funcƟon is conƟnuous
For each of the following funcƟons, give the domain of the funcƟon and the
interval(s) on which it is conƟnuous.

1. f(x) = 1/x

2. f(x) = sin x

3. f(x) =
√
x

4. f(x) =
√
1− x2

5. f(x) = |x|

SÊ½çã®ÊÄ We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0)∪ (0,∞). As it is a raƟonal funcƟon,
we apply Theorem 3 to recognize that f is conƟnuous on all of its domain.

2. The domain of f(x) = sin x is all real numbers, or (−∞,∞). Applying
Theorem 4 shows that sin x is conƟnuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem4 shows that f(x) =√

x is conƟnuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theorems 1 and 4

shows that f is conƟnuous on all of its domain, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the absolute value

funcƟon as f(x) =

{
−x x < 0
x x ≥ 0

. Each “piece” of this piecewise defined

funcƟon is conƟnuous on all of its domain, giving that f is conƟnuous on
(−∞, 0) and [0,∞). We cannot assume this implies that f is conƟnuous
on (−∞,∞); we need to check that lim

x→0
f(x) = f(0), as x = 0 is the point

where f transiƟons from one “piece” of its definiƟon to the other. It is
easy to verify that this is indeed true, hence we conclude that f(x) = |x|
is conƟnuous everywhere.

The following theorem states how conƟnuous funcƟons can be combined to
form other conƟnuous funcƟons.

Notes:
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1.6 ConƟnuity

Theorem 10 ProperƟes of ConƟnuous FuncƟons
Let f and g be conƟnuous funcƟons on an interval I, let c be a real num-
ber and let n be a posiƟve integer. The following funcƟons are conƟn-
uous on I.

1. Sums/Differences: f± g

2. Constant MulƟples: c · f

3. Products: f · g

4. QuoƟents: f/g (as long as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (if f ≥ 0 on I or n is odd)

The proofs of each of the parts of Theorem 10 follow from the Basic Limit
ProperƟes given in Theorem 1. We will prove the product of two conƟnuous
funcƟons is conƟnuous now.

Proof
We know that f and g are conƟnuous at c so by definiƟon we have

lim
x→c

f(x) = f(c) and lim
x→c

g(x) = g(c).

Therefore,

lim
x→c

(f · g)(x) = lim
x→c

f(x) · g(x)

= lim
x→c

f(x) · lim
x→c

g(x)

= f(c) · g(c)
= (f · g)(c). □

Theorem 11 ConƟnuity of ComposiƟons
Let f be conƟnuous on I, where the range of f on I is J, and let g be
conƟnuous on J. Then

(g ◦ f)(x) = g(f(x))

is conƟnuous on I.

Notes:
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Chapter 1 Limits

Now knowing the definiƟon of conƟnuity we can re–read Theorem 4 as giv-
ing a list of funcƟons that are conƟnuous on their domains.

Theorem 12 ConƟnuous FuncƟons
The following funcƟons are conƟnuous on their domains.

1. f(x) = sin x

3. f(x) = tan x

5. f(x) = sec x

7. f(x) = ln x

2. f(x) = cos x

4. f(x) = cot x

6. f(x) = csc x

8. f(x) = ax (a > 0)

In the following example, wewill showhowwe apply the previous theorems.

Example 4 Determining intervals on which a funcƟon is conƟnuous
State the interval(s) on which each of the following funcƟons is conƟnuous.

1. f(x) =
√
x− 1+

√
5− x

2. f(x) = x sin x

3. f(x) = tan x

4. f(x) =
√
ln x

SÊ½çã®ÊÄ We examine each in turn, applying Theorems 10 and 12 as
appropriate.
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Figure 1.33: A graph of f in Example 4(1).

1. The square–root terms are conƟnuous on the intervals [1,∞) and (−∞, 5],
respecƟvely. As f is conƟnuous only where each term is conƟnuous, f is
conƟnuous on [1, 5], the intersecƟon of these two intervals. A graph of f
is given in Figure 1.33.

2. The funcƟons y = x and y = sin x are each conƟnuous everywhere, hence
their product is, too.

3. Theorem 12 states that f(x) = tan x is conƟnuous “on its domain.” Its
domain includes all real numbers except oddmulƟples of π/2. Thus f(x) =
tan x is conƟnuous on

. . .

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π
2

)
, . . . ,

or, equivalently, on D = {x ∈ R | x ̸= (2n+1)π
2 , n ∈ Z}.

Notes:
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1.6 ConƟnuity

4. The domain of y =
√
x is [0,∞). The range of y = ln x is (−∞,∞), but if

we restrict its domain to [1,∞) its range is [0,∞). So restricƟng y = ln x
to the domain of [1,∞) restricts its output is [0,∞), on which y =

√
x is

defined. Thus the domain of f(x) =
√
ln x is [1,∞).

A common way of thinking of a conƟnuous funcƟon is that “its graph can
be sketched without liŌing your pencil.” That is, its graph forms a “conƟnuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo–definiƟon glosses over some of the finer points of conƟnuity. Very
strange funcƟons are conƟnuous that one would be hard pressed to actually
sketch by hand.

This intuiƟve noƟon of conƟnuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [1, 2] and f(1) = −10 and
f(2) = 5. If f is conƟnuous on [1, 2] (i.e., its graph can be sketched as a conƟnu-
ous curve from (1,−10) to (2, 5)) then we know intuiƟvely that somewhere on
[1, 2] f must be equal to −9, and −8, and −7, −6, . . . , 0, 1/2, etc. In short, f
takes on all intermediate values between −10 and 5. It may take on more val-
ues; fmay actually equal 6 at some Ɵme, for instance, but we are guaranteed all
values between−10 and 5.

While this noƟon seems intuiƟve, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem and illus-
trated in Figure 1.34.

a c b

f(b)

L

f(a)

x

y

y = f(x)

(a)

a ? b

f(a)

L

f(b)

x

y

y = f(x)

(b)

Figure 1.34: A situaƟon where the Inter-
mediate Value Theorem applies (top) and
does not (boƩom).

Theorem 13 Intermediate Value Theorem
Let f be a conƟnuous funcƟon on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is
a value c in (a, b) such that f(c) = y

One important applicaƟon of the Intermediate Value Theorem is root find-
ing. Given a funcƟon f, we are oŌen interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approximaƟons
can be found through successive applicaƟons of this theorem. Suppose through
direct computaƟon we find that f(a) < 0 and f(b) > 0, where a < b. The Inter-
mediate Value Theorem states that there is a c in [a, b] such that f(c) = 0. The
theorem does not give us any clue as to where that value is in the interval [a, b],
just that it exists.

Example 5 Finding roots
Show that f(x) = x3 + x+ 3 has at least one real root.

Notes:
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Chapter 1 Limits

SÊ½çã®ÊÄ Wemust determine an interval onwhich the funcƟon chang-
es from posiƟve to negaƟve values. We start by evaluaƟng f at different values.
We see that f(0) = 3 > 0 and f(1) = 5 > 0. As we choose larger posiƟve val-
ues of x, we can see that f(x) values will conƟnue to grow. Looking at negaƟve
x-values, f(−1) = 1 > 0 and f(−2) = −7 < 0 so we know f(x) must change
sign in [−2,−1]. Because f(x) is a polynomial, it is conƟnuous on all real num-
bers so is conƟnuous on [−2,−1]. By the Intermediate Value Theorem there is
a c in (−2,−1) where f(x) = 0. Thus f(x) must have at least one real root on
(−2,−1).

Note that in the above example you were not asked to find the root, just to
show that the funcƟon had a root.

There is a technique that produces a good approximaƟon of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibiliƟes:

1. f(d) = 0 – we got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0 Then we know there is a root of f on the interval [d, b] – we have
halved the size of our interval, hence are closer to a good approximaƟon
of the root.

3. f(d) > 0 Then we know there is a root of f on the interval [a, d] – again,we
have halved the size of our interval, hence are closer to a good approxi-
maƟon of the root.

Successively applying this technique is called the BisecƟon Method of root
finding. We conƟnue unƟl the interval is sufficiently small. We demonstrate this
in the following example.

0.5 1

−1

−0.5

0.5

x

y

Figure 1.35: Graphing a root of
f(x) = x− cos x.

Example 6 Using the BisecƟon Method
Approximate the root of f(x) = x − cos x, accurate to three places aŌer the
decimal.

SÊ½çã®ÊÄ Consider the graph of f(x) = x−cos x, shown in Figure 1.35.
It is clear that the graph crosses the x-axis somewhere near x = 0.8. To start the
BisecƟonMethod, pick an interval that contains 0.8. We choose [0.7, 0.9]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

IteraƟon 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

Notes:
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1.6 ConƟnuity

IteraƟon 2: f(0.7) < 0, f(0.8) > 0, and at the midpoint, 0.75, we see that
f(0.75) > 0. So replace 0.8 with 0.75 and repeat. Note that we don’t
need to conƟnue to check the endpoints, just the midpoint. Thus we put
the rest of the iteraƟons in Figure 1.36.

Itera-
Ɵon # Interval Midpoint Sign

1 [0.7, 0.9] f(0.8) > 0
2 [0.7, 0.8] f(0.75) > 0
3 [0.7, 0.75] f(0.725) < 0
4 [0.725, 0.75] f(0.7375) < 0
5 [0.7375, 0.75] f(0.7438) > 0
6 [0.7375, 0.7438] f(0.7407) > 0
7 [0.7375, 0.7407] f(0.7391) > 0
8 [0.7375, 0.7391] f(0.7383) < 0
9 [0.7383, 0.7391] f(0.7387) < 0
10 [0.7387, 0.7391] f(0.7389) < 0
11 [0.7389, 0.7391] f(0.7390) < 0
12 [0.7390, 0.7391]

Figure 1.36: IteraƟons of the BisecƟon
Method of Root Finding

NoƟce that in the 12th iteraƟon we have the endpoints of the interval each
starƟng with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places aŌer the decimal. Using a computer, we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximaƟon of where f is 0. The
IntermediateValue Theoremstates that the actual zero is sƟllwithin this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places aŌer the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a
second for the program to run the necessary 35 iteraƟons. In less than 8 hun-
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 iteraƟons).

It is a simplemaƩer to extend theBisecƟonMethod to solve problems similar
to “Find x, where f(x) = 0.” For instance, we can find x, where f(x) = 1. It
actually works very well to define a new funcƟon gwhere g(x) = f(x)−1. Then
use the BisecƟon Method to solve g(x) = 0.

Similarly, given two funcƟons f and g, we can use the BisecƟon Method to
solve f(x) = g(x). Once again, create a new funcƟon hwhere h(x) = f(x)−g(x)
and solve h(x) = 0.

In SecƟon 4.4 another equaƟon solving method will be introduced, called
Newton’s Method. In many cases, Newton’s Method is much faster. It relies on
more advanced mathemaƟcs, though, so we will wait before introducing it.

This secƟon formally defined what it means to be a conƟnuous funcƟon.
“Most” funcƟons that we deal with are conƟnuous, so oŌen it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

Chapter Summary
In this chapter we:

• defined the limit,

Notes:
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• found accessible ways to approximate their values numerically and graph-
ically,

• developed a method of proving the value of a limit (ε-δ proofs),

• explored when limits do not exist,

• considered limits that involved infinity, and

• defined conƟnuity and explored properƟes of conƟnuous funcƟons.

Why? MathemaƟcs is famous for building on itself and calculus proves to be
no excepƟon. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quanƟty by a smaller and smaller number and see
what value the quoƟent approaches. In other words, wewill want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given posiƟon informaƟon.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum oŌen is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over Ɵme an
appreciaƟon is oŌen formed based on the scope of its applicability.

Notes:
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Exercises 1.6
Terms and Concepts
1. In your own words, describe what it means for a funcƟon

to be conƟnuous.
2. In your own words, describe what the Intermediate Value

Theorem states.
3. What is a “root” of a funcƟon?
4. Given funcƟons f and g on an interval I, how can the Bisec-

Ɵon Method be used to find a value c where f(c) = g(c)?
5. T/F: If f is defined on an open interval containing c, and

lim
x→c

f(x) exists, then f is conƟnuous at c.

6. T/F: If f is conƟnuous at c, then lim
x→c

f(x) exists.

7. T/F: If f is conƟnuous at c, then lim
x→c+

f(x) = f(c).

8. T/F: If f is conƟnuous on [a, b], then lim
x→a−

f(x) = f(a).

9. T/F: If f is conƟnuous on [0, 1) and [1, 2), then f is conƟnu-
ous on [0, 2).

10. T/F: The sum of conƟnuous funcƟons is also conƟnuous.

Problems
In Exercises 11–17, a graph of a funcƟon f is given along with a
value a. Determine if f is conƟnuous at a; if it is not, state why
it is not.

11. a = 1
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y

12. a = 1
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13. a = 1
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14. a = 0

0.5 1 1.5 2

0.5

1

1.5

2

x

y

15. a = 1
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16. a = 4
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17. (a) a = −2

(b) a = 0

(c) a = 2

−4 −3 −2 −1 1 2 3 4

−4

−2

2

4

x

y

In Exercises 18–21, determine if f is conƟnuous at the indicated
values. If not, explain why.

18. f(x) =

{
1 x = 0
sin x
x x > 0

(a) x = 0

(b) x = π

19. f(x) =

{
x3 − x x < 1
x− 2 x ≥ 1

(a) x = 0

(b) x = 1
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20. f(x) =

{
x2+5x+4
x2+3x+2 x ̸= −1
3 x = −1

(a) x = −1

(b) x = 10

21. f(x) =

{
x2−64

x2−11x+24 x ̸= 8
5 x = 8

(a) x = 0

(b) x = 8

In Exercises 22–34, give the intervals on which the given func-
Ɵon is conƟnuous.

22. f(x) = x2 − 3x+ 9
23. g(x) =

√
x2 − 4

24. h(k) =
√
1− k+

√
k+ 1

25. f(t) =
√
5t2 − 30

26. g(t) = 1√
1− t2

27. g(x) = 1
1+ x2

28. f(x) = ex

29. g(s) = ln s
30. h(t) = cos t

31. f(k) =
√

1− ek

32. f(x) = sin(ex + x2)

33. f(x) =


x+1
x+4 x < 2
x2 − 3 2 ≤ x ≤ 5
6− 2x x > 5

34. f(x) =


1

x−1 x < 0
2x2 − 3x− 1 0 ≤ x ≤ 2
5x2 − 4x x > 2

35. Let f(x) =

{
x2 − 1 x < 3
x+ 5 x ≥ 3

.

Is f conƟnuous everywhere?
36. Let f be conƟnuous on [1, 5] where f(1) = −2 and f(5) =

−10. Does a value 1 < c < 5 exist such that f(c) = −9?
Why/why not?

37. Let g be conƟnuous on [−3, 7]where g(0) = 0 and g(2) =
25. Does a value −3 < c < 7 exist such that g(c) = 15?
Why/why not?

38. Let f be conƟnuous on [−1, 1] where f(−1) = −10 and
f(1) = 10. Does a value −1 < c < 1 exist such that
f(c) = 11? Why/why not?

39. Let h be a funcƟon on [−1, 1] where h(−1) = −10 and
h(1) = 10. Does a value −1 < c < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 40–43, find the value(s) of a and b so that the func-
Ɵon is conƟnuous on R.

40. g(x) =

{
ax2 + 3x x < 2
x3 − ax x ≥ 2

41. f(x) =

{
a2x− ax x > 3
4 x ≤ 3

42. f(x) =


ax− b x < −1
2x2 + 3ax+ b −1 ≤ x < 1
4 x ≥ 1

43. f(x) =

{
x2 + 2x x ≤ a
−1 x > a

In Exercises 44–47, sketch the graph of a funcƟon that has the
following properƟes.

44. f is disconƟnuous at 3, but conƟnuous from the leŌ at 3,
and conƟnuous elsewhere.

45. f is disconƟnuous at -1 and 2, but conƟnuous from the right
at -1 and conƟnuous from the leŌ at 2, and conƟnuous
elsewhere.

46. f has a jump disconƟnuity at -2 and an infinite disconƟnuity
at 4 and is conƟnuous elsewhere.

47. f has a removable disconƟnuity at 2, is conƟnuous only
from the leŌ at 5, and is conƟnuous elsewhere.

In Exercises 48–51, show that the funcƟons have at least one
real root.

48. f(x) = x2 + 2x− 4

49. f(x) = sin x− 1/2

50. f(x) = ex − 2

51. f(x) = cos x− sin x

Review

52. Let f(x) =

{
x2 − 5 x < 5
5x x ≥ 5

.

(a) lim
x→5−

f(x)

(b) lim
x→5+

f(x)

(c) lim
x→5

f(x)

(d) f(5)

53. Numerically approximate the following limits:

(a) lim
x→−4/5+

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

(b) lim
x→−4/5−

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

54. Give an example of funcƟon f(x) for which lim
x→0

f(x) does
not exist.
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2.0 Chapter Prerequisites
The material in this secƟon provides a basic review of and pracƟce problems for
pre-calculus skills essenƟal to your success in Calculus. You should take Ɵme to
review this secƟon and work the suggested problems (checking your answers
against those in the back of the book). Since this content is a pre-requisite for
Calculus, reviewing andmastering these skills are considered your responsibility.
Thismeans thatminimal, and in some cases no, class Ɵmewill be devoted to this
secƟon. When you idenƟfy areas that you need help with we strongly urge you
to seek assistance outside of class from your instructor or other student tutoring
service.

Rules of Exponents
We will briefly summarize the laws of exponents and equivalent forms of expo-
nent expressions commonly used in this chapter. The laws of exponents are only
valid for the values of x and y for which the expression is defined (i.e., nonzero
real numbers in the denominator and nonnegaƟve real numbers when roots are
even.) Our first is the product of exponents. Ifm and n are real numbers, then

xm · xn = xm+n.

Example 1 Product Law of Exponents

x5 · x7 = x5+7 = x12

x−3 · x−4 = x−3+(−4) = x−7 =
1
x7

x−1/2 · x2/3 = x−1/2+2/3 = x1/6 = 6
√
x.

Our next is the quoƟent of exponents. Ifm and n are real numbers, then

xm

xn
= xm−n.

Example 2 QuoƟent Law of Exponents

x5

x7
= x5−7 = x−2 =

1
x2

x−3

x−4 = x−3−(−4) = x1 = x

x2/3

x−1/2 = x2/3−(−1/2) = x7/6 = 6
√
x7 = x 6

√
x.



Chapter 2 DerivaƟves

Our third is when a power is raised to a power. Once again, we assume m
and n are real numbers. In that case,

(xm)n = xm·n.

Example 3 Power Law of Exponents

(x5)7 = x5·7 = x35

(x−3)4 = x−3·4 = x−12 =
1
x12

(x−1/2)2/3 = x(−1/2)·(2/3) = x−1/3 =
1
3
√
x
.

Our final law tells us how to distribute a power over a product and a quoƟent.
Ifm is a real number, then

(xy)m = xmym and
(
x
y

)m

=
xm

ym
.

Example 4 Product and QuoƟent Raised to a Power

(xyz)7 = x7y7z7(
x
y

)−4

=
x−4

y−4 =
y4

x4
.

Factoring and Simplifying Complex FracƟons

The following examples demonstrate an efficient factoring technique that can
be used to create the various equivalent expressions oŌen needed to complete
problems that arise in Calculus. The ability to move flexibly and efficiently a-
mong different representaƟons of an expression is an important skill to have.

Example 5 Factoring out the common factor
Factor completely to write an equivalent expression:

1. x7/3 − 4x2/3 2.
1
2
x(x− 3)−2/5 + (x− 3)3/5

Notes:
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SÊ½çã®ÊÄ

1. x7/3 − 4x2/3 = x2/3(x5/3 − 4) = 3
√
x2( 3
√
x5 − 4).

2. 1
2
x(x− 3)−2/5 + (x− 3)3/5 =

1
2
(x− 3)−2/5(1+ 2(x− 3)

)
=

1
2
(x− 3)−2/5(1+ 2x− 6)

=
1
2
(x− 3)−2/5(2x− 5)

=
2x− 5

2(x− 3)2/5
or

=
2x− 5

2 5
√
(x− 3)2

Example 6 Simplifying complex fracƟons
Factor out the lowest power of the common factor to simplify the complex frac-
Ɵon

2
3x(x− 2)− 1

3 + (x− 2) 2
3

x2
.

SÊ½çã®ÊÄ
2
3x(x− 2)−1/3 + (x− 2)2/3

x2
=

1
3 (x− 2)−1/3(2x+ 3(x− 2)

)
x2

=
2x+ 3x− 6
3x2(x− 2)1/3

=
5x− 6

3x2 3
√
x− 2

FuncƟon ComposiƟon
FuncƟon composiƟon refers to combining funcƟons in a way that the output
from one funcƟon becomes the input for the next funcƟon. In other words,
the range (y-values) of one funcƟon become the domain (x-values) of the next
funcƟon. We denote this as (f ◦ g)(x) = f(g(x)), where the output of g(x)
becomes the input of f(x).

Example 7 ComposiƟon of two funcƟons
Given f(x) =

1
x2

and g(x) =
√
x+ 4, find (f ◦ g)(x) and (g ◦ f)(x).

Notes:
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SÊ½çã®ÊÄ To find (f ◦ g)(x) = f(g(x)), we subsƟtute the funcƟon g(x)
into the funcƟon f(x). Thus,

f(g(x)) = f
(√

x+ 4
)
=

1
(
√
x+ 4)2

=
1

x+ 4
.

For (g ◦ f)(x) = g(f(x)), we subsƟtute the funcƟon f(x) into the funcƟon g(x).
Thus,

g(f(x)) = g
(

1
x2

)
=

√
1
x2

+ 4 =

√
1+ 4x2

x2
=

√
1+ 4x2
x

.

Example 8 ComposiƟon of three funcƟons
Given f(x) = x2, g(x) =

√
4− x and h(x) = 3x − 5, find (f ◦ g ◦ h)(x) and

(g ◦ f ◦ h)(x).

SÊ½çã®ÊÄ To find (f ◦ g ◦ h)(x) we must start with the inside and work
our way out.

(f ◦ g ◦ h)(x) = f(g(h(x)))
= f(g(3x− 5))

= f
(√

4− (3x− 5)
)
= f
(√

9− 3x
)

=
(√

9− 3x
)2

= 9− 3x

For (g ◦ f ◦ h)(x), we have

(g ◦ f ◦ h)(x) = g(f(h(x)))
= g(f(3x− 5))
= g((3x− 5)2) = g(9x2 − 30x+ 25)

=
√
4− (9x2 − 30x+ 25) =

√
30x− 9x2 − 21

In this chapter we will also need to decompose a given funcƟon into two or
more, less complex funcƟons. For any one funcƟon there is oŌenmore than one
way to write the decomposiƟon. The following examples demonstrate this.

Example 9 Decomposing a funcƟon
Given F(x) = sin(3x2 + 5), find f(x) and g(x) so that F(x) = f(g(x)).

SÊ½çã®ÊÄ One soluƟon is f(x) = sin x and g(x) = 3x2 + 5.
Another possible soluƟon is f(x) = sin(x+ 5) and g(x) = 3x2.

Notes:
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Exercises 2.0
Problems
In Exercises 1–4, simplify each expression. Write your answer
so that all exponents are posiƟve.

1. (5x4y5)(2x2y3)4

2.
(
4a3/2b3

a2b−1/2

)−2

3.
(
−2x−3y7z5

)−4

(x3y−2z5)3

4. 4
√

x8y16z21

In Exercises 5–7, factor to write equivalent expressions.

5. 5
3
x

2
3 − 5

3 x
− 1

3

6.
1
2 x

− 1
2 (x+ 4)− 3x

1
2

(x+ 4)2

7. 6x(3x2 + 2)4(x2 − 5)2 + 24x(3x2 + 2)3(x2 − 5)3

8. If f(x) = x2 + 2x and g(x) = x − 4 find
(a) (f ◦ g)(6) (b) (g ◦ f)(6)
(c) (f ◦ g)(x) (d) (g ◦ f)(x)

9. If f(x) = 1
x− 5

and g(x) =
√
x− 2 find

(a) (f ◦ g)(6) (b) (g ◦ f)(6)
(c) (f ◦ g)(x) (d) (g ◦ f)(x)

10. If F(x) = f(g(x)) idenƟfy f(x) and g(x). (a) F(x) = 5
x+4

(b) F(x) =
∣∣4− x2

∣∣ (c) F(x) =
√

(x+ 2)2 − 5

11. If F(x) = f(g(h(x))) idenƟfy f(x), g(x) and h(x). (a) F(x) =
3
√

(2x+ 1)2 (b) F(x) = 2 3√x2 + 1
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2: D�Ù®ò�ã®ò�Ý
The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the derivaƟve. Limits describe where a funcƟon is going; derivaƟves describe
how fast the funcƟon is going.

2.1 Instantaneous Rates of Change: The DerivaƟve
A common amusement park ride liŌs riders to a height then allows them to
freefall a certain distance before safely stopping them. Suppose such a ride
drops riders from a height of 150 feet. Students of physics may recall that the
height (in feet) of the riders, t seconds aŌer freefall (and ignoring air resistance,
etc.) can be accurately modeled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without intervenƟon, the riders
will hit the ground at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose the designers of

the ride decide to begin slowing the riders’ fall aŌer 2 seconds (corresponding
to a height of 86 Ō.). How fast will the riders be traveling at that Ɵme?

We have been given a posiƟon funcƟon, but what we want to compute is a
velocity at a specific point in Ɵme, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, wedo know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in SecƟon 1.1 when we introduced the
difference quoƟent. We have

change in distance
change in Ɵme

=
“ rise ”
run

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some Ɵme period containing t = 2. If we make the Ɵme
interval small, we will get a good approximaƟon. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approximaƟon of the velocity.)

Consider the interval from t = 2 to t = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f(3)− f(2)
3− 2

=
f(3)− f(2)

1
= −80 Ō/s,
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where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a beƩer approximaƟon of the instan-
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)
2.5− 2

=
f(2.5)− f(2)

0.5
= −72 Ō/s.

We can do this for smaller and smaller intervals of Ɵme. For instance, over
a Ɵme span of 1/10th of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)
2.1− 2

=
f(2.1)− f(2)

0.1
= −65.6 Ō/s.

Over a Ɵme span of 1/100th of a second, on [2, 2.01], the average velocity is

f(2.01)− f(2)
2.01− 2

=
f(2.01)− f(2)

0.01
= −64.16 Ō/s.

Whatwe are really compuƟng is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are compuƟng

f(2+ h)− f(2)
h

where h is the change in Ɵme aŌer 2 seconds.
What we really want is for h = 0, but this, of course, returns the familiar

“0/0” indeterminate form. So we employ a limit, as we did in SecƟon 1.1.

h
Average Velocity

Ō/s

1 −80
0.5 −72
0.1 −65.6
0.01 −64.16
0.001 −64.016

Figure 2.1: ApproximaƟng the instan-
taneous velocity with average velociƟes
over a small Ɵme period h.

We can approximate the value of this limit numerically with small values of
h as seen in Figure 2.1. It looks as though the velocity is approaching −64 Ō/s.
CompuƟng the limit directly gives

lim
h→0

f(2+ h)− f(2)
h

= lim
h→0

−16(2+ h)2 + 150− (−16(2)2 + 150)
h

= lim
h→0

−64h− 16h2

h
= lim

h→0
−64− 16h

= −64.

1 2 3

−50

50

100

150

↑
2 + h

h

(2, f(2))
(2 + h, f(2 + h))

x

y

Figure 2.2: CompuƟng the difference
quoƟent.

Graphically, we can view the average velociƟes we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2)) and
(2+ h, f(2+ h)), as in Figure 2.2. In Figure 2.3, the secant line corresponding to
h = 1 is shown in three contexts. Figure 2.3(a) shows a “zoomed out” version
of f with its secant line. In (b), we zoom in around the points of intersecƟon
between f and the secant line. NoƟce how well this secant line approximates f

Notes:
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2.1 Instantaneous Rates of Change: The DerivaƟve

between those two points – it is a common pracƟce to approximate funcƟons
with straight lines.

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In parts (c) and (d) of
Figure 2.3, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).

1 2 3

−50

50

100

150

x

y

2 2.5 3

50

100

x

y

(a) (b)

1.5 2 2.5

50

100

x

y

1.5 2 2.5

50

100

x

y

(c) (d)

Figure 2.3: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in
different amounts. Part (d) shows the tangent line to f at x = 2.

We have just introduced a number of important concepts that we will flesh
out more within this secƟon. First, we formally define two of them.

Notes:
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Chapter 2 DerivaƟves

DefiniƟon 10 DerivaƟve at a Point
Let f be a conƟnuous funcƟon on an open interval I and let c be in I. The
derivaƟve of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)
h

,

provided the limit exists.

If the limit exists, we say that f is differenƟable at c; if the limit does not exist,
then f is not differenƟable at c. If f is differenƟable at every point in I, then f is
differenƟable on I.

DefiniƟon 11 Tangent Line
Let fbe conƟnuous on anopen interval I anddifferenƟable at c, for some
c in I. The line with equaƟon ℓ(x) = f ′(c)(x − c) + f(c) is the tangent
line to the graph of f at c; that is, it is the line through (c, f(c)) whose
slope is the derivaƟve of f at c.

Watch the video:
The Difference QuoƟent — Example 1 at
https://youtu.be/1O5NEI8UuHM

Some examples will help us understand these definiƟons.

Example 1 Finding derivaƟves and tangent lines
Let f(x) = 3x2 + 5x− 7. Find:

1. f ′(1)

2. The equaƟon of the tangent line
to the graph of f at x = 1.

3. f ′(3)

4. The equaƟon of the tangent line
to the graph f at x = 3.

Notes:
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2.1 Instantaneous Rates of Change: The DerivaƟve

SÊ½çã®ÊÄ

1. We compute this directly using DefiniƟon 10.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h)2 + 5(1+ h)− 7− (3(1)2 + 5(1)− 7)
h

= lim
h→0

3h2 + 11h
h

= lim
h→0

3h+ 11 = 11.

2. The tangent line at x = 1 has slope f ′(1) and goes through the point
(1, f(1)) = (1, 1). Thus the tangent line has equaƟon, in point-slope form,
y = 11(x− 1) + 1. In slope-intercept form we have y = 11x− 10.

3. Again, using the definiƟon,

f ′(3) = lim
h→0

f(3+ h)− f(3)
h

= lim
h→0

3(3+ h)2 + 5(3+ h)− 7− (3(3)2 + 5(3)− 7)
h

= lim
h→0

3h2 + 23h
h

= lim
h→0

3h+ 23

= 23.

4. The tangent line at x = 3has slope 23 and goes through thepoint (3, f(3)) =
(3, 35). Thus the tangent line has equaƟon y = 23(x−3)+35 = 23x−34.

1 2 3 4

20

40

60

x

y

Figure 2.4: A graph of f(x) = 3x2+5x−7
and its tangent lines at x = 1 and x = 3.

A graph of f is given in Figure 2.4 along with the tangent lines at x = 1 and
x = 3.

Linear funcƟons are easy to work with; many funcƟons that arise in the
course of solving real problems are not easy to work with. A common pracƟce
in mathemaƟcal problem solving is to approximate difficult funcƟons with not–
so–difficult funcƟons. Lines are a common choice. It turns out that at any given
point on the graph of a differenƟable funcƟon f, the best linear approximaƟon
to f is its tangent line. That is one reason we’ll spend considerable Ɵme finding
tangent lines to funcƟons.

One type of funcƟon that does not benefit from a tangent–line approxima-
Ɵon is a line; it is rather simple to recognize that the tangent line to a line is the
line itself. We look at this in the following example.

Notes:
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Chapter 2 DerivaƟves

Example 2 Finding the DerivaƟve of a Line
Consider f(x) = 3x + 5. Find the equaƟon of the tangent line to f at x = 1 and
x = 7.

SÊ½çã®ÊÄ We find the slope of the tangent line by using DefiniƟon 10.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h) + 5− (3+ 5)
h

= lim
h→0

3h
h

= lim
h→0

3

= 3.

We just found that f ′(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5 is 3. This is not surprising; lines are characterized by
being the only funcƟons with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the derivaƟve at any point x will be a; that is,
f ′(x) = a.

It is now easy to see that the tangent line to the graph of f at x = 1 is just f,
with the same being true for x = 7.

We oŌen desire to find the tangent line to the graph of a funcƟon without
knowing the actual derivaƟve of the funcƟon. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

Example 3 Numerical ApproximaƟon of the Tangent Line
Approximate the equaƟon of the tangent line to the graph of f(x) = sin x at
x = 0.

SÊ½çã®ÊÄ In order to find the equaƟon of the tangent line, we need a
slope and a point. The point is given to us: (0, sin 0) = (0, 0). To compute the
slope, we need the derivaƟve. This is where we will make an approximaƟon.
Recall that

f ′(0) ≈ sin(0+ h)− sin 0
h

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

−π − π
2

π
2

π

−1

−0.5

0.5

1

x

y

Figure 2.5: f(x) = sin x graphed with an
approximaƟon to its tangent line at x = 0.

Notes:
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2.1 Instantaneous Rates of Change: The DerivaƟve

f ′(0) ≈ sin(0.1)− sin 0
0.1

≈ 0.9983.

Thus our approximaƟon of the equaƟon of the tangent line is y = 0.9983(x −
0) + 0 = 0.9983x; it is graphed in Figure 2.5. The graph seems to imply the
approximaƟon is rather good.

Recall from SecƟon 1.3 that lim
x→0

sin x
x

= 1, meaning for values of x near
0, sin x ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem
reasonable that “the slope of f(x) = sin x” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 1. To find the derivaƟve of f at x = 1, we needed to
evaluate a limit. To find the derivaƟve of f at x = 3, we needed to again evaluate
a limit. We have this process:

input specific
number c −→ do something

to f and c −→ return
number f ′(c)

This process describes a funcƟon; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this funcƟon occurs.

Instead of applying this funcƟon repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

input variable x −→ do something
to f and x −→ return

funcƟon f ′(x)

The output is the “derivaƟve funcƟon,” f ′(x). The f ′(x) funcƟon will take a
number c as input and return the derivaƟve of f at c. This calls for a definiƟon.

Notes:
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DefiniƟon 12 DerivaƟve FuncƟon
Let f be a differenƟable funcƟon on an open interval I. The funcƟon

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

is the derivaƟve of f.

NotaƟon:
Let y = f(x). The following notaƟons all represent the derivaƟve:

f ′(x) = y ′ =
dy
dx

=
df
dx

=
d
dx

(f) =
d
dx

(y).

Important: The notaƟon
dy
dx

is one symbol; it is not the fracƟon “dy/dx”. The
notaƟon, while somewhat confusing at first, was chosen with care. A fracƟon–
looking symbol was chosen because the derivaƟve has many fracƟon–like prop-
erƟes. Among other places, we see these properƟes atworkwhenwe talk about
the units of the derivaƟve, when we discuss the Chain Rule, and when we learn
about integraƟon (topics that appear in later secƟons and chapters).

Examples will help us understand this definiƟon.

Example 4 Finding the derivaƟve of a funcƟon
Let f(x) = 3x2 + 5x− 7 as in Example 1. Find f ′(x).

SÊ½çã®ÊÄ We apply DefiniƟon 12.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)
h

= lim
h→0

3h2 + 6xh+ 5h
h

= lim
h→0

3h+ 6x+ 5

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) = 23. Note
our new computaƟon of f ′(x) affirm these facts.

Notes:
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2.1 Instantaneous Rates of Change: The DerivaƟve

Example 5 Finding the derivaƟve of a funcƟon
Let f(x) =

1
x+ 1

. Find f ′(x).

SÊ½çã®ÊÄ We apply DefiniƟon 12.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
x+h+1 −

1
x+1

h

Now find a common denominator and subtract; factor 1/h out front to facilitate
reading.

f ′(x) = lim
h→0

1
h
·
(

x+ 1
(x+ 1)(x+ h+ 1)

− x+ h+ 1
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(
x+ 1− (x+ h+ 1)
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(

−h
(x+ 1)(x+ h+ 1)

)
= lim

h→0

−1
(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2

So f ′(x) =
−1

(x+ 1)2
. To pracƟce using our notaƟon, we could also state

d
dx

(
1

x+ 1

)
=

−1
(x+ 1)2

.

Example 6 Finding the derivaƟve of a funcƟon
Find the derivaƟve of f(x) = sin x.

SÊ½çã®ÊÄ Before applying DefiniƟon 12, note that once this is found,
we can find the actual tangent line to f(x) = sin x at x = 0, whereas we seƩled

Notes:
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for an approximaƟon in Example 3.

f ′(x) = lim
h→0

sin(x+ h)− sin x
h

(
Use trig idenƟty

sin(x + h) = sin x cos h + cos x sin h

)
= lim

h→0

sin x cos h+ cos x sin h− sin x
h

(regroup)

= lim
h→0

sin x(cos h− 1) + cos x sin h
h

(split into two fracƟons)

= lim
h→0

(
sin x(cos h− 1)

h
+

cos x sin h
h

) (
use lim

h→0

cos h − 1
h

= 0 and lim
h→0

sin h
h

= 1
)

= sin x · 0+ cos x · 1
= cos x .

We have found that when f(x) = sin x, f ′(x) = cos x (see Figure 2.6).

-2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−1

−0.5

0.5

1

f(x) = sin x

f ′(x) = cos x

x

y

Figure 2.6: The funcƟon f(x) = sin x and its derivaƟve f ′(x) = cos x.
IniƟally, this might be somewhat surprising; the result of a tedious limit pro-

cess and the sine funcƟon is a nice funcƟon. Then again, perhaps this is not
enƟrely surprising. The sine funcƟon is periodic — it repeats itself on regular
intervals. Therefore its rate of change also repeats itself on the same regular
intervals. In fact, if we think about f ′(x) as the slope of the tangent to the sine
curve we noƟce the following

• when the slope of tangent lines is 0 then f ′(x) = cos x crosses the x−axis;

• when the slopes of the tangent lines are posiƟve then f ′ lies above the
x−axis; and

• when the slopes of the tangent lines are negaƟve then f ′ lies below the
x−axis.
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2.1 Instantaneous Rates of Change: The DerivaƟve

We should have known the derivaƟve would be periodic; we now know ex-
actly which periodic funcƟon it is.

Thinking back to Example 3, we can find the slope of the tangent line to
f(x) = sin x at x = 0 using our derivaƟve. We approximated the slope as 0.9983;
we now know the slope is exactly cos 0 = 1.

Example 7 Finding the derivaƟve of a piecewise defined funcƟon
Find the derivaƟve of the absolute value funcƟon,

f(x) = |x| =

{
−x x < 0
x x ≥ 0

.

See Figure 2.7.

SÊ½çã®ÊÄ We need to evaluate lim
h→0

f(x+ h)− f(x)
h

. As f is piecewise-
defined, we need to consider separately the limits when x < 0 and when x > 0.

−1 −0.5 0.5 1

0.5

1

x

y

Figure 2.7: The absolute value funcƟon,
f(x) = |x|. NoƟce how the slope of
the lines (and hence the tangent lines)
abruptly changes at x = 0.

When x < 0:

d
dx
(
− x
)
= lim

h→0

−(x+ h)− (−x)
h

= lim
h→0

−h
h

= lim
h→0
−1

= −1.

When x > 0, a similar computaƟon shows that
d
dx
(
x
)
= 1.

We need to also find the derivaƟve at x = 0. By the definiƟon of the deriva-
Ɵve at a point, we have

f ′(0) = lim
h→0

f(0+ h)− f(0)
h

.

Since x = 0 is the point where our funcƟon’s definiƟon switches from one piece
to the other, we need to consider leŌ and right-hand limits. Consider the fol-
lowing, where we compute the leŌ and right hand limits side by side.

lim
h→0−

f(0+ h)− f(0)
h

=

lim
h→0−

−h− 0
h

=

lim
h→0−

−1 = −1

lim
h→0+

f(0+ h)− f(0)
h

=

lim
h→0+

h− 0
h

=

lim
h→0+

1 = 1
The −1 −0.5 0.5 1

−1

1

x

y

Figure 2.8: A graph of the derivaƟve of
f(x) = |x|.
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last lines of each column tell the story: the leŌ and right hand limits are not
equal. Therefore the limit does not exist at 0, and f is not differenƟable at 0; see
Figure 2.8. So we have

f ′(x) =

{
−1 x < 0
1 x > 0

.

At x = 0, f ′(x) does not exist; there is a jump disconƟnuity at 0. So f(x) = |x| is
differenƟable everywhere except at 0.

The point of non-differenƟability came where the piecewise defined func-
Ɵon switched from one piece to the other. Our next example shows that this
does not always cause trouble.

Example 8 Finding the derivaƟve of a piecewise defined funcƟon

Find the derivaƟve of f(x), where f(x) =

{
sin x x ≤ π/2
1 x > π/2

. See Figure 2.9.

SÊ½çã®ÊÄ Using Example 6, we know that when x < π/2, f ′(x) =
cos x. It is easy to verify that when x > π/2, f ′(x) = 0; consider:

π
2

0.5

1

x

y

Figure 2.9: A graph of f(x) as defined in
Example 8.

lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1− 1
h

= lim
h→0

0 = 0.

So far we have

f ′(x) =

{
cos x x < π/2
0 x > π/2

.

We sƟll need to find f ′(π/2). NoƟce at x = π/2 that both pieces of f ′ are 0,
meaning we can state that f ′(π/2) = 0.

Being more rigorous, we can again evaluate the difference quoƟent limit at
x = π/2, uƟlizing again leŌ and right–hand limits:

lim
h→0−

f(π/2+ h)− f(π/2)
h

=

lim
h→0−

sin(π/2+ h)− sin(π/2)
h

=

lim
h→0−

sin( π
2 ) cos(h) + sin(h) cos( π

2 )− sin( π
2 )

h
=

lim
h→0−

1 · cos(h) + sin(h) · 0− 1
h

=

0

lim
h→0+

f(π/2+ h)− f(π/2)
h

=

lim
h→0+

1− 1
h

=

lim
h→0+

0
h
=

0

π
2

0.5

1

x

y

Figure 2.10: A graph of f ′(x) in Example 8.
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2.1 Instantaneous Rates of Change: The DerivaƟve

Since both the leŌ and right hand limits are 0 at x = π/2, the limit exists and
f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =

{
cos x x ≤ π/2
0 x > π/2

.

See Figure 2.10 for a graph of this funcƟon.

Recall we pseudo-defined a conƟnuous funcƟon as one in which we could
sketch its graph without liŌing our pencil. We can give a pseudo–definiƟon for
differenƟability as well: it is a conƟnuous funcƟon that does not have any “sharp
corners.” One such sharp corner is shown in Figure 2.7. Even though the func-
Ɵon f in Example 8 is piecewise–defined, the transiƟon is “smooth” hence it is
differenƟable. Note how in the graph of f in Figure 2.9 it is difficult to tell when
f switches from one piece to the other; there is no “corner.”

To beƩer understand the definiƟon of a derivaƟve,
experiment with the Geogebra app at
http://mathinsight.org/applet/secant_
line_slope.

This secƟon defined the derivaƟve; in some sense, it answers the quesƟon of
“What is the derivaƟve?” The next secƟon addresses the quesƟon “What does
the derivaƟvemean?”

Notes:

89

http://mathinsight.org/applet/secant_line_slope
http://mathinsight.org/applet/secant_line_slope


Exercises 2.1
Terms and Concepts
1. T/F: Let f be a posiƟon funcƟon. The average rate of change

on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. T/F: The definiƟon of the derivaƟve of a funcƟon at a point
involves taking a limit.

3. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

4. In your own words, explain the difference between Defini-
Ɵons 10 and 12.

5. Let y = f(x). Give three different notaƟons equivalent to
“f ′(x).”

Problems
In Exercises 6–15,

(a) use the definiƟon of the derivaƟve to compute the
derivaƟve of the given funcƟon.

(b) Find the tangent line to the graph of the given funcƟon
at x = c.

6. f(x) = 6 at x = −2
7. f(x) = 2x at x = 3
8. f(x) = 4− 3x at x = 7
9. g(x) = x2 at x = −2

10. h(x) = 2x− x2 at x = 1
11. f(x) = 3x2 − x+ 4 at x = −1
12. g(x) =

√
x+ 3 at x = 1

13. r(x) = 1
x
at x = −2

14. h(x) = 3√
x
at x = 4

15. f(x) = 1
x− 2

at x = 3

In Exercises 16–19, each limit represents the derivaƟve of
some funcƟon, f, at some number c. State an appropriate f
and c for each.

16. lim
h→0

√
16+ h− 4

h

17. lim
h→0

(3+ h)4 − 81
h

18. lim
h→0

1
2+h −

1
2

h

19. lim
h→0

cos(−π + h) + 1
h

In Exercises 20–24, a funcƟon f and an x–value a are given. Ap-
proximate the equaƟon of the tangent line to the graph of f at
x = a by numerically approximaƟng f ′(a), using h = 0.1.

20. f(x) = x2 + 2x+ 1, x = 3
21. f(x) =

√
x, x = 4

22. f(x) = 10
x+ 1

, x = 9

23. f(x) = ex, x = 2

24. f(x) = cos x, x = 0

25. The graph of f(x) = x2 − 1 is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (−1, 0), (0,−1)
and (2, 3).

(b) Using the definiƟon, find f ′(x).

(c) Find the slope of the tangent line at the points
(−1, 0), (0,−1) and (2, 3).

−2 −1 1 2

−1

1

2

3

x

y

26. The graph of f(x) = 1
x+ 1

is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (0, 1) and
(1, 0.5).

(b) Using the definiƟon, find f ′(x).

(c) Find the slope of the tangent line at the points (0, 1)
and (1, 0.5).

−1 1 2 3

1

2

3

4

5

x

y

In Exercises 27–30, a graph of a funcƟon f(x) is given. Using
the graph, sketch f ′(x).

27.

−2 −1 1 2 3 4

−1

1

2

3

x

y
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28.
−6 −4 −2 2

−2

2

x

y

29.
−2 −1 1 2

−5

5

x

y

30.

−1

−0.5

0.5

1

−2π −π π 2π
x

y

31. Using the graph of g(x) below, answer the following ques-
Ɵons.

(a) Where is g(x) > 0?

(b) Where is g(x) < 0?

(c) Where is g(x) = 0?

(d) Where is g′(x) < 0?

(e) Where is g′(x) > 0?

(f) Where is g′(x) = 0?

−2 −1 1 2

−5

5

x

y

Review

32. Approximate lim
x→5

x2 + 2x− 35
x2 − 10.5x+ 27.5

.

33. Use the BisecƟonMethod to approximate, accurate to two
decimal places, the root of g(x) = x3 + x2 + x − 1 on
[0.5, 0.6].

34. Give intervals on which each of the following funcƟons are
conƟnuous.

(a) 1
ex + 1

(b) 1
x2 − 1

(c)
√
5− x

(d)
√
5− x2

35. Use the graph of f(x) provided to answer the following.

(a) lim
x→−3−

f(x) =?

(b) lim
x→−3+

f(x) =?

(c) lim
x→−3

f(x) =?

(d) Where is f conƟnu-
ous?

−4 −2

−1

1

2

3

x

y
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2.2 InterpretaƟons of the DerivaƟve
The previous secƟon defined the derivaƟve of a funcƟon and gave examples of
how to compute it using its definiƟon (i.e., using limits). The secƟon also started
with a brief moƟvaƟon for this definiƟon, that is, finding the instantaneous ve-
locity of a falling object given its posiƟon funcƟon. The next secƟon will give us
more accessible tools for compuƟng the derivaƟve, tools that are easier to use
than repeated use of limits.

This secƟon falls in between the “What is the definiƟon of the derivaƟve?”
and “How do I compute the derivaƟve?” secƟons. Here we are concerned with
“What does the derivaƟve mean?”, or perhaps, when read with the right em-
phasis, “What is the derivaƟve?” We offer two interconnected interpretaƟons
of the derivaƟve, hopefully explaining why we care about it and why it is worthy
of study.

InterpretaƟonof theDerivaƟve #1: Instantaneous Rate of Change
The previous secƟon started with an example of using the posiƟon of an object
(in this case, a falling amusement–park rider) to find the object’s velocity. This
type of example is oŌen used when introducing the derivaƟve because we tend
to readily recognize that velocity is the instantaneous rate of change of posiƟon.
In general, if f is a funcƟon of x, then f ′(x) measures the instantaneous rate of
change of f with respect to x. Put another way, the derivaƟve answers “When
x changes, at what rate does f change?” Thinking back to the amusement–park
ride, we asked “When Ɵme changed, at what rate did the height change?” and
found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “60
mph.” Five minutes later, you wonder how far you have traveled. Certainly, lots
of things could have happened in those 5 minutes; you could have intenƟonally
sped up significantly, you might have come to a complete stop, you might have
slowed to 20 mph as you passed through construcƟon. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approximaƟon of
the distance traveled?

One could argue the only good approximaƟon, given the informaƟon pro-
vided, would be based on “distance = rate × Ɵme.” In this case, we assume a
constant rate of 60 mph with a Ɵme of 5/60 hours. Hence we would approxi-
mate the distance traveled as 5 miles.

Referring back to the falling amusement–park ride, knowing that at t = 2 the
velocity was −64 Ō/s, we could reasonably assume that 1 second later the rid-
ers’ height would have dropped by about 64 feet. Knowing that the riders were

Notes:
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2.2 InterpretaƟons of the DerivaƟve

acceleraƟng as they fell would inform us that this is an under–approximaƟon. If
all we knew was that f(2) = 86 and f ′(2) = −64, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground!

Units of the DerivaƟve

It is useful to recognize the units of the derivaƟve funcƟon. If y is a funcƟon of
x, i.e., y = f(x) for some funcƟon f, and y is measured in feet and x in seconds,
then the units of y′ = f ′ are “feet per second,” commonly wriƩen as “Ō/s.” In
general, if y is measured in units P and x is measured in units Q, then y′ will be
measured in units “P per Q”, or “P/Q.” Here we see the fracƟon–like behavior
of the derivaƟve in the notaƟon:

the units of
dy
dx

are
units of y
units of x

.

Example 1 The meaning of the derivaƟve: World PopulaƟon
Let P(t) represent the world populaƟon t minutes aŌer 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7, 028, 734, 178 (www.prb.org).
It is also fairly accurate to state that P ′(0) = 156; that is, at midnight on Jan-
uary 1, 2012, the populaƟon of the world was growing by about 156 people per
minute (note the units). Twenty days later (or, 28,800 minutes later) we could
reasonably assume the populaƟon grew by about (28, 800)(156) = 4, 492, 800
people.

Example 2 The meaning of the derivaƟve: Manufacturing
The term widget is an economic term for a generic unit of manufacturing out-
put. Suppose a company produces widgets and knows that the market supports
a price of $10 per widget. Let P(n) give the profit, in dollars, earned by man-
ufacturing and selling n widgets. The company likely cannot make a (posiƟve)
profit making just one widget; the start–up costs will likely exceed $10. Mathe-
maƟcally, we would write this as P(1) < 0.

What doP(1000) = 500 andP ′(1000) = 0.25mean? ApproximateP(1100).

SÊ½çã®ÊÄ The equaƟon P(1000) = 500 means that selling 1,000 wid-
gets returns a profit of $500. We interpret P ′(1000) = 0.25 as meaning that
when producing 1000 widgets, the profit is increasing at rate of $0.25 per wid-
get (the units are “dollars per widget.”) Since we have no other informaƟon to
use, our best approximaƟon for P(1100) is:

P(1100) ≈ P(1000) + P ′(1000)× 100 = $500+ 100 · 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525.

Notes:
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The previous examples made use of an important approximaƟon tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this secƟon. Five minutes aŌer looking at the speedometer, our best
approximaƟon for distance traveled assumed the rate of change was constant.
In Examples 1 and 2 we made similar approximaƟons. We were given rate of
change informaƟon which we used to approximate total change. NotaƟonally,
we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approximaƟon is best when h is “small.” “Small” is a relaƟve term; when
dealing with the world populaƟon, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The DerivaƟve and MoƟon
One of the most fundamental applicaƟons of the derivaƟve is the study of mo-
Ɵon. Let s(t) be a posiƟon funcƟon, where t is Ɵme and s(t) is distance. For
instance, s could measure the height of a projecƟle or the distance an object
has traveled.

Let’s let s(t) measure the distance traveled, in feet, of an object aŌer t sec-
onds of travel. Then s ′(t) has units “feet per second,” and s ′(t) measures the
instantaneous rate of distance change – it measures velocity.

Now consider v(t), a velocity funcƟon. That is, at Ɵme t, v(t) gives the ve-
locity of an object. The derivaƟve of v, v ′(t), gives the instantaneous rate of
velocity change – acceleraƟon. (We oŌen think of acceleraƟon in terms of cars:
a car may “go from 0 to 60 in 4.8 seconds.” This is an average acceleraƟon, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and Ɵme is measured in seconds, then the units of acceleraƟon
(i.e., the units of v ′(t)) are “feet per second per second,” or (Ō/s)/s. We oŌen
shorten this to “feet per second squared,” or Ō/s2, but this tends to obscure the
meaning of the units.

Perhaps the most well known acceleraƟon is that of gravity. In this text, we
use g = 32Ō/s2 or g = 9.8m/s2. What do these numbers mean?

A constant acceleraƟon of 32(Ō/s)/s means that the velocity changes by
32Ō/s each second. For instance, let v(t)measures the velocity of a ball thrown
straight up into the air, where v has units Ō/s and t is measured in seconds. The
ball will have a posiƟve velocity while traveling upwards and a negaƟve velocity
while falling down. The acceleraƟon is thus −32Ō/s2. If v(1) = 20Ō/s, then
when t = 2, the velocity will have decreased by 32Ō/s; that is, v(2) = −12Ō/s.
We can conƟnue: v(3) = −44Ō/s, and we can also figure that v(0) = 52Ō/s.

These ideas are so important we write them out as a Key Idea.

Notes:
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Key Idea 3 The DerivaƟve and MoƟon

1. Let s(t) be the posiƟon funcƟon of an object. Then s ′(t) is the
velocity funcƟon of the object.

2. Let v(t) be the velocity funcƟon of an object. Then v ′(t) is the
acceleraƟon funcƟon of the object.

We now consider the second interpretaƟon of the derivaƟve given in this
secƟon. This interpretaƟon is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
specƟve.

InterpretaƟon of the DerivaƟve #2: The Slope of the Tangent Line

Given a funcƟon y = f(x), the difference quoƟent
f(c+ h)− f(c)

h
gives a change

in y values divided by a change in x values; i.e., it is a measure of the “rise over
run,” or “slope,” of the line that goes through two points on the graph of f:(
c, f(c)

)
and

(
c + h, f(c + h)

)
. As h shrinks to 0, these two points come close

together; in the limit we find f ′(c), the slope of a special line called the tangent
line.

Lines have a constant rate of change, their slope. Nonlinear funcƟons do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by compuƟng f ′(c). We can get an idea of how f is
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

Watch the video:
InterpreƟng slope of a curve exercise at
https://youtu.be/CpDfay5NeCg

1 2 3 4

4

8

12

16

x

y

Figure 2.11: A graph of f(x) = x2 and tan-
gent lines.

Example 3 Understanding the derivaƟve: the rate of change
Consider f(x) = x2 as shown in Figure 2.11 with tangent lines at x = 1 and
x = 3. It is clear that at x = 3 the funcƟon is growing faster than at x = 1, as it
is steeper at x = 3. How much faster is it growing?

Notes:
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Chapter 2 DerivaƟves

SÊ½çã®ÊÄ Wecananswer this directly aŌer the following secƟon, where
we learn to quickly compute derivaƟves. For now, we will answer graphically,
by considering the slopes of the respecƟve tangent lines.

With pracƟce, one can fairly effecƟvely sketch tangent lines to a curve at a
parƟcular point. In Figure 2.11, we have sketched the tangent lines to f at x = 1
and x = 3, along with a grid to help us measure the slopes of these lines. At
x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f
growing faster at x = 3 than at x = 1, it is growing three Ɵmes as fast.

1 2 3

−5

5 f(x)

f ′(x)

x

y

Figure 2.12: Graphs of f and f ′ in Exam-
ple 4, along with tangent lines.

Example 4 Understanding the graph of the derivaƟve
Consider the graph of f(x) and its derivaƟve, f ′(x), in Figure 2.12. Use these
graphs to find the slopes of the tangent lines to the graph of f at x = 1, x = 2,
and x = 3.

SÊ½çã®ÊÄ To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f ′.

The slope of the tangent line to f at x = 1 is f ′(1); this looks to be about−1.
The slope of the tangent line to f at x = 2 is f ′(2); this looks to be about 4.
The slope of the tangent line to f at x = 3 is f ′(3); this looks to be about 3.
Using these slopes, the tangent lines to f are sketched in Figure 2.12 as well.

Included on the graph of f ′ in this figure are filled circles where x = 1, x = 2
and x = 3 to help beƩer visualize the y value of f ′ at those points.

Example 5 ApproximaƟon with the derivaƟve
Consider again the graph of f(x) and its derivaƟve f ′(x) in Example 4. Use the

2.8 3 3.2
2

3

4

x

y

Figure 2.13: Zooming in on f at x = 3 for
the funcƟon given in Examples 4 and 5.

tangent line to f at x = 3 to approximate the value of f(3.1).

SÊ½çã®ÊÄ Figure 2.13 shows the graph of f along with its tangent line,
zoomed in at x = 3. NoƟce that near x = 3, the tangent line makes an excellent
approximaƟon of f. Since lines are easy to deal with, oŌen it works well to ap-
proximate a funcƟonwith its tangent line. (This is especially truewhen you don’t
actually know much about the funcƟon at hand, as we don’t in this example.)

While the tangent line to fwas drawn in Example 4, it was not explicitly com-
puted. Recall that the tangent line to f at x = c is y = f ′(c)(x−c)+f(c). While f is
not explicitly given, by the graph it looks like f(3) = 4. Recalling that f ′(3) = 3,
we can compute the tangent line to be approximately y = 3(x − 3) + 4. It is
oŌen useful to leave the tangent line in point–slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f(3.1) ≈ y(3.1) = 3(3.1− 3) + 4 = .1 ∗ 3+ 4 = 4.3.

We approximate f(3.1) ≈ 4.3.

Notes:
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To demonstrate the accuracy of the tangent line approximaƟon, we now
state that in Example 5, f(x) = −x3 + 7x2 − 12x+ 4. We can evaluate f(3.1) =
4.279. Had we known f all along, certainly we could have just made this compu-
taƟon. In reality, we oŌen only know two things:

1. What f(c) is, for some value of c, and

2. what f ′(c) is.

For instance, we can easily observe the locaƟon of an object and its instan-
taneous velocity at a parƟcular point in Ɵme. We do not have a “funcƟon f ”
for the locaƟon, just an observaƟon. This is enough to create an approximaƟng
funcƟon for f.

This last example has a direct connecƟon to our approximaƟon method ex-
plained above aŌer Example 2. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some value x = c, then compuƟng the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x − c) + f(c). In Example 5, we used the
tangent line to approximate a value of f. Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c)
(
(c+ h)− c

)
+ f(c) = f ′(c) · h+ f(c).

This is the exact same approximaƟonmethod used above! Not only does itmake
intuiƟve sense, as explained above, it makes analyƟcal sense, as this approxima-
Ɵon method is simply using a tangent line to approximate a funcƟon’s value.

The importanceof understanding thederivaƟve cannot beunderstated. When
f is a funcƟon of x, f ′(x)measures the instantaneous rate of change of fwith re-
spect to x and gives the slope of the tangent line to f at x.

Notes:
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Exercises 2.2
Terms and Concepts

1. What is the instantaneous rate of change of posiƟon
called?

2. Given a funcƟon y = f(x), in your ownwords describe how
to find the units of f ′(x).

3. What funcƟons have a constant rate of change?

Problems

4. Given f(5) = 10 and f ′(5) = 2, approximate f(6).

5. Given P(100) = −67 and P ′(100) = 5, approximate
P(110).

6. Given z(25) = 187 and z′(25) = 17, approximate z(20).

7. Knowing f(10) = 25 and f ′(10) = 5 and the methods de-
scribed in this secƟon, which approximaƟon is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea-
soning.

8. Given f(7) = 26 and f(8) = 22, approximate f ′(7).

9. Given H(0) = 17 and H(2) = 29, approximate H ′(2).

10. Let V(x)measure the volume, in decibels, measured inside
a restaurantwith x customers. What are the units ofV ′(x)?

11. Let v(t) measure the velocity, in Ō/s, of a car moving in a
straight line t seconds aŌer starƟng. What are the units of
v ′(t)?

12. The height H, in feet, of a river is recorded t hours aŌer
midnight, April 1. What are the units of H ′(t)?

13. P is the profit, in thousands of dollars, of building a factory
and then producing and selling c cars.

(a) What are the units of P ′(c)?

(b) What is likely true of P(0)?

14. T is the temperature in degrees Fahrenheit, h hours aŌer
midnight on July 4 in Sidney, NE.

(a) What are the units of T ′(h)?

(b) Is T ′(8) likely greater than or less than 0? Why?

(c) Is T(8) likely greater than or less than 0? Why?

In Exercises 15–18, graphs of funcƟons f(x) and g(x) are given.
IdenƟfy which funcƟon is the derivaƟve of the other.

15.
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19. If the tangent line to y = f(x) at (6, 1) passes through the
point (2, 4), find f(6) and f ′(6).

20. Sketch the graph of a funcƟon f for which f(0) = 0, f ′(0) >
0, f ′(1) = 0, and f ′(3) < 0.

21. Sketch the graph of a funcƟon h for which h(1) = 0,
h′(1) > 0, h′(2) = 0, and h′(3) > 0.

In Exercises 22–24, use the graph of f(x) to sketch f ′(x).
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24.
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Review
In Exercises 25–26, use the definiƟon to compute the deriva-
Ɵves of the following funcƟons.

25. f(x) = 5x2

26. f(x) = (x− 2)3

In Exercises 27–28, numerically approximate the value of f ′(x)
at the indicated x value.

27. f(x) = cos x at x = π.

28. f(x) =
√
x at x = 9.
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2.3 Basic DifferenƟaƟon Rules
The derivaƟve is a powerful tool but is admiƩedly awkward given its reliance on
limits. Fortunately, one thing mathemaƟcians are good at is abstracƟon. For
instance, instead of conƟnually finding derivaƟves at a point, we abstracted and
found the derivaƟve funcƟon.

Let’s pracƟce abstracƟon on linear funcƟons, y = mx+b. What is y ′? With-
out limits, recognize that linear funcƟon are characterized by being funcƟons
with a constant rate of change (the slope). The derivaƟve, y ′, gives the instan-
taneous rate of change; with a linear funcƟon, this is constant,m. Thus y ′ = m.

Let’s abstract once more. Let’s find the derivaƟve of the general quadraƟc
funcƟon, f(x) = ax2 + bx+ c. Using the definiƟon of the derivaƟve, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)
h

= lim
h→0

ah2 + 2ahx+ bh
h

= lim
h→0

ah+ 2ax+ b

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y ′ = 12x+ 11.

In this secƟon (and in some secƟons to follow) we will learn some of what
mathemaƟcians have already discovered about the derivaƟves of certain func-
Ɵons and how derivaƟves interact with arithmeƟc operaƟons. We start with a
theorem.

Theorem 14 DerivaƟves of Common FuncƟons

1. Constant Rule:
d
dx
(
c
)
= 0,

where c is a constant.
2. Power Rule:

d
dx

(xn) = nxn−1,
where n is any real number.

3. d
dx

(sin x) = cos x 4. d
dx

(cos x) = − sin x

5. d
dx

(ex) = ex 6. d
dx

(ln x) =
1
x

This theorem starts by staƟng an intuiƟve fact: constant funcƟons have a
rate of change of zero, as they are constant. Therefore their derivaƟve is 0. The
proof is leŌ as an exercise.

The theorem then states some fairly amazing things.

Notes:
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In Part 2, the Power Rule states that the derivaƟves of funcƟons of the form
y = xn where n is ANY real number are very straighƞorward: mulƟply by the
power, then subtract 1 from the power. This allows us to differenƟate Power
FuncƟons, Root FuncƟons, and funcƟonswith irraƟonal exponents. Theworkwe
have done so far only allows us to prove the Power Rulewhen n is a non-negaƟve
integer, which is presented here. We will provide proofs for other values of n as
we add the necessary tools to our knowledge of calculus.

Proof of DifferenƟaƟon Power Rule when n is a non-negaƟve integer
If n = 0, then f(x) = x0 = 1 (except when x = 0, when the expression is
indeterminate). This means that

f ′(x) = lim
h→0

1− 1
h

= lim
h→0

0
h
= 0 = 0x0−1

as claimed. Now let f(x) = xn, where n ∈ Z+. By the definiƟon of derivaƟve,

f ′(x) = lim
h→0

(x+ h)n − xn

h

= lim
h→0

(x+ h)n − xn

h
use the Binomial Theorem to expand (x+ h)n

= lim
h→0

(n
0
)
xn +

(n
1
)
hxn−1 +

(n
2
)
h2xn−2 + · · ·+

( n
n−1
)
hn−1x+

(n
n

)
hn − xn

h

= lim
h→0

(n
1
)
hxn−1 +

(n
2
)
h2xn−2 + · · ·+

( n
n−1
)
hn−1x+

(n
n

)
hn

h

= lim
h→0

h
[(n

1
)
xn−1 +

(n
2
)
hxn−2 + · · ·+

( n
n−1
)
hn−2x+

(n
n

)
hn−1

]
h

, divide h

= lim
h→0

(
n
1

)
xn−1 +

(
n
2

)
hxn−2 + · · ·+

(
n

n− 1

)
hn−2x+

(
n
n

)
hn−1,

= nxn−1 since
(
n
1

)
= n □

We proved Theorem 14 part 3 in SecƟon 2.1 and part 4 is leŌ as an exercise.
In parts 5 and 6 we see something incredible about the funcƟons y = ex and
y = ln x. We will use these rules freely, unfortunately their proofs will have to
wait unƟl we know a few more calculus techniques.

Let’s pracƟce using this theorem.

Example 1 Using Theorem 14 to find, and use, derivaƟves
Let f(x) = x3.

1. Find f ′(x).

Notes:
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Chapter 2 DerivaƟves

2. Find the equaƟon of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f, f ′ and the found tangent line on the same axis.

SÊ½çã®ÊÄ

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equaƟon of the line tangent to the graph of f at x = −1, we
need a point and the slope. The point is (−1, f(−1)) = (−1,−1). The
slope is f ′(−1) = 3. Thus the tangent line has equaƟon y = 3(x−(−1))+
(−1) = 3x+ 2.

−2 −1 1 2

−4

−2

2

4

x

y

Figure 2.14: A graph of f(x) = x3, along
with its derivaƟve f ′(x) = 3x2 and its tan-
gent line at x = −1.

3. We can use the tangent line to approximate (−1.1)3 as −1.1 is close to
−1. We have

(−1.1)3 ≈ (−1)3 + 3(−1.1− (−1)) = −1+ 3(−.1) = −1.3.

We can easily find the actual answer; (−1.1)3 = −1.331.

4. See Figure 2.14.

Theorem 14 gives useful informaƟon, but we will need much more. For in-
stance, using the theorem, we can easily find the derivaƟve of y = x3, but it
does not tell how to compute the derivaƟve of y = 2x3, y = x3 + sin x, nor
y = x3 sin x. The following theorem helps with the first two of these examples
(the third is answered in the next secƟon).

Theorem 15 ProperƟes of the DerivaƟve
Let f and g be differenƟable on an open interval I and let c be a real
number. Then:

1. Sum/Difference Rule:
d
dx

(
f(x)± g(x)

)
=

d
dx

(
f(x)
)
± d

dx

(
g(x)

)
= f ′(x)± g ′(x)

2. Constant MulƟple Rule:
d
dx

(
c · f(x)

)
= c · d

dx

(
f(x)
)
= c · f ′(x).

Notes:
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2.3 Basic DifferenƟaƟon Rules

Proof of Sum Rule for DifferenƟaƟon
Let f and g be differenƟable on an open interval I and let c be a real number,

d
dx

(f(x) + g(x)) = lim
h→0

[f(x+ h) + g(x+ h)]− [f(x) + g(x)]
h

= lim
h→0

[f(x+ h)− f(x)] + [g(x+ h)− g(x)]
h

= lim
h→0

[f(x+ h)− f(x)]
h

+ lim
h→0

g(x+ h)− g(x)
h

= f ′(x) + g′(x) □

Watch the video:
Basic DerivaƟve Examples at
https://youtu.be/3dJepii_rJ0

Theorem 15 allows us to find the derivaƟves of a wide variety of funcƟons.
It can be used in conjuncƟon with the Power Rule to find the derivaƟves of any
polynomial. Recall in Example 2.1.4 that we found, using the limit definiƟon,
the derivaƟve of f(x) = 3x2 + 5x − 7. We can now find its derivaƟve without
expressly using limits:

d
dx

(
3x2 + 5x+ 7

)
= 3

d
dx

(
x2
)
+ 5

d
dx

(
x
)
+

d
dx

(
7
)

= 3 · 2x+ 5 · 1+ 0
= 6x+ 5.

We were a bit pedanƟc here, showing every step. Normally we would do all
the arithmeƟc and steps in our head and readily find

d
dx

(
3x2+5x+7

)
= 6x+5.

Example 2 Using Theorems 14 and 15 to find derivaƟves
Use Theorems 14 and 15 to differenƟate

1. g(x) = (x2 + 1)3 2. f(x) = ln
√
x
8

SÊ½çã®ÊÄ Given the differenƟaƟon rules we have thus far, our only
opƟon for finding g′(x) is to first mulƟply g(x) out and then apply the sum and
power rules. We see that

g(x) = x6 + 3x4 + 3x2 + 1

Notes:
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Chapter 2 DerivaƟves

thus,
g′(x) = 6x5 + 12x3 + 6x.

To differenƟate f(x) we will first need to use the Laws of Logarithms to ex-
pand f as

f(x) = ln
√
x
8

= ln x
1
2 − ln 8

=
1
2
ln x− ln 8

so that,
f ′(x) =

1
2
· 1
x
− 0 =

1
2
x.

Example 3 Using the tangent line to approximate a funcƟon value
Let f(x) = sin x+ 2x+ 1. Approximate f(3) using an appropriate tangent line.

SÊ½çã®ÊÄ This problem is intenƟonally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximaƟon are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all Ɵme.
One must make a judgment using whatever seems reasonable. In this example,
the actual answer is f(3) = sin 3+7, where the real problem spot is sin 3. What
is sin 3?

Since 3 is close to π, we can assume sin 3 ≈ sin π = 0. Thus one guess is
f(3) ≈ 7. Can we do beƩer? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = π.

Using Theorem 14 we find f ′(x) = cos x+ 2. The slope of the tangent line is
thus f ′(π) = cos π+ 2 = 1. Also, f(π) = 2π+ 1 ≈ 7.28. So the tangent line to
the graph of f at x = π is y = 1(x−π)+2π+1 = x+π+1 ≈ x+4.14. Evaluated
at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the tangent line,
our final approximaƟon is that f(3) ≈ 7.14.

Using a calculator, we get an answer accurate to 4 places aŌer the decimal:
f(3) = 7.1411. Our iniƟal guesswas 7; our tangent line approximaƟonwasmore
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy someƟme, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approximaƟng, and many scienƟsts, engineers and mathemaƟcians oŌen face
problems too hard to solve directly. So they approximate.

Notes:
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Higher Order DerivaƟves
The derivaƟve of a funcƟon f is itself a funcƟon, therefore we can take its deriva-
Ɵve. The following definiƟon gives a name to this concept and introduces its
notaƟon.

DefiniƟon 13 Higher Order DerivaƟves
Let y = f(x) be a differenƟable funcƟon on I.

1. The second derivaƟve of f is:

f ′′(x) =
d
dx

(
f ′(x)

)
=

d
dx

(
dy
dx

)
=

d2y
dx2

= y ′′.

2. The third derivaƟve of f is:

f ′′′(x) =
d
dx

(
f ′′(x)

)
=

d
dx

(
d2y
dx2

)
=

d3y
dx3

= y ′′′.

3. The nth derivaƟve of f is:

f (n)(x) =
d
dx

(
f (n−1)(x)

)
=

d
dx

(
dn−1y
dxn−1

)
=

dny
dxn

= y(n).

Note: DefiniƟon 13 comes with the
caveat “Where the corresponding
limits exist.” With f differenƟable on
I, it is possible that f ′ is not differen-
Ɵable on all of I, and so on.

In general, when finding the fourth derivaƟve and on, we resort to the f (4)(x)
notaƟon, not f ′′′′(x); aŌer a while, too many Ɵcks is too confusing.

Let’s pracƟce using this new concept.

Example 4 Finding higher order derivaƟves
Find the first four derivaƟves of the following funcƟons:

1. f(x) = 4x2 2. f(x) = sin x 3. f(x) = 5ex

SÊ½çã®ÊÄ

1. Using the Power and Constant MulƟple Rules, we have: f ′(x) = 8x. Con-
Ɵnuing on, we have

f ′′(x) =
d
dx
(
8x
)
= 8; f ′′′(x) = 0; f (4)(x) = 0.

NoƟce how all successive derivaƟves will also be 0.

Notes:
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2. We employ Theorem 14 repeatedly.

f ′(x) = cos x; f ′′(x) = − sin x; f ′′′(x) = − cos x; f (4)(x) = sin x.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (23)(x) is?)

3. Employing Theorem 14 and the Constant MulƟple Rule, we can see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.

InterpreƟng Higher Order DerivaƟves
What do higher order derivaƟvesmean? What is the pracƟcal interpretaƟon?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivaƟve of a funcƟon f is the rate of change of the rate
of change of f.

Oneway to grasp this concept is to let f describe a posiƟon funcƟon. Then, as
stated in Key Idea 3, f ′ describes the rate of posiƟon change: velocity. We now
consider f ′′, which describes the rate of velocity change. Sports car enthusiasts
talk of how fast a car can go from 0 to 60 mph; they are bragging about the
acceleraƟon of the car.

We started this chapter with amusement–park riders free–falling with posi-
Ɵon funcƟon f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t Ō/s and
f ′′(t) = −32 (Ō/s)/s. We may recognize this laƩer constant; it is the accelera-
Ɵon due to gravity. In keeping with the unit notaƟon introduced in the previous
secƟon, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” wriƩen as “Ō/s2.”

It can be difficult to consider the meaning of the third, and higher order,
derivaƟves. The third derivaƟve is “the rate of change of the rate of change of
the rate of change of f.” That is essenƟally meaningless to the uniniƟated. In
the context of our posiƟon/velocity/acceleraƟon example, the third derivaƟve
is the “rate of change of acceleraƟon,” commonly referred to as “jerk.”

Make no mistake: higher order derivaƟves have great importance even if
their pracƟcal interpretaƟons are hard (or “impossible”) to understand. The
mathemaƟcal topic of seriesmakes extensive use of higher order derivaƟves.

Notes:
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Exercises 2.3
Terms and Concepts

1. What is the name of the rule which states that d
dx
(
xn
)
=

nxn−1, where n > 0 is an integer?

2. What is d
dx
(
ln x
)
?

3. Give an example of a funcƟon f(x) where f ′(x) = f(x).
4. Give an example of a funcƟon f(x) where f ′(x) = 0.
5. The derivaƟve rules introduced in this secƟon explain how

to compute the derivaƟve of which of the following func-
Ɵons?

• f(x) = 3
x2

• g(x) = 3x2 − x+ 17

• h(x) = 5 ln x

• j(x) = sin x cos x

• k(x) = ex
2

• m(x) =
√
x

6. Explain in your own words how to find the third derivaƟve
of a funcƟon f(x).

7. Give an example of a funcƟon where f ′(x) ̸= 0 and
f ′′(x) = 0.

8. Explain in your own words what the second derivaƟve
“means.”

9. If f(x) describes a posiƟon funcƟon, then f ′(x) describes
what kind of funcƟon? What kind of funcƟon is f ′′(x)?

10. Let f(x) be a funcƟonmeasured in pounds, where x is mea-
sured in feet. What are the units of f ′′(x)?

Problems
In Exercises 11–28, compute the derivaƟve of the given func-
Ɵon.

11. f(x) = 7x2 − 5x+ 7
12. g(x) = 14x3 + 7x2 + 11x− 29
13. m(t) = 9t5 − 1

8 t
3 + 3t− 8

14. f(θ) = 9 sin θ + 10 cos θ
15. f(r) = 6er

16. g(t) = 10t4 − cos t+ 7 sin t
17. f(x) = 2 ln x− x

18. p(s) = 1
4 s

4 + 1
3 s

3 + 1
2 s

2 + s+ 1
19. h(t) = et − sin t− cos t
20. f(x) = ln(5x2)
21. f(t) = ln(17) + e2 + sin π/2
22. g(t) = (1+ 3t)2

23. g(x) = (2x− 5)3

24. f(x) = (1− x)3

25. f(x) = (2− 3x)2

26. h(x) = x5 − 2x3 + x2

x2

27. f(x) = x2 + 1√
x

28. g(θ) = 1− sin2 θ
cos θ

29. A property of logarithms is that loga x =
logb x
logb a

, for all

bases a, b > 0 and a, b ̸= 1.

(a) Rewrite this idenƟty when b = e, i.e., using loge x =
ln x.

(b) Use part (a) to find the derivaƟve of y = loga x.

(c) Give the derivaƟve of y = log10 x.

30. Prove the Constant Rule: d
dx

(c) = 0, where c is constant.

31. Find the two values of n so that the funcƟon y = xn saƟsfies
the differenƟal equaƟon x2y ′′ + 2xy ′ − 6y = 0.

32. The figure shows the graphs of f, f ′, and f ′′. IdenƟfy each
curve and explain your choices.

a c

b

x

y

33. The figure shows the graphs of f, f ′, f ′′ and f ′′′. IdenƟfy
each curve and explain your choices.

dcba

x

y

In Exercises 34–39, compute the first four derivaƟves of the
given funcƟon.

34. f(x) = x6

35. g(x) = 2 cos x
36. h(t) = t2 − et

37. p(θ) = θ4 − θ3
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38. f(θ) = sin θ − cos θ

39. f(x) = 1, 100

40. The posiƟon of a object is described by s(t) = t4 − 4t2,
t ≥ 0, where s is in feet and t is in seconds. Find

(a) the velocity and acceleraƟon funcƟons for the ob-
ject,

(b) the acceleraƟon aŌer 1.5 seconds, and

(c) the Ɵme(s), in seconds, when the object is at rest.

41. The posiƟon of a object is described by s(t) = 5et − 5t,
where s is in inches and t is in seconds. Find

(a) the velocity and acceleraƟon funcƟons for the ob-
ject,

(b) the acceleraƟon aŌer 2 seconds, and

(c) the acceleraƟon when the object is at rest.

In Exercises 42–47, find the equaƟons of the tangent line to
the graph of the funcƟon at the given point.

42. f(x) = x3 − x at x = 1

43. f(t) = et + 3 at t = 0

44. g(x) = ln x at x = 1

45. f(x) = 4 sin x at x = π/2

46. f(x) = −2 cos x at x = π/4

47. f(x) = 2x+ 3 at x = 5

Review
48. Given that e0 = 1, approximate the value of e0.1 using the

tangent line to f(x) = ex at x = 0.
49. Approximate the value of (3.01)4 using the tangent line to

f(x) = x4 at x = 3.
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2.4 The Product and QuoƟent Rules
The previous secƟon showed that, in some ways, derivaƟves behave nicely. The
Constant MulƟple and Sum/Difference Rules established that the derivaƟve of
f(x) = 5x2+ sin xwas not complicated. We neglected compuƟng the derivaƟve
of things like g(x) = 5x2 sin x and h(x) = 5x2

sin x on purpose; their derivaƟves are
not as straighƞorward. (If you had to guesswhat their respecƟve derivaƟves are,
youwould probably guess wrong.) For these, we need the Product andQuoƟent
Rules, respecƟvely, which are defined in this secƟon.

We begin with the Product Rule.

Theorem 16 Product Rule
Let f and g be differenƟable funcƟons on an open interval I. Then f · g
is a differenƟable funcƟon on I, and

d
dx

(
f(x)g(x)

)
= f(x)g ′(x) + f ′(x)g(x).

Important:
d
dx

(
f(x)g(x)

)
̸= f ′(x)g ′(x). While this answer is simpler than

the Product Rule, it is wrong. We can show that this is wrong by considering
f(x) = x2 and g(x) = x5.

Using the WRONG rule we get
d
dx

[f(x)g(x)] = 2x · 5x4 = 10x5. However, when
we simplify the product first and apply the Power Rule, f · g = x2 · x5 = x7 and

d
dx

[f(x)g(x)] = 7x6 ̸= 10x5.

Applying the real Product Rule we see that,

d
dx

[f(x)g(x)] = x2
d
dx

(x5) +
d
dx

(x2) · x5

= x2 · 5x4 + 2x · x5

= 7x6

Watch the video:
The Product Rule for DerivaƟves at
https://youtu.be/uPCjqfT0Ixg

Notes:
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We pracƟce using this new rule in an example, followed by a proof of the
theorem.

Example 1 Using the Product Rule
Use the Product Rule to compute the derivaƟve of y = 5x2 sin x. Evaluate the
derivaƟve at x = π/2.

SÊ½çã®ÊÄ To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin x. We easily compute/recall that f ′(x) = 10x and g ′(x) =
cos x. Employing the rule, we have

d
dx

(
5x2 sin x

)
= 5x2 cos x+ 10x sin x.

π
2

π

5

10

15

20

x

y

Figure 2.15: A graph of y = 5x2 sin x and
its tangent line at x = π/2.

At x = π/2, we have

y ′(π/2) = 5
(π
2

)2
cos
(π
2

)
+ 10

π

2
sin
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π, in Fig-
ure 2.15. While this does not prove that the Product Rule is the correct way to
handle derivaƟves of products, it helps validate its truth.

Proof of the Product Rule
By the limit definiƟon, we have

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

.

Wenowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of −f(x + h)g(x) + f(x + h)g(x), and then do some
regrouping as shown.

Notes:
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d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)
h

= lim
h→0

(
f(x+ h)g(x+ h)− f(x+ h)g(x)

)
+
(
f(x+ h)g(x)− f(x)g(x)

)
h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x)
h

+ lim
h→0

f(x+ h)g(x)− f(x)g(x)
h

= lim
h→0

f(x+ h)
g(x+ h)− g(x)

h
+ lim

h→0

f(x+ h)− f(x)
h

g(x)

= lim
h→0

f(x+ h) lim
h→0

g(x+ h)− g(x)
h

+ lim
h→0

f(x+ h)− f(x)
h

lim
h→0

g(x)

= f(x)g ′(x) + f ′(x)g(x). □

It is oŌen true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the derivaƟve of a product of funcƟons in two ways to verify that
the Product Rule is indeed “right.”

Example 2 Exploring alternate derivaƟve methods
Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y ′ two ways: first, by expanding
the given product and then taking the derivaƟve, and second, by applying the
Product Rule. Verify that both methods give the same answer.

SÊ½çã®ÊÄ We first expand the expression for y; a liƩle algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y ′;

y ′ = 8x3 + 9x2 − 12x.

Now apply the Product Rule.

y ′ = (x2 + 3x+ 1) · d
dx

(2x2 − 3x+ 1) +
d
dx

(x2 + 3x+ 1) · (2x2 − 3x+ 1)

= (x2 + 3x+ 1)(4x− 3) + (2x+ 3)(2x2 − 3x+ 1)
=
(
4x3 + 9x2 − 5x− 3

)
+
(
4x3 − 7x+ 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the derivaƟve of the product is the
product of the derivaƟves.” Thus we are tempted to say that y ′ = (2x+3)(4x−
3) = 8x2 + 6x− 9. Obviously this is not correct.

Notes:
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Example 3 Using the Product Rule with a product of three funcƟons
Let y = x3 ln x cos x. Find y ′.

SÊ½çã®ÊÄ Wehave a product of three funcƟonswhile the Product Rule
only specifies how to handle a product of two funcƟons. Ourmethod of handling
this problem is to simply group the laƩer two funcƟons together, and consider
y = x3

(
ln x cos x

)
. Following the Product Rule, we have

y ′ = (x3)
(
ln x cos x

)′
+ 3x2

(
ln x cos x

)
To evaluate

(
ln x cos x

)′, we apply the Product Rule again:
= (x3)

(
ln x(− sin x) +

1
x
cos x

)
+ 3x2

(
ln x cos x

)
= x3 ln x(− sin x) + x3

1
x
cos x+ 3x2 ln x cos x

Recognize the paƩern in our answer above: when applying the Product Rule to
a product of three funcƟons, there are three terms added together in the final
derivaƟve. Each term contains only one derivaƟve of one of the original func-
Ɵons, and each funcƟon’s derivaƟve shows up in only one term. It is straighƞor-
ward to extend this paƩern to finding the derivaƟve of a product of 4 or more
funcƟons.

We consider one more example before discussing another derivaƟve rule.

Example 4 Using the Product Rule
Find the derivaƟves of the following funcƟons.

1. f(x) = x ln x 2. g(x) = x ln x− x.

SÊ½çã®ÊÄ Recalling that the derivaƟve of ln x is 1/x, we use the Product
Rule to find our answers.

1.
d
dx

(
x ln x

)
= x · 1/x+ 1 · ln x = 1+ ln x.

2. Using the result from above, we compute

d
dx

(
x ln x− x

)
= 1+ ln x− 1 = ln x.

This seems significant; if the natural log funcƟon ln x is an important funcƟon (it
is), it seems worthwhile to know a funcƟon whose derivaƟve is ln x. We have
found one. (We leave it to the reader to find others; a correct answer will be
very similar to this one.)

Notes:
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We have learned how to compute the derivaƟves of sums, differences, and
products of funcƟons. We now learn how to find the derivaƟve of a quoƟent of
funcƟons.

Theorem 17 QuoƟent Rule
Let f and g be funcƟons defined on an open interval I, where g(x) ̸= 0
on I. Then f/g is differenƟable on I, and

d
dx

(
f(x)
g(x)

)
=

g(x)f ′(x)− f(x)g ′(x)
[g(x)]2

.

Proof of the QuoƟent Rule
Let the funcƟons f and g be defined and g(x) ̸= 0 on an open interval I. By the
definiƟon of derivaƟve,

d
dx

(
f(x)
g(x)

)
= lim

h→0

f(x+h)
g(x+h) −

f(x)
g(x)

h

= lim
h→0

[(
f(x+ h)
g(x+ h)

− f(x)
g(x)

)
· 1
h

]

= lim
h→0

[(
f(x+ h)g(x)− f(x)g(x+ h)

g(x+ h)g(x)

)
· 1
h

]

Adding and subtracƟng the term f(x)g(x) in the numerator does not change
the value of the expression and allows us to separate f and g so that

Notes:
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d
dx

(
f(x)
g(x)

)
= lim

h→0

[(
f(x+ h)g(x)− f(x)g(x) + f(x)g(x)− f(x)g(x+ h)

g(x+ h)g(x)

)
· 1
h

]

= lim
h→0

[
f(x+ h)g(x)− f(x)g(x)

hg(x+ h)g(x)
+

f(x)g(x)− f(x)g(x+ h)
hg(x+ h)g(x)

]

= lim
h→0

[
g(x) f(x+ h)− f(x)

hg(x+ h)g(x)
+ f(x)g(x)− g(x+ h)

hg(x+ h)g(x)

]

= lim
h→0

g(x) f(x+h)−f(x)
h − f(x) g(x+h)−g(x)

h
g(x+ h)g(x)

=
lim
h→0

g(x) · lim
h→0

f(x+ h)− f(x)
h

− lim
h→0

f(x) · lim
h→0

g(x+ h)− g(x)
h

lim
h→0

g(x+ h) · lim
h→0

g(x)

=
g(x)f ′(x)− f(x)g ′(x)

[g(x)]2
□

Let’s pracƟce using the QuoƟent Rule.

Example 5 Using the QuoƟent Rule

Let f(x) =
5x2

sin x
. Find f ′(x).

SÊ½çã®ÊÄ Directly applying the QuoƟent Rule gives:

d
dx

(
5x2

sin x

)
=

sin x d
dx (5x

2)− 5x2 d
dx (sin x)

(sin x)2

=
sin x · 10x− 5x2 · cos x

sin2 x

=
10x sin x− 5x2 cos x

sin2 x
.

TheQuoƟent Rule allows us to fill in holes in our understanding of derivaƟves
of the common trigonometric funcƟons. We start with finding the derivaƟve of
the tangent funcƟon.

Example 6 Using the QuoƟent Rule to find d
dx

(
tan x

)
.

Find the derivaƟve of y = tan x.

Notes:
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SÊ½çã®ÊÄ At first, one might feel unequipped to answer this quesƟon.
But recall that tan x = sin x/ cos x, so we can apply the QuoƟent Rule.

d
dx

(
tan x

)
=

cos x d
dx (sin x)− sin x d

dx (cos x)
(cos x)2

=
d
dx

(
sin x
cos x

)
=

cos x cos x− sin x(− sin x)
cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.

This is a beauƟful result. To confirm its truth, we can find the equaƟon of the
tangent line to y = tan x at x = π/4. The slope is sec2(π/4) = 2; y = tan x,
along with its tangent line, is graphed in Figure 2.16.

− π
2 − π

2
π
4

π
2

−10

−5

5

10

x

y

Figure 2.16: A graph of y = tan x along
with its tangent line at x = π/4.

We include this result in the following theorem about the derivaƟves of the
trigonometric funcƟons. Recall we found the derivaƟve of y = sin x in Exam-
ple 2.1.6 and stated the derivaƟve of the cosine funcƟon in Theorem 14. The
derivaƟves of the cotangent, cosecant and secant funcƟons can all be computed
directly using Theorem 14 and the QuoƟent Rule.

Theorem 18 DerivaƟves of Trigonometric FuncƟons

1.
d
dx
(
sin x

)
= cos x

3.
d
dx
(
tan x

)
= sec2 x

5.
d
dx
(
sec x

)
= sec x tan x

2.
d
dx
(
cos x

)
= − sin x

4.
d
dx
(
cot x

)
= − csc2 x

6.
d
dx
(
csc x

)
= − csc x cot x

The proofs of these derivaƟves have been presented or leŌ as exercises. To
remember the above, it may be helpful to keep in mind that the derivaƟves of
the trigonometric funcƟons that start with “c” have a minus sign in them.

Notes:
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Example 7 Exploring alternate derivaƟve methods

In Example 5 the derivaƟve of f(x) =
5x2

sin x
was found using the QuoƟent Rule.

RewriƟng f as f(x) = 5x2 csc x, find f ′ using Theorem 18 and verify the two
answers are the same.

SÊ½çã®ÊÄ We found in Example 5 that f ′(x) =
10x sin x− 5x2 cos x

sin2 x
.

We now find f ′ using the Product Rule, considering f as f(x) = 5x2 csc x.

f ′(x) =
d
dx

(
5x2 csc x

)
= 5x2

d
dx

(csc x)− csc x
d
dx

(5x2)

= 5x2(− csc x cot x) + 10x csc x (now rewrite trig funcƟons)

= 5x2 · −1
sin x

· cos x
sin x

+
10x
sin x

=
−5x2 cos x

sin2 x
+

10x
sin x

(get common denominator)

=
10x sin x− 5x2 cos x

sin2 x

Finding f ′ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule is
fine. Work to “simplify” your results into a form that is most readable and useful
to you.

When we stated the Power Rule in SecƟon 2.3 we claimed that it worked
for all n ∈ R but only provided the proof for non-negaƟve integers. The next
example uses the QuoƟent Rule to provide jusƟficaƟon of the Power Rule for
n ∈ Z.

Example 8 Using the QuoƟent Rule to expand the Power Rule
Find the derivaƟves of the following funcƟons.

1. f(x) =
1
x

2. f(x) =
1
xn
, where n > 0 is an integer.

SÊ½çã®ÊÄ We employ the QuoƟent Rule.

1. f ′(x) =
x · 0− 1 · 1

x2
= − 1

x2
.
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2. f ′(x) =
xn · 0− 1 · nxn−1

(xn)2
= −nxn−1

x2n
= − n

xn+1 .

The derivaƟve of y =
1
xn

turned out to be rather nice. It gets beƩer. Con-
sider:

d
dx

(
1
xn

)
=

d
dx

(
x−n
)

(apply result from Example 8)

= −
n

xn+1 (rewrite algebraically)

= −nx−(n+1)

= −nx−n−1.

Thus, for all n ∈ Z, we can officially apply the Power Rule: mulƟply by the power,
then subtract 1 from the power.

Taking the derivaƟve of many funcƟons is relaƟvely straighƞorward. It is
clear (with pracƟce) what rules apply and in what order they should be applied.
Other funcƟons present mulƟple paths; different rules may be applied depend-
ing on how the funcƟon is treated. One of the beauƟful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the derivaƟve. We demonstrate this concept in an example.

Example 9 Exploring alternate derivaƟve methods

Let f(x) =
x2 − 3x+ 1

x
. Find f ′(x) in each of the following ways:

1. By applying the QuoƟent Rule,

2. by viewing f as f(x) =
(
x2 − 3x + 1

)
· x−1 and applying the Product and

Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

SÊ½çã®ÊÄ

1. Applying the QuoƟent Rule gives:

f ′(x) =
x ·
(
2x− 3

)
−
(
x2 − 3x+ 1

)
· 1

x2
=

x2 − 1
x2

= 1− 1
x2
.
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2. By rewriƟng f, we can apply the Product and Power Rules as follows:

f ′(x) =
(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1

= −x2 − 3x+ 1
x2

+
2x− 3

x

= −x2 − 3x+ 1
x2

+
2x2 − 3x

x2

=
x2 − 1
x2

= 1− 1
x2
,

the same result as above.

3. As x ̸= 0, we can divide through by x first, giving f(x) = x − 3 +
1
x
. Now

apply the Power Rule to see

f ′(x) = 1− 1
x2
,

the same result as before.

Example 9 demonstrates three methods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
UlƟmately, the important principle to take away from this is: simplify the answer
to a form that seems “simple” and easy to interpret. They are equal; they are all
correct. The most appropriate form of f ′ depends on what we need to do with
the funcƟon next. For later problems it will be important for us to determine the
most appropriate form to use and to move flexibly between the different forms.

In the next secƟon we conƟnue to learn rules that allow us to more easily
compute derivaƟves than using the limit definiƟon directly. We have to memo-
rize the derivaƟves of a certain set of funcƟons, such as “the derivaƟve of sin x
is cos x.” The Sum/Difference, Constant MulƟple, Power, Product and QuoƟent
Rules show us how to find the derivaƟves of certain combinaƟons of these func-
Ɵons. The next secƟon shows how to find the derivaƟves when we compose
these funcƟons together.
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Exercises 2.4
Terms and Concepts

1. T/F: The Product Rule states that d
dx
(
x2 sin x

)
= 2x cos x.

2. T/F: The QuoƟent Rule states that d
dx

(
x2

sin x

)
=

2x
cos x

.

3. T/F: The derivaƟves of the trigonometric funcƟons that
start with “c” have minus signs in them.

4. What derivaƟve rule is used to extend the Power Rule to
include negaƟve integer exponents?

5. T/F: Regardless of the funcƟon, there is always exactly one
right way of compuƟng its derivaƟve.

6. In your own words, explain what it means to make your
answers “clear.”

Problems
In Exercises 7–9, use the QuoƟent Rule to verify these deriva-
Ɵves.

7. d
dx

(cot x) = − csc2 x

8. d
dx

(sec x) = sec x tan x

9. d
dx

(csc x) = − csc x cot x

In Exercises 10–13:
(a) Use the Product Rule to differenƟate the funcƟon.
(b) Manipulate the funcƟon algebraically and differenƟate

without the Product Rule.
(c) Show that the answers from (a) and (b) are equivalent.

10. f(x) = x(x2 + 3x)
11. g(x) = 2x2(5x3)
12. h(s) = (2s− 1)(s+ 4)
13. f(x) = (x2 + 5)(3− x3)

In Exercises 14–17:
(a) Use the QuoƟent Rule to differenƟate the funcƟon.
(b) Manipulate the funcƟon algebraically and differenƟate

without the QuoƟent Rule.
(c) Show that the answers from (a) and (b) are equivalent.

14. f(x) = x2 + 3
x

15. g(x) = x3 − 2x2

2x2

16. h(s) = 3
4s3

17. f(t) = t2 − 1
t+ 1

In Exercises 18–42, compute the derivaƟve of the given func-
Ɵon.

18. f(x) = x sin x

19. f(t) = 1
t2
(csc t− 4)

20. H(y) = (y5 − 2y3)(7y2 + y− 8)
21. F(y) = 3√y2(y2 + 9y)

22. g(x) = x+ 7
x− 5

23. y =
√
x

x+ 4

24. g(x) = x√
x+ 4

25. g(t) = t5

cos t− 2t2
26. h(x) = cot x− ex

27. h(t) = 7t2 + 6t− 2

28. f(x) = x4 + 2x3

x+ 2

29. f(x) = x2 −
√
x

x3

30. y =
(

1
x3

+
5
x4

)
(2x3 − x5)

31. g(x) = 1
1+ x+ x2 + x3

32. p(x) = 1+ 1
x
+

1
x2

+
1
x3

33. f(x) = (16x3 + 24x2 + 3x) 7x− 1
16x3 + 24x2 + 3x

34. f(t) = t5(sec t+ et)

35. f(x) = sin x
cos x+ 3

36. g(x) = e2
(
sin(π/4)− 1

)
37. g(t) = 4t3et − sin t cos t
38. f(y) = y(2y3 − 5y− 1)(6y2 + 7)
39. F(x) = (8x− 1)(x2 + 4x+ 7)(x3 − 5)

40. h(t) = t2 sin t+ 3
t2 cos t+ 2

41. f(x) = x2ex tan x
42. g(x) = 2x sin x sec x

In Exercises 43–46, find the equaƟons of the tangent line to
the graph of g at the indicated point.

43. g(s) = es(s2 + 2) at (0, 2).
44. g(t) = t sin t at ( 3π2 ,−

3π
2 )

45. g(x) = x2

x− 1
at (2, 4)

46. g(θ) = cos θ − 8θ
θ + 1

at (0, 1)

In Exercises 47–50, find the x–values where the graph of the
funcƟon has a horizontal tangent line.

47. f(x) = 6x2 − 18x− 24
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48. f(x) = x sin x on [−1, 1]

49. f(x) = x
x+ 1

50. f(x) = x2

x+ 1

In Exercises 51–54, find the requested derivaƟve.

51. f(x) = x sin x; find f ′′(x).
52. f(x) = x sin x; find f (4)(x).
53. f(x) = csc x; find f ′′(x).
54. f(x) = (x3 − 5x+ 2)(x2 + x− 7); find f (8)(x).

In Exercises 55–60, f and g are differenƟable funcƟons such
that f(2) = 3, f ′(2) = −1, g(2) = −5, and g′(2) = 2. Evalu-
ate the expressions.

55. (f+ g)′(2)
56. (f− g)′(2)
57. (4f)′(2)
58. (f · g)′(2)

59.
(

f
g

)′

(2)

60.
(

g
f+ g

)′

(2)

61. If f and g are funcƟons whose graphs are shown, evaluate
the expressions.

−2 −1 1 2 3 4

−2

−1

1

2

3

4

g f

x

y

(a) (fg)′(−1) (b) (f/g)′(−1)
(c) (fg)′(3) (d) (g/f)′(3)
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2.5 The Chain Rule
We have covered almost all of the derivaƟve rules that deal with combinaƟons
of two (or more) funcƟons. The operaƟons of addiƟon, subtracƟon, mulƟplica-
Ɵon (including by a constant) and division led to the Sum and Difference rules,
the Constant MulƟple Rule, the Power Rule, the Product Rule and the QuoƟent
Rule. To complete the list of differenƟaƟon rules, we look at the last way two (or
more) funcƟons can be combined: the process of composiƟon (i.e. one funcƟon
“inside” another).

One example of a composiƟon of funcƟons is f(x) = cos(x2). We currently
do not know how to compute this derivaƟve. If forced to guess, one would likely
guess f ′(x) = − sin(2x), where we recognize − sin x as the derivaƟve of cos x
and 2x as the derivaƟve of x2. However, this is not the case; f ′(x) ̸= − sin(2x). In
Example 4 we’ll see the correct answer, which employs the new rule this secƟon
introduces, the Chain Rule.

Before we define this new rule, recall the notaƟon for composiƟon of func-
Ɵons. We write (f ◦ g)(x) or f(g(x)), read as “f of g of x,” to denote composing f
with g. In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Before
giving the corresponding differenƟaƟon rule, we note that the rule extends to
mulƟple composiƟons like f(g(h(x))) or f(g(h(j(x)))), etc.

To moƟvate the rule, let’s look at three derivaƟves we can already compute.

Example 1 Exploring similar derivaƟves
Find the derivaƟves of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and F3(x) = (1 −
x)4. (We’ll see later why we are using subscripts for different funcƟons and an
uppercase F.)

SÊ½çã®ÊÄ In order to use the rules we already have, we must first ex-
pand each funcƟon as F1(x) = 1 − 2x + x2, F2(x) = 1 − 3x + 3x2 − x3 and
F3(x) = 1− 4x+ 6x2 − 4x3 + x4.

It is not hard to see that:

F1 ′(x) = −2+ 2x,
F2 ′(x) = −3+ 6x− 3x2 and
F3 ′(x) = −4+ 12x− 12x2 + 4x3.

An interesƟng fact is that these can be rewriƩen as

F1 ′(x) = −2(1− x),
F2 ′(x) = −3(1− x)2 and
F3 ′(x) = −4(1− x)3.

Notes:
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A paƩern might jump out at you. Recognize that each of these funcƟons is a
composiƟon, leƫng g(x) = 1− x:

F1(x) = f1(g(x)), where f1(x) = x2,
F2(x) = f2(g(x)), where f2(x) = x3,
F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example aŌer giving the formal statements of the
Chain Rule; for now, we are just illustraƟng a paƩern.

Theorem 19 The Chain Rule
Let y = f(u) be a differenƟable funcƟon of u and let u = g(x) be a
differenƟable funcƟon of x. Then y = f(g(x)) is a differenƟable funcƟon
of x, and

y ′ = f ′(g(x)) · g ′(x).

We can think of this as taking the derivaƟve of the outer funcƟon evaluated
at the inner funcƟon Ɵmes the derivaƟve of the inner funcƟon. To help under-
stand the Chain Rule, we return to Example 1.

Example 2 Using the Chain Rule
Use the Chain Rule to find the derivaƟves of the funcƟons given in Example 1.

SÊ½çã®ÊÄ Example 1 endedwith the recogniƟon that each of the given
funcƟonswas actually a composiƟon of funcƟons. To avoid confusion, we ignore
most of the subscripts here.
F1(x) = (1− x)2 :

We found that

y = (1− x)2 = f(g(x)), where f(x) = x2 and g(x) = 1− x.

To find y ′, we apply the Chain Rule. We need f ′(x) = 2x and g ′(x) = −1.
Part of the Chain Rule uses f ′(g(x)). This means subsƟtute g(x) for x in the

equaƟon for f ′(x). That is, f ′(x) = 2(1 − x). Finishing out the Chain Rule we
have

y ′ = f ′(g(x)) · g ′(x) = 2(1− x) · (−1) = −2(1− x) = 2x− 2.

F2(x) = (1− x)3:
Let y = (1 − x)3 = f(g(x)), where f(x) = x3 and g(x) = (1 − x). We have

f ′(x) = 3x2, so f ′(g(x)) = 3(1− x)2. The Chain Rule then states

y ′ = f ′(g(x)) · g ′(x) = 3(1− x)2 · (−1) = −3(1− x)2.

Notes:
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2.5 The Chain Rule

F3(x) = (1− x)4:
Finally, when y = (1 − x)4, we have f(x) = x4 and g(x) = (1 − x). Thus

f ′(x) = 4x3 and f ′(g(x)) = 4(1− x)3. Thus

y ′ = f ′(g(x)) · g ′(x) = 4(1− x)3 · (−1) = −4(1− x)3.

Example 2 demonstrated a parƟcular paƩern: when f(x) = xn and y =
f(g(x)), then y ′ = n · (g(x))n−1 · g ′(x). This is called the Generalized Power
Rule.

Theorem 20 Generalized Power Rule
Let g(x) be a differenƟable funcƟon. Then

d
dx

(
g(x)n

)
= n ·

(
g(x)

)n−1 · g ′(x).

This allows us to quickly find the derivaƟve of funcƟons like y = (3x2− 5x+
7 + sin x)20. While it may look inƟmidaƟng, the Generalized Power Rule states
that

y ′ = 20(3x2 − 5x+ 7+ sin x)19 · d
dx

(3x2 − 5x+ 7+ sin x)

= 20(3x2 − 5x+ 7+ sin x)19 · (6x− 5+ cos x).

Treat the derivaƟve–taking process step–by–step. In the example just given,
first mulƟply by 20, then rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the derivaƟve of the expression inside the
parentheses, and mulƟply by that.

Watch the video:
Chain Rule for Finding DerivaƟves at
https://youtu.be/6kScLENCXLg

We now consider more examples that employ the Chain Rule.

Example 3 Using the Chain Rule
Find the derivaƟves of the following funcƟons:

1. y = sin 2x 2. y = ln(4x3 − 2x2) 3. y = e−x2

Notes:
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Chapter 2 DerivaƟves

SÊ½çã®ÊÄ

1. Consider y = sin 2x. Recognize that this is a composiƟon of funcƟons,
where f(x) = sin x and g(x) = 2x. Thus

y ′ = f ′(g(x)) · g ′(x) = cos(2x) · d
dx

(2x) = cos(2x) · 2 = 2 cos 2x.

2. Recognize that y = ln(4x3 − 2x2) is the composiƟon of f(x) = ln x and
g(x) = 4x3 − 2x2. Also, recall that

d
dx

(
ln x
)
=

1
x
.

This leads us to:

y ′ =
1

4x3 − 2x2
· d
dx

(4x3 − 2x2)

=
1

4x3 − 2x2
· (12x2 − 4x)

=
12x2 − 4x
4x3 − 2x2

=
4x(3x− 1)
2x(2x2 − x)

=
2(3x− 1)
2x2 − x

.

3. Recognize that y = e−x2 is the composiƟon of f(x) = ex and g(x) = −x2.
Remembering that f ′(x) = ex, we have

y ′ = ex
2
· d
dx

(x2) = e−x2 · (−2x) = (−2x)e−x2 .

−2 2

−1

−0.5

0.5

1

x

y

Figure 2.17: f(x) = cos x2 sketched along
with its tangent line at x = 1.

Example 4 Using the Chain Rule to find a tangent line
Let f(x) = cos x2. Find the equaƟon of the line tangent to the graph of f at x = 1.

SÊ½çã®ÊÄ The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the Chain Rule.

f ′(x) = − sin(x2) · (2x) = −2x sin x2. Evaluated at x = 1, we have f ′(1) =
−2 sin 1 ≈ −1.68. Thus the equaƟon of the tangent line is approximately

y = −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 2.17.

Notes:
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2.5 The Chain Rule

The Chain Rule is used oŌen in taking derivaƟves. Because of this, one can
become familiar with the basic process and learn paƩerns that facilitate finding
derivaƟves quickly. For instance,

d
dx

(
ln(anything)

)
=

1
anything

· d
dx

(anything) =
d
dx (anything)
anything

.

A concrete example of this is

d
dx

(
ln(3x15 − cos x+ ex)

)
=

45x14 + sin x+ ex

3x15 − cos x+ ex
.

While the derivaƟve may look inƟmidaƟng at first, look for the paƩern. The
denominator is the same as what was inside the natural log funcƟon; the nu-
merator is simply its derivaƟve.

This paƩern recogniƟon process can be applied to lots of funcƟons. In gen-
eral, instead of wriƟng “anything”, we use u as a generic funcƟon of x. We then
say

d
dx

(
ln u
)
=

u ′

u
.

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar funcƟons.

1.
d
dx

(
un
)
= n · un−1 · u ′.

2.
d
dx

(
eu
)
= u ′ · eu.

3.
d
dx

(
sin u

)
= u ′ · cos u.

4.
d
dx

(
cos u

)
= −u ′ · sin u.

5.
d
dx

(
tan u

)
= u ′ · sec2 u.

Of course, the Chain Rule can be applied in conjuncƟonwith any of the other
rules we have already learned. We pracƟce this next.

Example 5 Using the Product, QuoƟent and Chain Rules
Find the derivaƟves of the following funcƟons.

1. f(x) = x5 sin 2x3 2. f(x) =
5x3

e−x2 .

SÊ½çã®ÊÄ

Notes:
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1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step–
by–step.

f ′(x) = x5 · d
dx

(sin 2x3) +
d
dx

(x5) · sin 2x3

= x5 · [cos 2x3 · d
dx

(2x3)] + 5x4 · sin 2x3

= x5
(
6x2 cos 2x3

)
+ 5x4

(
sin 2x3

)
= 6x7 cos 2x3 + 5x4 sin 2x3.

2. Wemust employ the QuoƟent Rule along with the Chain Rule. Again, pro-
ceed step–by–step.

f ′(x) =
e−x2 · d

dx (5x
3)− 5x3 d

dxe
−x2

(e−x2)2

=
e−x2 · 15x2 − 5x3 · e−x2 · d

dx (−x
2)

(e−x2)2

=
e−x2(15x2)− 5x3

(
(−2x)e−x2)(

e−x2
)2

=
e−x2(10x4 + 15x2

)
e−2x2

= ex
2(
10x4 + 15x2

)
.

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g ′(x). Just rewrite f(x), then find g ′(x). Then move on to the f ′(x)g(x) part.
Don’t aƩempt to figure out both parts at once.

Likewise, using the QuoƟent Rule, approach the numerator in two steps and
handle the denominator aŌer compleƟng that. Only simplify aŌerward.

We can also employ the Chain Rule itself several Ɵmes, as shown in the next
example.

Example 6 Using the Chain Rule mulƟple Ɵmes
Find the derivaƟve of y = tan5(6x3 − 7x).

Notes:
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2.5 The Chain Rule

SÊ½çã®ÊÄ Recognize that we have the funcƟon g(x) = tan(6x3 − 7x)
“inside” the funcƟon f(x) = x5; that is, we have y =

(
tan(6x3 − 7x)

)5. We use
the Chain Rule mulƟple Ɵmes, beginning with the Generalized Power Rule:

y ′ = 5
(
tan(6x3 − 7x)

)4 · d
dx

tan(6x3 − 7x)

= 5 tan4(6x3 − 7x) · sec2(6x3 − 7x) · d
dx

(6x3 − 7x)

= 5 tan4(6x3 − 7x) · sec2(6x3 − 7x) · (18x2 − 7)
= 5(18x2 − 7) tan4(6x3 − 7x) sec2(6x3 − 7x)

This funcƟon is frankly a ridiculous funcƟon, possessing no real pracƟcal
value. It is very difficult to graph, as the tangent funcƟon has many verƟcal
asymptotes and 6x3 − 7x grows so very fast. The important thing to learn from
this is that the derivaƟve can be found. In fact, it is not “hard;” one must take
several small steps and be careful to keep track of how to apply each of these
steps.

It is a tradiƟonal mathemaƟcal exercise to find the derivaƟves of arbitrar-
ily complicated funcƟons just to demonstrate that it can be done. Just break
everything down into smaller pieces.

Example 7 Using the Product, QuoƟent and Chain Rules

Find the derivaƟve of f(x) =
x cos(x−2)− sin2(e4x)

ln x2
.

SÊ½çã®ÊÄ This funcƟon likely has no pracƟcal use outside of demon-
straƟng derivaƟve skills. The answer is given below without simplificaƟon. It
employs the QuoƟent Rule, the Product Rule, and the Chain Rule three Ɵmes.
f ′(x) =

(ln x2)[−x(sin x−2)(−2x−3) + 1 · (cos(x−2)) − 2 sin e4x cos e4x · (4e4x)] − 1
x2
(2x) · [x cos(x−2) − sin2(e4x)]

(ln x2)2
.

The reader is highly encouraged to look at each term and recognize why it is
there. This example demonstrates that derivaƟves can be computed systemaƟ-
cally, no maƩer how arbitrarily complicated the funcƟon is.

Alternate Chain Rule NotaƟon
It is instrucƟve to understand what the Chain Rule “looks like” using “ dydx” no-
taƟon instead of y ′ notaƟon. Suppose that y = f(u) is a funcƟon of u, where

Notes:
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u = g(x) is a funcƟon of x, as stated in Theorem 19. Then, through the com-
posiƟon f ◦ g, we can think of y as a funcƟon of x, as y = f(g(x)). Thus the
derivaƟve of y with respect to x makes sense; we can talk about dy

dx . This leads
to an interesƟng progression of notaƟon:

y ′ = f ′(g(x)) · g ′(x)
dy
dx

= y ′(u) · u ′(x) (since y = f(u) and u = g(x))

dy
dx

=
dy
du
· du
dx

(using “fracƟonal” notaƟon for the derivaƟve)

Here the “fracƟonal” aspect of the derivaƟve notaƟon stands out. On the
right hand side, it seems as though the “du” terms divide out, leaving

dy
dx

=
dy
dx

.

It is important to realize that we are not dividing these terms; the derivaƟve
notaƟon of dy

dx is one symbol. It is equally important to realize that this notaƟon
was chosen precisely because of this behavior. It makes applying the Chain Rule
easy with mulƟple variables. For instance,

dy
dt

=
dy
d□ ·

d□
d△
· d△
dt

.

where□ and△ are any variables you’d like to use.

x

u

dy
du

= 3

du
dx

= 2
dy
dx

= 6

y

Figure 2.18: A series of gears to demon-
strate the Chain Rule. Note how dy

dx =
dy
du ·

du
dx

One of the most common ways of “visualizing” the Chain Rule is to consider
a set of gears, as shown in Figure 2.18. The gears have 36, 18, and 6 teeth,
respecƟvely. That means for every revoluƟon of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revoluƟon is twice as fast
as the rate at which the x gear makes a revoluƟon. Using the terminology of
calculus, the rate of u-change, with respect to x, is du

dx = 2.
Likewise, every revoluƟon of u causes 3 revoluƟons of y: dy

du = 3. How does
y change with respect to x? For each revoluƟon of x, y revolves 6 Ɵmes; that is,

dy
dx

=
dy
du
· du
dx

= 2 · 3 = 6.

We can then extend the Chain Rule with more variables by adding more gears
to the picture.

It is difficult to overstate the importance of the Chain Rule. So oŌen the
funcƟons thatwe dealwith are composiƟons of twoormore funcƟons, requiring
us to use this rule to compute derivaƟves. It is oŌen used in pracƟcewhen actual
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2.5 The Chain Rule

funcƟons are unknown. Rather, through measurement, we can calculate dy
du and

du
dx . With our knowledge of the Chain Rule, finding dy

dx is straighƞorward.
In the next secƟon, we use the Chain Rule to jusƟfy another differenƟaƟon

technique. There are many curves that we can draw in the plane that fail the
“verƟcal line test.” For instance, consider x2 + y2 = 1, which describes the unit
circle. Wemay sƟll be interested in finding slopes of tangent lines to the circle at
various points. The next secƟon shows howwe can find dy

dx without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situaƟons, implicit differenƟaƟon is indispensable.
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129



Exercises 2.5
Terms and Concepts
1. T/F: The Chain Rule describes how to evaluate the deriva-

Ɵve of a composiƟon of funcƟons.

2. T/F: The Generalized Power Rule states that d
dx

(
g(x)n

)
=

n
(
g(x)

)n−1.

3. T/F: d
dx
(
ln(x2)

)
=

1
x2
.

4. T/F: d
dx
(
3x
)
≈ 1.1 · 3x.

5. T/F: dx
dy

=
dx
dt

· dt
dy

6. T/F: Taking the derivaƟve of f(x) = x2 sin(5x) requires the
use of both the Product and Chain Rules.

Problems
In Exercises 7–33, compute the derivaƟve of the given func-
Ɵon.

7. f(x) = (4x3 − x)10

8. f(t) = (3t− 2)5

9. g(θ) = (sin θ + cos θ)3

10. h(t) = e3t
2+t−1

11. f(x) =
(
x+ 1

x

)4
12. p(x) =

(
x2 − 1

x2

)6

13. f(x) = cos(3x)
14. g(x) = tan(5x)
15. h(t) = sin4(2t)
16. p(t) = cos3(t2 + 3t+ 1)
17. g(x) = tan2 x− tan(x2)

18. w(x) = sec(ex
3
)

19. f(x) = ln(cos x)
20. f(x) = ln(x2)
21. f(x) = 2 ln(x)
22. g(t) = 152

23. r(x) =
√
4x− 3
x2

24. f(x) = (3x2 − 5)4

(2x3 − 1)2

25. h(x) = [(2x+ 1)10 + 1]10

26. f(t) =

[(
1+ 1

t

)−1

+ 1

]−1

27. F(x) = 2x(2x+ 1)2(2x+ 3)3

28. f(x) = x2 sin(5x)
29. g(t) = cos(t2 + 3t) sin(5t− 7)

30. g(t) = cos( 1t )e
5t2

31. a(t) = 7t3etan t2

32. y =
√

sin(cos2 x)
33. k(x) = cos(x sin x3)
34. If k(x) = f(g(x)) with f(2) = −4, g(2) = 2, f ′(2) = 3,

and g′(2) = 5. Find k′(2).
35. Suppose r(x) = f(g(h(x))), where h(1) = 2, g(2) = 3,

h′(1) = 3, g′(2) = 5, and f′(3) = 6. Find r′(1).
36. If f and g are funcƟons whose graphs are shown, evaluate

the expressions.

−2 −1 1 2 3 4

−3

−2

−1

1

2

3

4

g f

x

y

(a) (f ◦ g)′(−1) (b) (g ◦ f)′(0)
(c) (g ◦ g)′(−1) (d) (f ◦ f)′(4)

37.
x f(x) f ′(x) g(x) g′(x)

1 4 5 4 5
4 0 7 1 1

2
6 6 4 6 3

Use the given table of values for f, g, f ′, and g′ to find

(a) (f ◦ g)′(6)

(b) (g ◦ f)′(1)

(c) (g ◦ g)′(6)

(d) (f ◦ f)′(1)

In Exercises 38–41, find the equaƟons of tangent line to the
graph of the funcƟon at the given point. Note: the funcƟons
here are the same as in Exercises 7 – 10.

38. f(x) = (4x3 − x)10 at x = 0
39. f(t) = (3t− 2)5 at t = 1
40. g(θ) = (sin θ + cos θ)3 at θ = π/2

41. h(t) = e3t
2+t−1 at t = −1

42. Compute d
dx
(
ln(kx)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ab) = ln a+ ln b,
then taking the derivaƟve.
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43. Compute d
dx
(
ln(xk)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ap) = p ln a, then
taking the derivaƟve.

44. Use the Chain Rule to prove the following:

(a) The derivaƟve of an even funcƟon is an odd funcƟon.

(b) The derivaƟve of an odd funcƟon is an even funcƟon.

45. Use the Chain Rule and Product Rule to give an alterna-
Ɵve proof of the QuoƟent Rule. (Hint: write f(x)/g(x) as
f(x) · [g(x)]−1).

46. Use the Chain Rule to express the second derivaƟve of
f(g(x)) in terms of first and second derivaƟves of f and g.

Review
47. The “wind chill factor” is a measurement of how cold it

“feels” during cold, windy weather. LetW(w) be the wind
chill factor, in degrees Fahrenheit, when it is 25◦F outside
with a wind of wmph.

(a) What are the units ofW ′(w)?

(b) What would you expect the sign ofW ′(10) to be?

48. Find the derivaƟves of f(x) = x2ex cot x
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2.6 Implicit DifferenƟaƟon
In the previous secƟons we learned to find the derivaƟve, dy

dx , or y
′, when y is

given explicitly as a funcƟon of x. That is, if we know y = f(x) for some funcƟon
f, we can find y ′. For example, given y = 3x2 − 7, we can easily find y ′ = 6x.
(Here we explicitly state how x and y are related. Knowing x, we can directly find
y.)

SomeƟmes the relaƟonship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that x2 − y = 4. This equality defines a
relaƟonship between x and y; if we know x, we could figure out y. Can we sƟll
find y ′? In this case, sure; we solve for y to get y = x2 − 4 (hence we now know
y explicitly) and then differenƟate to get y ′ = 2x.

SomeƟmes the implicit relaƟonship between x and y is complicated. Sup-
pose we are given sin(y) + y3 = 6 − x3. A graph of this equaƟon is given in
Figure 2.19. In this case there is absolutely no way to solve for y in terms of ele-
mentary funcƟons. The surprising thing is, however, that we can sƟll find y ′ via
a process known as implicit differenƟaƟon.

−2 2

−2

2

x

y

Figure 2.19: A graph of the equaƟon
sin(y) + y3 = 6− x3.

Implicit differenƟaƟon is a technique based on the Chain Rule that is used to
find a derivaƟve when the relaƟonship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be funcƟons of x. Then

d
dx

(
f(g(x))

)
= f ′(g(x)) · g′(x).

Suppose now that y = g(x). We can rewrite the above as

d
dx

(
f(y)
)
= f ′(y) · y ′, or

d
dx

(
f(y)
)
= f ′(y) · dy

dx
. (2.1)

These equaƟons look strange; the key concept to learn here is that we can find
y ′ even if we don’t exactly know how y and x relate.

Watch the video:
Showing explicit and implicit differenƟaƟon give
same result at
https://youtu.be/2CsQ_l1S2_Y

We demonstrate this process in the following example.

Notes:
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2.6 Implicit DifferenƟaƟon

Example 1 Using Implicit DifferenƟaƟon
Find y ′ given that sin(y) + y3 = 6− x3.

SÊ½çã®ÊÄ We start by taking the derivaƟve of both sides (thus main-
taining the equality). We have:

d
dx

(
sin(y) + y3

)
=

d
dx

(
6− x3

)
.

The right hand side is easy; it returns−3x2.
The leŌhand side requiresmore consideraƟon. We take thederivaƟve term–

by–term. Using the technique derived from EquaƟon (2.1) above, we can see
that

d
dx

(
sin y

)
= cos y · y ′.

We apply the same process to the y3 term.

d
dx

(
y3
)
=

d
dx

(
(y)3

)
= 3(y)2 · y ′.

Puƫng this together with the right hand side, we have

cos(y)y ′ + 3y2y ′ = −3x2.

Now solve for y ′.

cos(y)y ′ + 3y2y ′ = −3x2.(
cos y+ 3y2

)
y ′ = −3x2

y ′ =
−3x2

cos y+ 3y2

This equaƟon for y ′ probably seems unusual for it contains both x and y
terms. How is it to be used? We’ll address that next.

Implicit funcƟons are generally harder to deal with than explicit funcƟons.
With an explicit funcƟon, given an x value, we have an explicit formula for com-
puƟng the corresponding y value. With an implicit funcƟon, one oŌen has to
find x and y values at the same Ɵme that saƟsfy the equaƟon. It is much eas-
ier to demonstrate that a given point saƟsfies the equaƟon than to actually find
such a point.

For instance, we can affirm easily that the point ( 3
√
6, 0) lies on the graph of

the equaƟon sin y+ y3 = 6− x3. Plugging in 0 for y, we see the leŌ hand side is
0. Seƫng x = 3

√
6, we see the right hand side is also 0; the equaƟon is saƟsfied.

The following example finds an equaƟon of the tangent line to this equaƟon at
this point.
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Example 2 Using Implicit DifferenƟaƟon to find a tangent line
Find the equaƟon of the line tangent to the implicitly defined curve sin y+ y3 =
6− x3 at the point ( 3

√
6, 0).

SÊ½çã®ÊÄ In Example 1 we found that

y ′ =
−3x2

cos y+ 3y2
.

We find the slope of the tangent line at the point ( 3
√
6, 0) by subsƟtuƟng 3

√
6 for

x and 0 for y. Thus at the point ( 3
√
6, 0), we have the slope as

y ′ =
−3( 3
√
6)2

cos 0+ 3 · 02
=
−3 3
√
36

1
≈ −9.91.

−2 2

−2

2

x

y

Figure 2.20: The equaƟon sin y + y3 =
6 − x3 and its tangent line at the point
( 3√6, 0).

Therefore an equaƟon of the tangent line to the implicitly defined curve
sin y+ y3 = 6− x3 at the point ( 3

√
6, 0) is

y = −3 3
√
36(x− 3

√
6) + 0 ≈ −9.91x+ 18.

The curve and this tangent line are shown in Figure 2.20.

This suggests a general method for implicit differenƟaƟon. For the steps be-
low assume y is a funcƟon of x.

1. Take the derivaƟve of each term in the equaƟon. Treat the x terms like
normal. When taking the derivaƟves of y terms, the usual rules apply
except that, because of the Chain Rule, we need to mulƟply each term
by y ′.

2. Get all the y ′ terms on one side of the equal sign and put the remaining
terms on the other side.

3. Factor out y ′; solve for y ′ by dividing.

PracƟcal Note: When working by hand, it may be beneficial to use the symbol
dy
dx instead of y

′, as the laƩer can be easily confused for y or y1.

Example 3 Using Implicit DifferenƟaƟon
Given the implicitly defined funcƟon y3 + x2y4 = 1+ 2x, find y ′.

Notes:
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2.6 Implicit DifferenƟaƟon

SÊ½çã®ÊÄ Wewill take the implicit derivaƟves term by term. Using the
Chain Rule the derivaƟve of y3 is 3y2y ′.

The second term, x2y4 is a liƩle more work. It requires the Product Rule as
it is the product of two funcƟons of x: x2 and y4. We see that

d
dx

(x2y4) is

x2 · d
dx

(y4) +
d
dx

(x2) · y4

x2 · (4y3y′) + 2x · y4

The first part of this expression requires a y ′ because we are taking the deriva-
Ɵve of a y term. The second part does not require it because we are taking the
derivaƟve of x2.

The derivaƟve of the right hand side of the equaƟon is found to be 2. In all,
we get:

3y2y ′ + 4x2y3y ′ + 2xy4 = 2.

Move terms around so that the leŌ side consists only of the y ′ terms and the
right side consists of all the other terms:

3y2y ′ + 4x2y3y ′ = 2− 2xy4.

Factor out y ′ from the leŌ side and solve to get

y ′ =
2− 2xy4

3y2 + 4x2y3
.

To confirm the validity of our work, let’s find the equaƟon of a tangent line
to this curve at a point. It is easy to confirm that the point (0, 1) lies on the
graph of this curve. At this point, y ′ = 2/3. So the equaƟon of the tangent
line is y = 2/3(x − 0) + 1. The equaƟon and its tangent line are graphed in
Figure 2.21.

5 10

−10

−5

x

y

Figure 2.21: A graph of the equaƟon y3 +
x2y4 = 1 + 2x along with its tangent line
at the point (0, 1).

NoƟce how our curve looks much different than other funcƟons we have
worked with up to this point. Such curves are important in many areas of math-
emaƟcs, so developing tools to deal with them is also important.

Example 4 Using Implicit DifferenƟaƟon
Given the implicitly defined curve sin(x2y2) + y3 = x+ y, find y ′.

SÊ½çã®ÊÄ DifferenƟaƟng term by term, we find the most difficulty in

Notes:
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Chapter 2 DerivaƟves

the first term. It requires both the Chain and Product Rules.

d
dx
(
sin(x2y2)

)
= cos(x2y2) · d

dx
(x2y2)

= cos(x2y2) ·
(
x2

d
dx

(y2) +
d
dx

(x2) · y2
)

= cos(x2y2) · (x2 · 2yy ′ + 2xy2)
= 2(x2yy ′ + xy2) cos(x2y2).

We leave the derivaƟves of the other terms to the reader. AŌer taking the
derivaƟves of both sides, we have

2(x2yy ′ + xy2) cos(x2y2) + 3y2y ′ = 1+ y ′.

−1 1

−1

1

x

y

(a)

−1 1

−1

1

x

y

(b)

Figure 2.22: A graph of the equaƟon
sin(x2y2) + y3 = x + y and certain tan-
gent lines.

We now have to be careful to properly solve for y ′, parƟcularly because of
the product on the leŌ. It is best to mulƟply out the product. Doing this, we get

2x2y cos(x2y2)y ′ + 2xy2 cos(x2y2) + 3y2y ′ = 1+ y ′.

From here we can safely move around terms to get the following:

2x2y cos(x2y2)y ′ + 3y2y ′ − y ′ = 1− 2xy2 cos(x2y2).

Then we can solve for y ′ to get

y ′ =
1− 2xy2 cos(x2y2)

2x2y cos(x2y2) + 3y2 − 1
.

A graph of this implicit equaƟon is given in Figure 2.22(a). It is easy to verify
that the points (0, 0), (0, 1) and (0,−1) all lie on the graph. We can find the
slopes of the tangent lines at each of these points using our formula for y ′.

At (0, 0), the slope is−1.
At (0, 1), the slope is 1/2.
At (0,−1), the slope is also 1/2.

The tangent lines have been added to the graph of the funcƟon in Figure 2.22(b).

Quite a few “famous” curves have equaƟons that are given implicitly. We can
use implicit differenƟaƟon to find the slope at various points on those curves.
We invesƟgate two such curves in the next examples.

Notes:
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2.6 Implicit DifferenƟaƟon

Example 5 Finding slopes of tangent lines to a circle
Find the slopeof the tangent line to the circle x2+y2 = 1 at the point (1/2,

√
3/2).

SÊ½çã®ÊÄ Taking derivaƟves, we get 2x+2yy ′ = 0. Solving for y ′ gives:

y ′ =
−x
y
.

This is a clever formula. Recall that the slope of the line through the origin and
the point (x, y) on the circle will be y/x. We have found that the slope of the
tangent line to the circle at that point is the opposite reciprocal of y/x, namely,
−x/y. Hence these two lines are always perpendicular.

At the point (1/2,
√
3/2), we have the tangent line’s slope as

y ′ =
−1/2√
3/2

=
−1√
3
≈ −0.577.

Agraphof the circle and its tangent line at (1/2,
√
3/2) is given in Figure 2.23,

alongwith a thin dashed line from the origin that is perpendicular to the tangent
line. (It turns out that all normal lines to a circle pass through the center of the
circle.) −1 1

−1

1 (1/2,
√
3/2)

x

y

Figure 2.23: The unit circle with its tan-
gent line at (1/2,

√
3/2).

This secƟon has shown how to find the derivaƟves of implicitly defined func-
Ɵons, whose graphs include a wide variety of interesƟng and unusual shapes.
Implicit differenƟaƟon can also be used to further our understanding of “regu-
lar” differenƟaƟon.

Implicit DifferenƟaƟon and the Second DerivaƟve

We can use implicit differenƟaƟon to find higher order derivaƟves. In theory,
this is simple: first find dy

dx , then take its derivaƟve with respect to x. In pracƟce,
it is not hard, but it oŌen requires a bit of algebra. We demonstrate this in an
example.

Example 6 Finding the second derivaƟve

Given x2 + y2 = 1, find
d2y
dx2

= y ′′.

SÊ½çã®ÊÄ We found that y ′ = dy
dx = −x/y in Example 5. To find y ′′, we

Notes:
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Chapter 2 DerivaƟves

apply implicit differenƟaƟon to y ′.

y ′′ =
d
dx
(
y ′
)

=
d
dx

(
−x
y

)
now use the QuoƟent Rule

= −y(1)− x(y ′)
y2

replace y ′ with−x/y

= −y− x(−x/y)
y2

= −y2 + x2

y3
, since we were given x2 + y2 = 1

= − 1
y3
.

We can see that y ′′ > 0 when y < 0 and y ′′ < 0 when y > 0. In SecƟon 3.4, we
will see how this relates to the shape of the graph.

Implicit differenƟaƟon proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of funcƟons.

In this chapter we have defined the derivaƟve, given rules to facilitate its
computaƟon, and given the derivaƟves of a number of standard funcƟons. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

Notes:
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2.6 Implicit DifferenƟaƟon

Theorem 21 Glossary of DerivaƟves of Elementary FuncƟons
Let u and v be differenƟable funcƟons, and let c and n be real numbers,
n ̸= 0.

1. d
dx

(
cu
)
= cu′

3. d
dx

(
u · v

)
= uv′ + u′v

5. d
dx

(
u(v)

)
= u′(v)v′

7. d
dx

(
c
)
= 0

9. d
dx

(
ln x
)
= 1

x

11. d
dx

(
sin x

)
= cos x

13. d
dx

(
tan x

)
= sec2 x

15. d
dx

(
sec x

)
= sec x tan x

2. d
dx

(
u± v

)
= u′ ± v′

4. d
dx

( u
v

)
= u′v−uv′

v2

6. d
dx

(
xn
)
= nxn−1

8. d
dx

(
x
)
= 1

10. d
dx

(
ex
)
= ex

12. d
dx

(
cos x

)
= − sin x

14. d
dx

(
cot x

)
= − csc2 x

16. d
dx

(
csc x

)
= − csc x cot x

Notes:
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Exercises 2.6
Terms and Concepts

1. In your ownwords, explain the difference between implicit
funcƟons and explicit funcƟons.

2. Implicit differenƟaƟon is based on what other differenƟa-
Ɵon rule?

3. T/F: Implicit differenƟaƟon can be used to find the deriva-
Ɵve of y =

√
x.

4. T/F: Implicit differenƟaƟon can be used to find the deriva-
Ɵve of y = x3/4.

Problems

In Exercises 5–21, find dy
dx

using implicit differenƟaƟon.

5. x4 + y2 + y = 7

6. x2/5 + y2/5 = 1

7. cos x+ sin y = 1

8. x
y
= 10

9. y
x
= 10

10. x2 tan y = 50

11. (3x2 + 2y3)4 = 2

12. (y2 + 2y− x)2 = 200

13. x2 + y
x+ y2

= 17

14. sin(x) + y
cos(y) + x

= 1

15. ln(x2 + y2) = e

16. ln(x2 + xy+ y2) = 1

17. xex = yey

18. y sin(x3) = x sin(y3)

19. √xy = 1+ x2y

20. x2y− y2x = 1

21. x2 + y2 + xy = 7

22. Show that dy
dx

is the same for each of the following implic-
itly defined funcƟons.

(a) xy = 1

(b) x2y2 = 1

(c) sin(xy) = 1

(d) ln(xy) = 1

In Exercises 23–28, find the equaƟon of the tangent line to the
graph of the implicitly defined funcƟon at the indicated points.
As a visual aid, each funcƟon is graphed.

23. x2/5 + y2/5 = 1

(a) At (1, 0).

(b) At (0.1, 0.281) (which does not exactly lie on the
curve, but is very close).

−1 1

−1

−0.5

0.5

1

(0.1, 0.281)

x

y

24. x4 + y4 = 1

(a) At (1, 0).

(b) At (
√
0.6,

√
0.8).

(c) At (0, 1).

−1 1

−1

−0.5

0.5

1

(
√
0.6,

√
0.8)

x

y

25. (x2 + y2 − 4)3 = 108y2

(a) At (0, 4).

(b) At (2,− 4√108).

−5 5

−4

−2

2

4

(2,− 4√108)

x

y

26. (x2 + y2 + x)2 = x2 + y2

(a) At (0, 1).

(b) At
(
−3
4
,
3
√
3

4

)
.

−2 −1

−1

1
(
− 3

4 ,
3
√

3
4

)

x

y
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27. (x− 2)2 + (y− 3)2 = 9

(a) At
(
7
2
,
6+ 3

√
3

2

)
.

(b) At
(
4+ 3

√
3

2
,
3
2

)
.

2 4 6

2

4

6

(
4+3

√
3

2 , 1.5
)

(
3.5, 6+3

√
3

2

)

x

y

28. x2 + 2xy− y2 + x = 2

(a) At (−2, 0).

(b) At (1, 2).

−2 2

−2

2

(−2, 0)

(1, 2)

x

y

In Exercises 29–32, an implicitly defined funcƟon is given. Find
d2y
dx2

. Note: these are the same problems used in Exercises 5 –
8.

29. x4 + y2 + y = 7

30. x2/5 + y2/5 = 1

31. cos x+ sin y = 1

32. x
y
= 10
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Our study of limits led to conƟnuous funcƟons, which is a certain class of func-
Ɵons that behave in a parƟcularly nice way. Limits then gave us an even nicer
class of funcƟons, funcƟons that are differenƟable.

This chapter explores many of the ways we can take advantage of the infor-
maƟon that conƟnuous and differenƟable funcƟons provide.

3.1 Extreme Values
Note: The extreme values of a func-
Ɵon are “y” values, values the func-
Ɵon aƩains, not the input values.

Given any quanƟty described by a funcƟon, we are oŌen interested in the largest
and/or smallest values that quanƟty aƩains. For instance, if a funcƟon describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a funcƟon describes the value of a stock, we might want
to know the highest/lowest values the stock aƩained over the past year. We call
such values extreme values.

DefiniƟon 14 Extreme Values
Let f be defined on an interval I containing c.

1. f(c) is the minimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I.

2. f(c) is themaximum (also, absolute maximum) of f on I if f(c) ≥
f(x) for all x in I.

The maximum and minimum values are the extreme values, or ex-
trema, of f on I.

−2 −1 1 2
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( ) x

y

(a)

−2 −1 1 2
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(b)

−2 −1 1 2

2

4

[ ] x

y

(c)

Figure 3.1: Graphs of funcƟons with and
without extreme values.

Consider Figure 3.1. The funcƟon displayed in (a) has a maximum, but no
minimum, as the interval over which the funcƟon is defined is open. In (b), the
funcƟon has a minimum, but no maximum; there is a disconƟnuity in the “natu-
ral” place for themaximum to occur. Finally, the funcƟon shown in (c) has both a
maximum and a minimum; note that the funcƟon is conƟnuous and the interval
on which it is defined is closed.

It is possible for disconƟnuous funcƟons defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, conƟnuous funcƟons on a closed interval al-
ways have a maximum and minimum value.



Chapter 3 The Graphical Behavior of FuncƟons

Theorem 22 The Extreme Value Theorem
Let f be a conƟnuous funcƟon defined on a closed interval I. Then f has
both a maximum and minimum value on I.

This theoremstates that fhas extremevalues, but it does not offer any advice
about how/where to find these values. The process can seem to be fairly easy, as
the next example illustrates. AŌer the example, we will draw on lessons learned
to form a more general and powerful method for finding extreme values.

Watch the video:
Finding CriƟcal Numbers — Example 2 at
https://youtu.be/3-6bdDXzl9M

Example 1 ApproximaƟng extreme values
Consider f(x) = 2x3−9x2 on I = [−1, 5], as graphed in Figure 3.2. Approximate
the extreme values of f.

−1 5

−20

20

(5, 25)

(3,−27)

(−1,−11)

(0, 0)
x

y

Figure 3.2: A graph of f(x) = 2x3 − 9x2 as
in Example 1.

SÊ½çã®ÊÄ The graph is drawn in such away to draw aƩenƟon to certain
points. It certainly seems that the smallest y value is −27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of I, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than −27. Since the problem asks for an approximaƟon, we
approximate the extreme values to be 25 and−27.

NoƟce how the minimum value came at “the boƩom of a valley,” and the
maximum value came at an endpoint. Also note that while 0 is not an extreme
value, it would be if we narrowed our interval to [−1, 4]. The idea that the point
(0, 0) is the locaƟon of an extreme value for some interval is important, leading
us to a definiƟon.

Notes:
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3.1 Extreme Values

DefiniƟon 15 RelaƟve Minimum and RelaƟve Maximum
Let f be defined on an interval I containing c.

1. If there is an open interval containing c such that f(c) is the mini-
mum value, then f(c) is a relaƟveminimum of f. We also say that
f has a relaƟve minimum at (c, f(c)).

2. If there is an open interval containing c such that f(c) is the max-
imum value, then f(c) is a relaƟve maximum of f. We also say
that f has a relaƟve maximum at (c, f(c)).

The relaƟve maximum and minimum values comprise the relaƟve ex-
trema of f.

Note: The terms local minimum, lo-
cal maximum, and local extrema are
oŌen used as synonyms for relaƟve
minimum, relaƟvemaximum, and rel-
aƟve extrema.

We briefly pracƟce using these definiƟons.

−2 −1 1 2 3

−6

−4

−2

2

4
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x

y

Figure 3.3: A graph of f(x) = (3x4−4x3−
12x2 + 5)/5 as in Example 2.

Example 2 ApproximaƟng relaƟve extrema
Consider f(x) = (3x4− 4x3− 12x2 + 5)/5, as shown in Figure 3.3. Approximate
the relaƟve extrema of f. At each of these points, evaluate f ′.

SÊ½çã®ÊÄ We sƟll do not have the tools to exactly find the relaƟve
extrema, but the graph does allow us to make reasonable approximaƟons. It
seems f has relaƟve minima at x = −1 and x = 2, with values of f(−1) = 0 and
f(2) = −5.4. It also seems that f has a relaƟve maximum at the point (0, 1).

We approximate the relaƟve minima to be 0 and−5.4; we approximate the
relaƟve maximum to be 1.

It is straighƞorward to evaluate f ′(x) = 1
5 (12x

3 − 12x2 − 24x) at x = 0, 1
and 2. In each case, f ′(x) = 0.

1 2

1

2

3

x

y

Figure 3.4: A graph of f(x) = (x−1)2/3+2
as in Example 3.

Example 3 ApproximaƟng relaƟve extrema
Approximate the relaƟve extrema of f(x) = (x− 1)2/3 + 2, shown in Figure 3.4.
At each of these points, evaluate f ′.

SÊ½çã®ÊÄ The figure implies that f does not have any relaƟve maxima,
but has a relaƟve minimum at (1, 2). In fact, the graph suggests that not only
is this point a relaƟve minimum, y = f(1) = 2 is the minimum value of the
funcƟon.

We compute f ′(x) = 2
3 (x− 1)−1/3. When x = 1, f ′ is undefined.

Notes:
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Chapter 3 The Graphical Behavior of FuncƟons

What can we learn from the previous two examples? We were able to vi-
sually approximate relaƟve extrema, and at each such point, the derivaƟve was
either 0 or it was not defined. This observaƟon holds for all funcƟons, leading
to a definiƟon and a theorem.

DefiniƟon 16 CriƟcal Numbers and CriƟcal Points
Let f be defined at c. The value c is a criƟcal number (or criƟcal value)
of f if f ′(c) = 0 or f ′(c) is not defined.

If c is a criƟcal number of f, then the point (c, f(c)) is a criƟcal point of
f.

Theorem 23 Fermat’s Theorem
Let a funcƟon f have a relaƟve extrema at the point (c, f(c)). Then c is
a criƟcal number of f.

It isn’t too hard to see why this should be true. If f ′ is defined at a relaƟve
extreme, then the tangent line must be horizontal. Otherwise, we’d be able to
move along the graph in the direcƟon given by the tangent line to get a more
extreme value.

−1 1

−1

1

x

y

Figure 3.5: A graph of f(x) = x3 which has
a criƟcal value of x = 0, but no relaƟve
extrema.

Be careful to understand that this theorem states “All relaƟve extrema occur
at criƟcal points.” It does not say “All criƟcal numbers produce relaƟve extrema.”
For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is straighƞorward to de-
termine that x = 0 is a criƟcal number of f. However, f has no relaƟve extrema,
as illustrated in Figure 3.5.

Theorem 22 states that a conƟnuous funcƟon on a closed interval will have
absolute extrema, that is, both an absolutemaximumandan absoluteminimum.
These extrema occur either at the endpoints or at criƟcal values in the interval.
We combine these concepts to offer a strategy for finding extrema.

Notes:
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3.1 Extreme Values

Key Idea 4 Finding Extrema on a Closed Interval
Let f be a conƟnuous funcƟon defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the criƟcal numbers of f in (a, b).

3. Evaluate f at each criƟcal number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We pracƟce these ideas in the next examples.

Example 4 Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed in Fig-
ure 3.6(a).

SÊ½çã®ÊÄ We follow the steps outlined in Key Idea 4. We first evaluate
f at the endpoints:

f(0) = 2(0)3 + 3(0)2 − 12(0) = 0 and f(3) = 2(3)3 + 3(3)2 − 12(3) = 45.

Next, we find the criƟcal values of f on [0, 3]. We see that f ′(x) = 6x2+6x−12 =
6(x + 2)(x − 1); therefore the criƟcal values of f are x = −2 and x = 1. Since
x = −2 does not lie in the interval [0, 3], we ignore it. EvaluaƟng f at the only
criƟcal number in our interval gives: f(1) = 2(1)3 + 3(1)2 − 12(1) = −7.

1 2 3

20

40

x

y

(a)
x f(x)

0 0
1 −7
3 45

(b)

Figure 3.6: A graph and table of extreme
values of f(x) = 2x3 + 3x2 − 12x on [0, 3]
as in Example 4.

The table in Figure 3.6(b) gives f evaluated at the “important” x values in
[0, 3]. We can easily see the maximum and minimum values of f: the maximum
value is 45 and the minimum value is−7.

Note that all this was done without the aid of a graph; this work followed an
analyƟc algorithm and did not depend on any visualizaƟon. Figure 3.6(a) shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We pracƟce again.

Example 5 Finding extreme values
Find the maximum and minimum values of f on [−4, 2], where

f(x) =

{
(x− 1)2 x ≤ 0
x+ 1 x > 0

.
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Chapter 3 The Graphical Behavior of FuncƟons

SÊ½çã®ÊÄ Here f is piecewise–defined, but we can sƟll apply Key Idea 4
because it is conƟnuous. EvaluaƟng f at the endpoints gives:

x f(x)

−4 25
0 1
2 3
(a)

−4 −2 2

10

20

x

y

(b)

Figure 3.7: A table of extreme values and
graph of f(x) on [−4, 2] as in Example 5.

f(−4) = (−4− 1)2 = (−5)2 = 25 and f(2) = 2+ 1 = 3.

We now find the criƟcal numbers of f. We have to define f ′ in a piecewise
manner; it is

f ′(x) =

{
2(x− 1) x < 0
1 x > 0

.

Note that while f is defined for all of [−4, 2], f ′ is not, as the derivaƟve of f does
not exist when x = 0. (From the leŌ, the derivaƟve approaches −2; from the
right the derivaƟve is 1.) Thus one criƟcal number of f is x = 0.

We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0, f ′(x) is
also never 0. (We may be tempted to say that f ′(x) = 0 when x = 1. However,
this is nonsensical, for we only consider f ′(x) = 2(x− 1)when x < 0, so we will
ignore a soluƟon that says x = 1.)

So we have three important x values to consider: x = −4, 2 and 0. We have
already evaluated the first two, and f(0) = (0 − 1)2 = (−1)2 = 1. CollecƟng
these values into Figure 3.7(a), we see that the absolute minimum of f is 1 and
the absolute maximum of f is 25. Our answer is confirmed by the graph of f in
Figure 3.7(b).

x f(x)

−2 −0.65
−
√
π −1

0 1√
π −1
2 −0.65

(a)

−2 −1 1 2

−1

−0.5

0.5

1

x

y

(b)

Figure 3.8: A table of extreme values and
graph of f(x) = cos(x2) on [−2, 2] in Ex-
ample 6.

Example 6 Finding extreme values
Find the extrema of f(x) = cos(x2) on [−2, 2].

SÊ½çã®ÊÄ We again use Key Idea 4. EvaluaƟng f at the endpoints of
the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536.We now find the criƟcal
values of f.

Applying the Chain Rule, we find f ′(x) = −2x sin(x2). Set f ′(x) = 0 and
solve for x to find the criƟcal values of f.

We have f ′(x) = 0 when x = 0 and when sin(x2) = 0. In general, sin t = 0
when t = . . . − 2π,−π, 0, π, . . . Thus sin(x2) = 0 when x2 = 0, π, 2π, . . . (x2
is always posiƟve so we ignore −π, etc.) So sin(x2) = 0 when x = 0, ±

√
π,

±
√
2π, . . . . The only values to fall in the given interval of [−2, 2] are 0 and

±
√
π, approximately±1.77.
We again construct a table of important values in Figure 3.8(a). In this ex-

ample we have 5 values to consider: x = 0,±2,±
√
π.

From the table it is clear that the maximum value of f on [−2, 2] is 1; the
minimum value is−1. The graph in Figure 3.8(b) confirms our results.

We consider one more example.
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3.1 Extreme Values

Example 7 Finding extreme values
Find the extreme values of f(x) =

√
1− x2.

SÊ½çã®ÊÄ A closed interval is not given, so we find the extreme values
of f on its domain. This f is defined whenever 1 − x2 ≥ 0; thus the domain of f
is [−1, 1]. EvaluaƟng f at either endpoint returns 0.

−1 1

1

x

y

(a)
x f(x)

−1 0
0 1
1 0
(b)

Figure 3.9: A graph and table of extrema
of f(x) =

√
1− x2 on [−1, 1] as in Exam-

ple 7.

Using the Chain Rule, we find f ′(x) =
−x√
1− x2

. The criƟcal points of f are

found when f ′(x) = 0 or when f ′ is undefined. It is straighƞorward to find that
f ′(x) = 0 when x = 0, and f ′ is undefined when x = ±1, the endpoints of the
interval. The table of important values is given in Figure 3.9(b). The maximum
value is 1, and the minimum value is 0.

Note: We implicitly found the deriva-
Ɵve of x2 + y2 = 1, the unit circle,
in Example 2.6.5 as dy

dx = −x/y. In
Example 7, half of the unit circle is
given as y = f(x) =

√
1− x2. We

found f ′(x) = −x√
1−x2 . Recognize that

the denominator of this fracƟon is y;
that is, we again found f ′(x) = dy

dx =
−x/y.

We have seen that conƟnuous funcƟons on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next secƟon, we further our study of the informaƟonwe can
glean from “nice” funcƟons with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a funcƟon (as we did at the beginning
of Chapter 2). We will see that differenƟable funcƟons always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.
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149



Exercises 3.1
Terms and Concepts
1. Describe what an “extreme value” of a funcƟon is in your

own words.
2. Sketch the graph of a funcƟon f on (−1, 1) that has both a

maximum and minimum value.
3. Describe the difference between absolute and relaƟve

maxima in your own words.
4. Sketch the graph of a funcƟon fwhere f has a relaƟve max-

imum at x = 1 and f ′(1) is undefined.
5. T/F: If c is a criƟcal value of a funcƟon f, then f has either a

relaƟve maximum or relaƟve minimum at x = c.

Problems
In Exercises 6–7, idenƟfy each of themarked points as being an
absolute maximum or minimum, a relaƟve maximum or mini-
mum, or none of the above. (A point could bemore than one.)

6.

2 4 6

−2

2

A

D

B

C
E

F

G

x

y

7.
2 4

−2

2

A

B

C

D

E

x

y

8.
(a) Sketch the graph of a funcƟon that has a local mini-

mum at 3 and is differenƟable at 3.

(b) Sketch the graph of a funcƟon that has a local mini-
mum at 3 and is conƟnuous but not differenƟable at
3.

(c) Sketch the graph of a funcƟon that has a local mini-
mum at 3 and is not conƟnuous at 3.

In Exercises 9–15, evaluate f ′(x) at the points indicated in the
graph.

9. f(x) = 2
x2 + 1

−5 5

1

2
(0, 2)

x

y

10. f(x) = x2
√
6− x2

−2 2

2

4

6

(0, 0)

(2, 4
√
2)

x

y

11. f(x) = sin x

2 4 6

−1

1
(π/2, 1)

(3π/2,−1)

x

y

12. f(x) = x2
√
4− x

−2 2 4

5

10

(0, 0)

(
16
5 ,

512
25

√
5

)

(4, 0)
x

y

13. f(x) =

{
x2 x ≤ 0
x5 x > 0

−1 −0.5 0.5 1

−0.5

0.5

1

(0, 0)
x

y

14. f(x) =

{
x2 x ≤ 0
x x > 0

−1 −0.5 0.5 1

−0.5

0.5

1

(0, 0)
x

y
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15. f(x) = (x− 2)2/3

x
+ 1

5 10

2

4

6

(2, 1)

(
6, 1 +

3√2
3

)

x

y

In Exercises 16–25, find the extreme values of the funcƟon on
the given interval.

16. f(x) = x2 + x+ 4 on [−1, 2].

17. f(x) = x3 − 9
2
x2 − 30x+ 3 on [0, 6].

18. f(x) = 3 sin x on [π/4, 2π/3].

19. f(x) = x2
√
4− x2 on [−2, 2].

20. f(x) = x+ 3
x

on [1, 5].

21. f(x) = x2

x2 + 5
on [−3, 5].

22. f(x) = ex cos x on [0, π].

23. f(x) = ex sin x on [0, π].

24. f(x) = ln x
x

on [1, 4].

25. f(x) = x2/3 − x on [0, 2].

26. Show that 4 is a criƟcal number of f(x) = (x− 4)3 + 7 but
f does not have a relaƟve extreme value at 4.

27. A cubic funcƟon is a polynomial of degree 3; that is, it has
the form ax3 + bx2 + cx+ d, where a ̸= 0.

(a) Show that a cubic funcƟon can have 2, 1, or 0 criƟcal
numbers. Give examples and sketches to illustrate
the 3 possibiliƟes.

(b) How many local extreme values can a cubic funcƟon
have?

28. Suppose that a and b are posiƟve numbers. Find the ex-
treme values of f(x) = xa(1− x)b on [0, 1].

Review

29. Find dy
dx

, where x2y− y2x = 1.

30. Find the equaƟon of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

31. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Chapter 3 The Graphical Behavior of FuncƟons

3.2 The Mean Value Theorem
We moƟvate this secƟon with the following quesƟon: Suppose you leave your
house and drive to your friend’s house in a city 100 miles away, compleƟng the
trip in two hours. Is there necessarily a moment during the trip when you are
going 50 miles per hour?

In answering this quesƟon, it is clear that the average speed for the enƟre
trip is 50mph (i.e. 100miles in 2 hours), but the quesƟon is whether or not your
instantaneous speed is ever exactly 50mph. More simply, does your speedome-
ter ever read exactly 50 mph?. Figure 3.10 shows a graphical interpretaƟon of
this quesƟon. The answer, under some very reasonable assumpƟons, is “yes.”

0 0.5 1 1.5 2
0

20

40

60

80

100

Time (hours)

Di
st
an
ce

(m
ile
s)

Figure 3.10: Distance traveled as a func-
Ɵon of Ɵme. Must there be a tangent line
parallel to the average slope?

Let’s now see why this situaƟon is in a calculus text by translaƟng it into
mathemaƟcal symbols.

First assume that the funcƟon y = f(t) gives the distance (in miles) trav-
eled from your home at Ɵme t (in hours) where 0 ≤ t ≤ 2. In parƟcular, this
gives f(0) = 0 and f(2) = 100. The slope of the secant line (average velocity)
connecƟng the starƟng and ending points (0, f(0)) and (2, f(2)) is therefore

∆f
∆t

=
f(2)− f(0)

2− 0
=

100− 0
2

= 50mph.

The slope at any point on the graph itself (instantaneous velocity) is given
by the derivaƟve f ′(t). So, since the answer to the quesƟon above is “yes,” this
means that at some Ɵme during the trip, the derivaƟve takes on the value of 50
mph. Symbolically,

f ′(c) =
f(2)− f(0)

2− 0
= 50

for some Ɵme 0 ≤ c ≤ 2.

How about more generally? Given any funcƟon y = f(x) and a range a ≤
x ≤ b does the value of the derivaƟve at some point between a and b have to
match the slope of the secant line connecƟng the points (a, f(a)) and (b, f(b))?
Or equivalently, does the equaƟon f ′(c) = f(b)−f(a)

b−a have to hold for some a <
c < b?

Let’s look at two funcƟons in an example.

−1 1

2

x

y

(a)

−1 1

0.5

1

x

y

(b)

Figure 3.11: A graph of f1(x) = 1/x2 and
f2(x) = |x| in Example 1.

Example 1 Comparing average and instantaneous rates of change
Consider funcƟons

f1(x) =
1
x2

and f2(x) = |x|

with a = −1 and b = 1 as shown in Figure 3.11(a) and (b), respecƟvely. Both
funcƟons have a value of 1 at a and b. Therefore the slope of the secant line
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3.2 The Mean Value Theorem

connecƟng the end points is 0 in each case. But if you look at the plots of each,
you can see that there are no points on either graph where the tangent lines
have slope zero. Therefore we have found that there is no c in [−1, 1] such that

f ′(c) =
f(1)− f(−1)
1− (−1)

= 0.

Sowhatwent “wrong”? Itmaynot be surprising to find that the disconƟnuity
of f1 and the corner of f2 play a role. If our funcƟons had been conƟnuous and
differenƟable, would we have been able to find that special value c? This is our
moƟvaƟon for the following theorem.

a c b

f(a)

f(b)

secant line

tangent line

x

y

Figure 3.12: A graph of illustraƟng the
Mean Value Theorem of DifferenƟaƟon

Theorem 24 The Mean Value Theorem of DifferenƟaƟon
Let y = f(x) be a conƟnuous funcƟon on the closed interval [a, b] and
differenƟable on the open interval (a, b). There exists a value c, a <
c < b, such that

f ′(c) =
f(b)− f(a)

b− a
.

That is, there is a value c in (a, b) where the instantaneous rate of
change of f at c is equal to the average rate of change of f on [a, b].

Note that the reasons that the funcƟons in Example 1 fail are indeed that
f1 has a disconƟnuity on the interval [−1, 1] and f2 is not differenƟable at the
origin.

We will give a proof of the Mean Value Theorem below. To do so, we use
Rolle’s Theorem, stated here.

Theorem 25 Rolle’s Theorem
Let f be conƟnuous on [a, b] and differenƟable on (a, b), where f(a) =
f(b). There is some c in (a, b) such that f ′(c) = 0.

−1 1 2

−5

5

a bc
x

y

Figure 3.13: A graph of f(x) = x3 − 5x2 +
3x + 5, where f(a) = f(b). Note the ex-
istence of c, where a < c < b, where
f ′(c) = 0.

Consider Figure 3.13 where the graph of a funcƟon f is given, where f(a) =
f(b). It shouldmake intuiƟve sense that if f is differenƟable (and hence, conƟnu-
ous) that there would be a value c in (a, b)where f ′(c) = 0; that is, there would
be a relaƟve maximum or minimum of f in (a, b). Rolle’s Theorem guarantees at
least one; there may be more.
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Chapter 3 The Graphical Behavior of FuncƟons

Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a, b) is 0, and the theorem
guarantees some c where f ′(c) = 0. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

Proof of Rolle’s Theorem
Let f be differenƟable on (a, b) where f(a) = f(b). We consider two cases.

Case 1: Consider the casewhen f is constant on [a, b]; that is, f(x) = f(a) = f(b)
for all x in [a, b]. Then f ′(x) = 0 for all x in [a, b], showing there is at least one
value c in (a, b) where f ′(c) = 0.

Case 2: Nowassume that f is not constant on [a, b]. The ExtremeValue Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at the
endpoints or at a criƟcal value in (a, b). Since f(a) = f(b) and f is not constant, it
is clear that themaximum andminimum cannot both be found at the endpoints.
Assume, without loss of generality, that the maximum of f is not found at the
endpoints. Therefore there is a c in (a, b) such that f(c) is the maximum value
of f. By Theorem 23, cmust be a criƟcal number of f; since f is differenƟable, we
have that f ′(c) = 0, compleƟng the proof of the theorem. □

Example 2 Exactly One Root
Show that f(x) = 8x7 + x3 + 3x+ 2 has exactly one real root.

SÊ½çã®ÊÄ We’ll do this in two steps. The first step is to use the Inter-
mediate Value Theorem to show that there is at least one root. The second step
is to use Rolle’s Theorem to show that there is at most one root. (Because f
is a polynomial, it is conƟnuous and differenƟable, so both of these theorems
apply.)

We can apply the Intermediate Value Theorem on the interval [−1, 0]. Since
f(−1) = −10 < 0 < f(0) = 2, the Intermediate Value Theorem tells us that
there is at least one place in [−1, 0] where f(x) = 0. This means that there is at
least one root, but there may be more in the interval (and there may be more
outside the interval where we haven’t even looked).

We will now use Rolle’s Theorem to show that f has at most one root. Sup-
pose for this paragraph that f had two (or more) roots. Then by Rolle’s Theorem,
there is some c in between the roots so that 0 = f ′(c) = 56x6 + 3x2 + 3. But
this cannot happen, since f ′ is always at least 3.

Therefore, f has at most one root. Combining this with “there is at least
one root”, we see that f has exactly one root. (NoƟce that because both the
Intermediate Value Theorem and Rolle’s Theorem are existenƟal theorems, we
don’t know what the root is, only that it must exist.)
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3.2 The Mean Value Theorem

We will now use Rolle’s Theorem to prove the Mean Value Theorem.

Proof of the Mean Value Theorem
Define the funcƟon

g(x) = f(x)− f(b)− f(a)
b− a

x.

We know g is differenƟable on (a, b) and conƟnuous on [a, b] since f is. We also
see that

g(b)− g(a) = f(b)− f(b)− f(a)
b− a

b− f(a) +
f(b)− f(a)

b− a
a

=
(
f(b)− f(a)

)
− f(b)− f(a)

b− a
(b− a) = 0

which shows that g(a) = g(b). We can then apply Rolle’s theorem to guarantee
the existence of c ∈ (a, b) such that g ′(c) = 0. But note that

0 = g ′(c) = f ′(c)− f(b)− f(a)
b− a

;

hence

f ′(c) =
f(b)− f(a)

b− a
,

which is what we sought to prove. □

Going back to the very beginning of the secƟon, we see that the only as-
sumpƟon we would need about our distance funcƟon f(t) is that it be conƟnu-
ous and differenƟable for t from 0 to 2 hours (both reasonable assumpƟons). By
the Mean Value Theorem, we are guaranteed a Ɵme during the trip where our
instantaneous speed is 50 mph. This fact is used in pracƟce. Some law enforce-
ment agencies monitor traffic speeds while in aircraŌ. They do not measure
speed with radar, but rather by Ɵming individual cars as they pass over lines
painted on the highway whose distances apart are known. The officer is able
to measure the average speed of a car between the painted lines; if that aver-
age speed is greater than the posted speed limit, the officer is assured that the
driver exceeded the speed limit at some Ɵme.

Note that the Mean Value Theorem is an existence theorem. It states that a
special value c exists, but it does not give any indicaƟon about how to find it. It
turns out that whenwe need theMean Value Theorem, existence is all we need.
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Chapter 3 The Graphical Behavior of FuncƟons

Watch the video:
The Mean Value Theorem at
https://youtu.be/xYOrYLq3fE0

Example 3 Using the Mean Value Theorem
Consider f(x) = x3 + 5x+ 5 on [−3, 3]. Find c in [−3, 3] that saƟsfies the Mean
Value Theorem.

SÊ½çã®ÊÄ The average rate of change of f on [−3, 3] is:

f(3)− f(−3)
3− (−3)

=
84
6

= 14.

Wewant to find c such that f ′(c) = 14. We find f ′(x) = 3x2+5. We set this
equal to 14 and solve for x.

f ′(x) = 14
3x2 + 5 = 14

x2 = 3

x = ±
√
3 ≈ ±1.732

−3 −2 −1 1 2 3

−40

−20

20

40

x

y

Figure 3.14: DemonstraƟng the Mean
Value Theorem in Example 3.

We have found 2 values c in [−3, 3] where the instantaneous rate of change
is equal to the average rate of change; the Mean Value Theorem guaranteed at
least one. In Figure 3.14 f is graphedwith a dashed line represenƟng the average
rate of change; the lines tangent to f at x = ±

√
3 are also given. Note how these

lines are parallel (i.e., have the same slope) as the dashed line.

While the Mean Value Theorem has pracƟcal use (for instance, the speed
monitoring applicaƟon menƟoned before), it is mostly used to advance other
theory. We will use it in the next secƟon to relate the shape of a graph to its
derivaƟve.
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Exercises 3.2
Terms and Concepts

1. Explain in your own words what the Mean Value Theorem
states.

2. Explain in your own words what Rolle’s Theorem states.

Problems

In Exercises 3–10, a funcƟon f(x) and interval [a, b] are given.
Check if Rolle’s Theorem can be applied to f on [a, b]; if so, find
c in [a, b] such that f ′(c) = 0.

3. f(x) = 6 on [−1, 1].

4. f(x) = 6x on [−1, 1].

5. f(x) = x2 + x− 6 on [−3, 2].

6. f(x) = x2 + x− 2 on [−3, 2].

7. f(x) = x2 + x on [−2, 2].

8. f(x) = sin x on [π/6, 5π/6].

9. f(x) = cos x on [0, π].

10. f(x) = 1
x2 − 2x+ 1

on [0, 2].

In Exercises 11–19, a funcƟon f(x) and interval [a, b] are given.
Check if the Mean Value Theorem can be applied to f on [a, b];
if so, find a value c in [a, b] guaranteed by theMean Value The-
orem.

11. f(x) = x2 + 3x− 1 on [−2, 2].

12. f(x) = 5x2 − 6x+ 8 on [0, 5].

13. f(x) =
√
9− x2 on [0, 3].

14. f(x) =
√
25− x on [0, 9].

15. f(x) = x2 − 9
x2 − 1

on [0, 2].

16. f(x) = ln x on [1, 5].

17. f(x) = tan x on [−π/4, π/4].

18. f(x) = x3 − 2x2 + x+ 1 on [−2, 2].

19. f(x) = 2x3 − 5x2 + 6x+ 1 on [−5, 2].

20. Suppose that f is conƟnuous on [1, 4] and differenƟable on
(1, 4). If f(1) = 10 and f ′(x) ≥ 2 for 1 ≤ x ≤ 4, how
small can f(4) possibly be?

21. Does there exist a funcƟon f such that f(0) = −1, f(2) = 4,
and f ′(x) ≤ 2 for all x?

22. Show that the equaƟon 1+ 2x+ x3 + 4x5 = 0 has exactly
one real root.

23. Show that a polynomial of degree 3 has at most 3 real
roots.

24.
(a) Suppose that f is differenƟable everywhere and has

2 roots. Show that f ′ has at least one real root.

(b) Suppose that f is twice differenƟable everywhere
and has 3 roots. Show that f ′′ has at least one real
root.

25. Let p, q, and r be constants, and define f(x) = px2+qx+ r.
Show that the Mean Value Theorem applied to f for the
interval [a, b] is always saƟsfied at the midpoint of the in-
terval.

Review
26. Find the extreme values of f(x) = x2 − 3x+ 9 on [−2, 5].

27. Describe the criƟcal points of f(x) = cos x.

28. Describe the criƟcal points of f(x) = tan x.
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Chapter 3 The Graphical Behavior of FuncƟons

3.3 Increasing and Decreasing FuncƟons
Our study of “nice” funcƟons f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this secƟon we begin to study how funcƟons behave between special
points; we begin studying in more detail the shape of their graphs.

1 2

2

4

x

y

Figure 3.15: A graph of a funcƟon f used
to illustrate the concepts of increasing
and decreasing.

We start with an intuiƟve concept. Given the graph in Figure 3.15, where
would you say the funcƟon is increasing? Decreasing? Even though we have
not defined these terms mathemaƟcally, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

DefiniƟon 17 Increasing and Decreasing FuncƟons
Let f be a funcƟon defined on an interval I.

1. f is increasing on I if for every a < b in I, f(a) ≤ f(b).

2. f is decreasing on I if for every a < b in I, f(a) ≥ f(b).

A funcƟon is strictly increasing when a < b in I implies f(a) < f(b),
with a similar definiƟon holding for strictly decreasing.

Informally, a funcƟon is increasing if as x gets larger (i.e., looking leŌ to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such informaƟon should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was acceleraƟng vs. decelerat-
ing). If f describes the populaƟon of a city, we should be interested in when the
populaƟon is growing or declining.

1 2

1

2

a b

(a, f(a))

(b, f(b))

x

y

Figure 3.16: Examining the secant line of
an increasing funcƟon.

To find such intervals, we again consider secant lines. Let f be an increas-
ing, differenƟable funcƟon on an open interval I, such as the one shown in Fig-
ure 3.16, and let a < b be given in I. The secant line on the graph of f from x = a
to x = b is drawn; it has a slope of (f(b)− f(a))/(b− a). But note:

f(b)− f(a)
b− a

⇒ numerator > 0
denominator > 0

⇒ slope of the
secant line> 0

⇒
Average rate of
change of f on
[a, b] is> 0.

We have shownmathemaƟcally whatmay have already been obvious: when
f is increasing, its secant lines will have a posiƟve slope. Now recall the Mean

Notes:
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3.3 Increasing and Decreasing FuncƟons

Value Theorem guarantees that there is a number c, where a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
> 0.

By considering all such secant lines in I, we strongly imply that f ′(x) ≥ 0 on I. A
similar statement can be made for decreasing funcƟons.

Our above logic can be summarized as “If f is increasing, then f ′ is probably
posiƟve.” Theorem26below turns this around by staƟng “If f ′ is posƟve, then f is
increasing.” This leads us to a method for finding when funcƟons are increasing
and decreasing.

Note: Theorem 26 (parts 1 and 2)
also holds if f ′(c) = 0 for a finite
number of values of c in I.

Theorem 26 Test For Increasing/Decreasing FuncƟons
Let f be a conƟnuous funcƟon on [a, b] and differenƟable on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

Let a and b be in I where f ′(a) > 0 and f ′(b) < 0. If f ′ is conƟnuous,
then we can use the Intermediate Value Theorem. Even if f ′ isn’t conƟnuous,
Darboux’s Theorem (which is too advanced to prove here) shows that f ′ has the
Intermediate Value property. Either way, there must be some value c between
a and b where f ′(c) = 0. This leads us to the following method for finding
intervals on which a funcƟon is increasing or decreasing.

Key Idea 5 Finding Intervals on which f is Increasing or Decreasing
Let f be a differenƟable funcƟon on an interval I. To find intervals on
which f is increasing and decreasing:

1. Find the criƟcal values of f. That is, find all c in I where f ′(c) = 0
or f ′ is not defined.

2. Use the criƟcal values to divide I into subintervals.

3. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.
(b) If f ′(p) < 0, then f is decreasing on that subinterval.

Notes:
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Chapter 3 The Graphical Behavior of FuncƟons

Watch the video:
Finding Intervals of Increase/Decrease Local
Max/Mins at
https://youtu.be/-W4d0qFzyQY

We demonstrate using Key Idea 5 in the following example.

Example 1 Finding intervals of increasing/decreasing
Let f(x) = x3 + x2 − x+ 1. Find intervals on which f is increasing or decreasing.

SÊ½çã®ÊÄ Using Key Idea 5, we first find the criƟcal values of f. We
have f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), so f ′(x) = 0 when x = −1 and
when x = 1/3. We see that f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
Ɵre domain of f which is (−∞,∞). We thus break the whole real line into
three subintervals based on the two criƟcal values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in the following sign chart.

−1 1
3

x
f ′

f

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.

Subinterval 1, (−∞,−1): We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2 + 2(−2)− 1 = 7 > 0. We conclude that f is
increasing on (−∞,−1).
Note we can arrive at the same conclusion without computaƟon. For instance,
we could choose p = −100. The first term in f ′(−100), i.e., 3(−100)2 is clearly
posiƟve and very large. The other terms are small in comparison, so we know
f ′(−100) > 0. All we need is the sign.

Subinterval 2, (−1, 1/3): We pick p = 0 since that value seems easy to deal
with and note that f ′(0) = −1 < 0. We conclude f is decreasing on (−1, 1/3).

Notes:
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3.3 Increasing and Decreasing FuncƟons

Subinterval 3, (1/3,∞): Pick an arbitrarily large value for p > 1/3 and note
that f ′(p) = 3p2 + 2p − 1 > 0. We conclude that f is increasing on (1/3,∞)
and use all of our informaƟon to complete our sign chart.

−1 1
3

x
f ′ + − +

f incr decr incr

−2 −1 1 2

5

10

1/3

f ′(x)

f(x)

x

y

Figure 3.17: A graph of f(x) in Exam-
ple 1, showing where f is increasing and
decreasing.

Wecan verify our calculaƟons by considering Figure 3.17, where f is graphed.
The graph also presents f ′; note how f ′ > 0 when f is increasing and f ′ < 0
when f is decreasing.

One is jusƟfied in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding criƟcal values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relaƟonship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the criƟcal points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f ′ is straighƞorward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has opƟons for finding needed informaƟon. We are
working to develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. SoluƟons are tractable only through the use of computers to do many
calculaƟons for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a funcƟon to a computer and have it return maximum and
minimum values, intervals on which the funcƟon is increasing and decreasing,
the locaƟons of relaƟve maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

Notes:

161



Chapter 3 The Graphical Behavior of FuncƟons

In SecƟon 3.1 we learned the definiƟon of relaƟve maxima and minima and
found that they occur at criƟcal points. We are now learning that funcƟons can
switch from increasing to decreasing (and vice–versa) at criƟcal points. This new
understanding of increasing and decreasing creates a greatmethod of determin-
ing whether a criƟcal point corresponds to a maximum, minimum, or neither.
Imagine a funcƟon increasing unƟl a criƟcal point at x = c, aŌer which it de-
creases. A quick sketch helps confirm that f(c) must be a relaƟve maximum.
A similar statement can be made for relaƟve minimums, see Figure 3.18. We
formalize this concept in a theorem.

c
c

Case 1 Case 2

c c

Case 3 Case 4

Figure 3.18: The four cases of Theorem27

Theorem 27 First DerivaƟve Test
Let f be differenƟable on I and let c be a criƟcal number in I.

1. If the sign of f ′ switches from posiƟve to negaƟve at c, then f(c)
is a relaƟve maximum of f.

2. If the sign of f ′ switches from negaƟve to posiƟve at c, then f(c)
is a relaƟve minimum of f.

3. If the sign of f ′ is posiƟve before and aŌer c, then f(c) is not a
relaƟve extrema of f.

4. If the sign of f ′ is negaƟve before and aŌer c, then f(c) is not a
relaƟve extrema of f.

Example 2 Using the First DerivaƟve Test
Find the intervals on which f is increasing and decreasing, and use the First
DerivaƟve Test to determine the relaƟve extrema of f, where

f(x) =
x2 + 3
x− 1

.

SÊ½çã®ÊÄ We start by noƟng the domain of f: (−∞, 1) ∪ (1,∞). Key
Idea 5 describes how to find intervals where f is increasing and decreasingwhen
the domain of f is an interval. Since the domain of f in this example is the union
of two intervals, we apply the techniques of Key Idea 5 to both intervals of the
domain of f.

Since f is not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a criƟcal value of
f, but we will include it in our list of criƟcal values that we find next.

Notes:
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3.3 Increasing and Decreasing FuncƟons

Using the QuoƟent Rule, we find

f ′(x) =
x2 − 2x− 3
(x− 1)2

.

We need to find the criƟcal values of f; we want to know when f ′(x) = 0 and
when f ′ is not defined. That laƩer is straighƞorward: when the denominator
of f ′(x) is 0, f ′ is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f ′(x) = 0 when the numerator of f ′(x) is 0. That occurs when x2− 2x− 3 =
(x− 3)(x+ 1) = 0; i.e., when x = −1, 3.

We have found that f has two criƟcal numbers, x = −1, 3, and at x = 1
something important might also happen. These three numbers divide the real
number line into 4 subintervals:

(−∞,−1), (−1, 1), (1, 3) and (3,∞).

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
complicated computaƟons; noƟce that the denominator of f ′ is always posiƟve
so we can ignore it during our work.

Interval 1, (−∞,−1): Choosing a very small number (i.e., a negaƟve number
with a large magnitude) p returns p2 − 2p − 3 in the numerator of f ′; that will
be posiƟve. Hence f is increasing on (−∞,−1).

Interval 2, (−1, 1): Choosing 0 seems simple: f ′(0) = −3 < 0. We conclude
f is decreasing on (−1, 1).

Interval 3, (1, 3): Choosing 2 seems simple: f ′(2) = −3 < 0. Again, f is
decreasing.

Interval 4, (3,∞): Choosing a very large number p from this subinterval will
give a posiƟve numerator and (of course) a posiƟve denominator. So f is increas-
ing on (3,∞).

In summary, f is increasing on (−∞,−1) and (3,∞) and is decreasing on
(−1, 1) and (1, 3). Since at x = −1, the sign of f ′ switched from posiƟve to
negaƟve, Theorem 27 states that f(−1) is a relaƟve maximum of f. At x = 3, the
sign of f ′ switched fromnegaƟve to posiƟve,meaning f(3) is a relaƟveminimum.
At x = 1, f is not defined, so there is no relaƟve extrema at x = 1.

Notes:
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−1 1 3
x

f ′ + − − +

f incr max decr U decr min incr

Note: In our sign charts, we will
use “U” to indicate that something is
undefined.

−4 −2 2 4

−20

−10

10

20 f(x)

f ′(x)
x

y

Figure 3.19: A graph of f(x) in Exam-
ple 2, showing where f is increasing and
decreasing.

This is summarized in the number line shown above. Also, Figure 3.19 shows
a graph of f, confirming our calculaƟons. This figure also shows f ′, again demon-
straƟng that f is increasing when f ′ > 0 and decreasing when f ′ < 0.

One is oŌen tempted to think that funcƟons always alternate “increasing,
decreasing, increasing, decreasing,. . .” around criƟcal values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was not
technically a criƟcal value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = 1.”

Example 3 Using the First DerivaƟve Test
Find the intervals on which f(x) = x8/3− 4x2/3 is increasing and decreasing and
idenƟfy the relaƟve extrema.

SÊ½çã®ÊÄ We again start with taking derivaƟves. Since we know we
want to solve f ′(x) = 0, we will do some algebra aŌer taking derivaƟves.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8
3
x

5
3 − 8

3
x−

1
3

=
8
3
x−

1
3

(
x

6
3 − 1

)
=

8
3
x−

1
3 (x2 − 1)

=
8
3
x−

1
3 (x− 1)(x+ 1).

This derivaƟon of f ′ shows that f ′(x) = 0 when x = ±1 and f ′ is not defined
when x = 0. Thus we have 3 criƟcal values, breaking the number line into 4
subintervals: (−∞,−1), (−1, 0), (0, 1), and (1∞).

Interval 1, (∞,−1): We choose p = −2; we can easily verify that f ′(−2) < 0.
So f is decreasing on (−∞,−1).

Interval 2, (−1, 0): Choose p = −1/2. Once more we pracƟce finding the sign
of f ′(p) without compuƟng an actual value. We have f ′(p) = (8/3)p−1/3(p −
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1)(p+ 1); find the sign of each of the three terms.

f ′(p) =
8
3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “negaƟve × negaƟve × posiƟve” giving a posiƟve number; f is in-
creasing on (−1, 0).

Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

f ′(p) =
8
3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have 2 posiƟve factors and one negaƟve factor; f ′(p) < 0 and so f is de-
creasing on (0, 1).

Interval 4, (1,∞): Similar work to that done for the other three intervals shows
that f ′(x) > 0 on (1,∞), so f is increasing on this interval. We can now put all
this informaƟon into a chart.

−1 0 1
x

f ′ − + − +

f decr min incr max decr min incr

−2 −1 1 2−3 3

5

10

f(x)
f ′(x)

x

y

Figure 3.20: A graph of f(x) in Exam-
ple 3, showing where f is increasing and
decreasing.

We conclude by staƟng that f is increasing on (−1, 0) and (1,∞) and de-
creasing on (−∞,−1) and (0, 1). The sign of f ′ changes from negaƟve to posi-
Ɵve around x = −1 and x = 1, meaning by Theorem 27 that f(−1) and f(1) are
relaƟveminima of f. As the sign of f ′ changes from posiƟve to negaƟve at x = 0,
we have a relaƟve maximum at f(0). Figure 3.20 shows a graph of f, confirming
our result. We also graph f ′, highlighƟng once more that f is increasing when
f ′ > 0 and is decreasing when f ′ < 0.

We examine one more example.

Example 4 Using the First DerivaƟve Test with Trigonometry
Find the intervals on which f(θ) = cos θ − cos2 θ is increasing and decreasing
and find the relaƟve extrema on the interval [0, 2π].

SÊ½çã®ÊÄ We see that f ′(θ) = − sin θ+ 2 cos θ sin θ = sin θ(2 cos θ−
1). Therefore, f ′(θ) = 0 when θ = 0, π

3 , π,
5π
3 , 2π. This breaks our number line

into four intervals.
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Interval 1, (0, π
3 ): We choose θ = π

6 , and see that sin θ and 2 cos θ−1 are both
posiƟve. Therefore, f ′ > 0.

Interval 2, ( π3 , π): When θ = π
2 , sin θ is posiƟve, but 2 cos θ − 1 is negaƟve.

Therefore, f ′ < 0.

Interval 3, (π, 5π3 ): When θ = 3π
2 , sin θ and 2 cos θ−1 are both negaƟve. There-

fore, f ′ > 0.

Interval 4, ( 5π3 , 2π): When θ = 5π
6 , sin θ < 0 and 2 cos θ−1 > 0 so that f ′ < 0.

We summarize this informaƟon in a chart.

0 π
3 π 5π

3 2π
x
f ′ + − + −

f incr max decr min incr max decr

Thismeans that f is increasing on (0, π
3 ) and (π,

5π
3 ) and decreasing on (

π
3 , π)

and ( 5π3 , 2π), so that the relaƟve maxima are f( π3 ) and f( 5π3 ) and the relaƟve
minimum is f(π). (The values f(0) and f(2π) would also be relaƟve minima, but
relaƟve extrema are not allowed to occur at the endpoints of an interval.)

We have seen how the first derivaƟve of a funcƟon helps determine when
the funcƟon is going “up” or “down.” In the next secƟon, we will see how the
second derivaƟve helps determine how the graph of a funcƟon curves.
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Exercises 3.3
Terms and Concepts

1. In your ownwords describe what it means for a funcƟon to
be increasing.

2. What does a decreasing funcƟon “look like”?

3. Sketch a graph of a funcƟon on [0, 2] that is increasing but
not strictly increasing.

4. Give an example of a funcƟon describing a situaƟon where
it is “bad” to be increasing and “good” to be decreasing.

5. A funcƟon f has derivaƟve f ′(x) = (sin x+ 2)ex
2+1, where

f ′(x) > 1 for all x. Is f increasing, decreasing, or can we
not tell from the given informaƟon?

Problems

6. Given the graph of f, idenƟfy the intervals of increasing and
decreasing as well as the x coordinates of the relaƟve ex-
trema.

−4 −2 2 4

−20

20

x

y

7. Given the graph of f, idenƟfy the intervals of increasing and
decreasing as well as the x coordinates of the relaƟve ex-
trema.

π
3

2π
3

π 4π
3

5π
3

2π

1

2

x

y

8. Given the graph of f ′, idenƟfy the intervals of increasing
and decreasing as well as the x coordinates of the relaƟve
extrema.

−2 2

−4

−2

2

4

x

y

9. Given the graph of f ′, idenƟfy the intervals of increasing
and decreasing as well as the x coordinates of the relaƟve
extrema.

−1 1

−1

1

2

x

y

In Exercises 10–17, a funcƟon f(x) is given.
(a) Compute f ′(x).
(b) Graph f and f ′ on the same axes (using technology is

permiƩed) and verify Theorem 26.

10. f(x) = 2x+ 3
11. f(x) = x2 − 3x+ 5
12. f(x) = cos x
13. f(x) = tan x
14. f(x) = x3 − 5x2 + 7x− 1
15. f(x) = 2x3 − x2 + x− 1
16. f(x) = x4 − 5x2 + 4

17. f(x) = 1
x2 + 1

In Exercises 18–38, a funcƟon f(x) is given.
(a) Give the domain of f.
(b) Find the criƟcal numbers of f.
(c) Create a number line to determine the intervals on

which f is increasing and decreasing.
(d) Use the First DerivaƟve Test to determine whether each

criƟcal point is a relaƟve maximum, minimum, or nei-
ther.

18. f(x) = x2 + 2x− 3
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19. f(x) = x3 + 3x2 + 3
20. f(x) = 2x3 + x2 − x+ 3
21. f(x) = x3 − 3x2 + 3x− 1

22. f(x) = 1
x2 − 2x+ 2

23. f(x) = x2 − 4
x2 − 1

24. f(x) = x
x2 − 2x− 8

25. f(x) = (x− 2)2/3

x
26. f(x) = sin x cos x on (−π, π).
27. f(x) = x5 − 5x
28. f(x) = x− 2 sin x on 0 ≤ x ≤ 3π
29. f(x) = cos2 x− 2 sin x on 0 ≤ x ≤ 2π
30. f(x) = x

√
x− 3

31. f(x) = (x2 − 1)3

32. f(x) = x1/3(x+ 4)

33. f(θ) = 2 cos θ + cos2 θ on [0, 2π]

34. f(x) = 2
√
x− 4x2

35. f(x) = 5x2/3 − 2x5/3

36. f(x) = 1
2 x

4 − 4x2 + 3

37. f(x) = sin3 x on [0, 2π]

38. f(x) = (x+ 1)5 − 5x− 2

Review

39. Consider f(x) = x2 − 3x+ 5 on [−1, 2]; find c guaranteed
by the Mean Value Theorem.

40. Consider f(x) = sin x on [−π/2, π/2]; find c guaranteed
by the Mean Value Theorem.
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3.4 Concavity and the Second DerivaƟve
Our study of “nice” funcƟons conƟnues. The previous secƟon showed how the
first derivaƟve of a funcƟon, f ′, can relay important informaƟon about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its derivaƟve, namely f ′′, which is the
second derivaƟve of f. When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′ is
decreasing. As with f, f ′ has relaƟve maxima and minima where f ′′ = 0 or is
undefined.

This secƟon explores how knowing informaƟon about f ′′ gives informaƟon
about f.

Concavity
We begin with a definiƟon, then explore its meaning.

Note: We oŌen state that “f is con-
cave up” instead of “the graph of f is
concave up” for simplicity.

DefiniƟon 18 Concave Up and Concave Down
Let f be differenƟable on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.
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Figure 3.21: A funcƟon f with a graph
that is (a) concave up and (b) concave
down. NoƟce how the slopes of the tan-
gent lines, when looking from leŌ to right,
are (a) increasing and (b) decreasing.

Geometrically, a funcƟon is concave up if its graph lies above its tangent lines,
so that it curves upward. A funcƟon is concave down if its graph lies below its
tangent lines, so that it curves downward.

The graph of a funcƟon f is concave up when f ′ is increasing. That means as
one looks at a concave up graph from leŌ to right, the slopes of the tangent lines
will be increasing. Consider Figure 3.21(a), where a concave up graph is shown
along with some tangent lines. NoƟce how the tangent line on the leŌ is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a funcƟon is decreasing and concave up, then its rate of decrease is slow-
ing; it is “leveling off.” If the funcƟon is increasing and concave up, then the rate
of increase is increasing. The funcƟon is increasing at a faster and faster rate.

Now consider a funcƟon which is concave down. We essenƟally repeat the
above paragraphs with slight variaƟon.

The graph of a funcƟon f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from leŌ to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.21(b), where a concave down graph
is shown along with some tangent lines. NoƟce how the tangent line on the leŌ
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Chapter 3 The Graphical Behavior of FuncƟons

is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a funcƟon is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the funcƟon is decreasing and concave down, then the
rate of decrease is decreasing. The funcƟon is decreasing at a faster and faster
rate.

Note: A mnemonic for remember-
ing what concave up/down means is:
“Concave up is like a cup; concave
down is like a frown.” It is admiƩedly
terrible, but it works.

Our definiƟon of concave up and concave down is given in terms of when
the first derivaƟve is increasing or decreasing. We can apply the results of the
previous secƟon and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > 0, etc.

Theorem 28 Test for Concavity
Let f be twice differenƟable on an interval I. The graph of f is concave
up if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.

If knowing where a graph is concave up/down is important, it makes sense
that the placeswhere the graph changes fromone to the other is also important.
This leads us to a definiƟon.

DefiniƟon 19 Point of InflecƟon
A point of inflecƟon is a point on the graph of f at which the concavity
of f changes.

Figure 3.22 shows a graph of a funcƟon with inflecƟon points labeled.
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Figure 3.22: A graph of a funcƟon with
its inflecƟon points marked. The inter-
vals where concave up/down are also in-
dicated.

If the concavity of f changes at a point (c, f(c)), then f ′ is changing from
increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from posiƟve to negaƟve (or, negaƟve to posiƟve) at
x = c. This leads to the following theorem.

Theorem 29 Points of InflecƟon
If (c, f(c)) is a point of inflecƟon on the graph of f, then either f ′′ = 0
or f ′′ is not defined at c.

We have idenƟfied the concepts of concavity and points of inflecƟon. It is
now Ɵme to pracƟce using these concepts; given a funcƟon, we should be able
to find its points of inflecƟon and idenƟfy intervals on which it is concave up or
down. We do so in the following examples.
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3.4 Concavity and the Second DerivaƟve

Watch the video:
Finding Local Maximums/Minimums — Second
DerivaƟve Test at
https://youtu.be/QtXCIxB6kW8

Example 1 Finding intervals of concave up/down, inflecƟon points
Let f(x) = x3 − 3x+ 1. Find the inflecƟon points of f and the intervals on which
it is concave up/down.

SÊ½çã®ÊÄ We start by finding f ′(x) = 3x2 − 3 and f ′′(x) = 6x. To find
the inflecƟon points, we use Theorem 29 and find where f ′′(x) = 0 or where
f ′′ is undefined. We find f ′′ is always defined, and is 0 only when x = 0. So the
point (0, 1) is the only possible point of inflecƟon.
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Figure 3.23: A number line determining
the concavity of f and a graph of f used in
Example 1.

This possible inflecƟon point divides the real line into two intervals, (−∞, 0)
and (0,∞). We use a process similar to the one used in the previous secƟon to
determine increasing/decreasing. Pick any c < 0; f ′′(c) < 0 so f is concave
down on (−∞, 0). Pick any c > 0; f ′′(c) > 0 so f is concave up on (0,∞). Since
the concavity changes at x = 0, the point (0, 1) is an inflecƟon point.

The number line in Figure 3.23(a) illustrates the process of determining con-
cavity (to save space, we will abbreviate “concave down”, “concave up”, and
“inflecƟon point” to “CD”, “CU”, and “IP”, respecƟvely). Figure 3.23(b) shows a
graph of f and f ′′, confirming our results. NoƟce how f is concave down precisely
when f ′′(x) < 0 and concave up when f ′′(x) > 0.

Example 2 Finding intervals of concave up/down, inflecƟon points
Let f(x) = x/(x2 − 1). Find the inflecƟon points of f and the intervals on which
it is concave up/down.

SÊ½çã®ÊÄ The first thing we see is that f itself is not defined at x = ±1,
having a domain of (−∞,−1) ∪ (−1, 1) ∪ (1,∞). Since the domain of f is the
unionof three intervals, itmakes sense that the concavity of f could switch across
intervals. We cannot say that f has points of inflecƟon at x = ±1 as they are not
part of the domain, but we must sƟll consider these x-values to be important
and will include them in our number line.

We need to find f ′ and f ′′. Using the QuoƟent Rule and simplifying, we find

f ′(x) =
−(1+ x2)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.
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To find the possible points of inflecƟon, we seek to findwhere f ′′(x) = 0 and
where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving 2x(x2 + 3) = 0;
we find x = 0. We find that f ′′ is not defined when x = ±1, for then the
denominator of f ′′ is 0 (of course, f is not defined at these points either).

The important x-values at which concavity might switch are x = −1, x = 0
and x = 1, which split the number line into four intervals as shown in our sign
chart below. We determine the concavity on each. Keep in mind that all we are
concerned with is the sign of f ′′ on the interval.

Interval 1, (−∞,−1): Select a number c in this interval with a large magnitude
(for instance, c = −100). The denominator of f ′′(x) will be posiƟve. In the
numerator, the (c2 + 3) will be posiƟve and the 2c term will be negaƟve. Thus
the numerator is negaƟve and f ′′(c) is negaƟve. We conclude f is concave down
on (−∞,−1).

Interval 2, (−1, 0): For any number c in this interval, the term 2c in the numer-
ator will be negaƟve, the term (c2 + 3) in the numerator will be posiƟve, and
the term (c2 − 1)3 in the denominator will be negaƟve. Thus f ′′(c) > 0 and f is
concave up on this interval.

Interval 3, (0, 1): Any number c in this interval will be posiƟve and “small.” Thus
the numerator is posiƟvewhile the denominator is negaƟve. Thus f ′′(c) < 0 and
f is concave down on this interval.

Interval 4, (1,∞): Choose a large value for c. It is evident that f ′′(c) > 0, so
we conclude that f is concave up on (1,∞).
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Figure 3.24: A graph of f(x) and f ′′(x) in
Example 2.
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We conclude that f is concave up on (−1, 0) and (1,∞) and concave down
on (−∞,−1) and (0, 1). There is only one point of inflecƟon, (0, 0), as f is not
defined at x = ±1. Our work is confirmed by the graph of f in Figure 3.24.
NoƟce how f is concave up whenever f ′′ is posiƟve, and concave down when f ′′
is negaƟve.
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3.4 Concavity and the Second DerivaƟve

Recall that relaƟve maxima and minima of f are found at criƟcal points of
f; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the relaƟve maxima and minima of f ′ are found when f ′′(x) = 0 or when f ′′ is
undefined; note that these are the inflecƟon points of f.

What does a “relaƟve maximum of f ′ ”mean? The derivaƟve measures the
rate of change of f; maximizing f ′ means finding where f is increasing the most –
where f has the steepest tangent line. A similar statement can be made for min-
imizing f ′; it corresponds to where f has the steepest negaƟvely–sloped tangent
line.

We uƟlize this concept in the next example.
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Figure 3.25: A graph of S(t) in Example 3,
modeling the sale of a product over Ɵme.

Example 3 Understanding inflecƟon points
The sales of a certain product over a three-year span are modeled by S(t) =
t4 − 8t2 + 20, where t is the Ɵme in years, shown in Figure 3.25. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.

SÊ½çã®ÊÄ We want to maximize the rate of decrease, which is to say,
we want to find where S ′ has a minimum. To do this, we find where S ′′ is 0. We
find S ′(t) = 4t3− 16t and S ′′(t) = 12t2− 16. Seƫng S ′′(t) = 0 and solving, we
get t = 2/

√
3 ≈ 1.16 (we ignore the negaƟve value of t since it does not lie in

the domain of our funcƟon S).
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Figure 3.26: A graph of S(t) in Example 3
along with S ′(t).
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This is both the inflecƟon point and the point of maximum decrease. This
is the point at which things first start looking up for the company. AŌer the
inflecƟon point, it will sƟll take some Ɵme before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S ′(t) is given in Figure 3.26. When S ′(t) < 0, sales are
decreasing; note how at t ≈ 1.16, S ′(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “leveling off.”

Not every criƟcal point corresponds to a relaƟve extrema; f(x) = x3 has a
criƟcal point at (0, 0) but no relaƟve maximum or minimum. Likewise, just be-
cause f ′′(x) = 0 we cannot conclude concavity changes at that point. We were
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Chapter 3 The Graphical Behavior of FuncƟons

careful before to use terminology “possible point of inflecƟon” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 3.27.
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Figure 3.27: A graphof f(x) = x4. Clearly f
is always concave up, despite the fact that
f ′′(x) = 0 when x = 0. It this exam-
ple, the possible point of inflecƟon (0, 0)
is not a point of inflecƟon.

The Second DerivaƟve Test

The first derivaƟve of a funcƟon gave us a test to find if a criƟcal value corre-
sponded to a relaƟve maximum, minimum, or neither. The second derivaƟve
gives us another way to test if a criƟcal point is a local maximum or minimum.
The following theorem officially states something that is intuiƟve: if a criƟcal
value occurs in a region where a funcƟon f is concave up, then that criƟcal value
must correspond to a relaƟve minimum of f, etc. See Figure 3.28 for a visualiza-
Ɵon of this.
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Figure 3.28: DemonstraƟng the fact that
relaƟve maxima occur when the graph is
concave down and relaƟve minima occur
when the graph is concave up.

Theorem 30 The Second DerivaƟve Test
Let c be a criƟcal value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

Note that if f ′′(c) = 0, then the Second DerivaƟve Test is inconclusive. The
Second DerivaƟve Test relates to the First DerivaƟve Test in the following way.
If f ′′(c) > 0, then the graph is concave up at a criƟcal point c and f ′ itself is
growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from negaƟve
to posiƟve at c. This means the funcƟon goes from decreasing to increasing,
indicaƟng a local minimum at c.
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Figure 3.29: A graph of f(x) in Example 4.
The secondderivaƟve is evaluated at each
criƟcal point. When the graph is con-
cave up, the criƟcal point represents a lo-
cal minimum; when the graph is concave
down, the criƟcal point represents a local
maximum.

Example 4 Using the Second DerivaƟve Test
Let f(x) = 100/x+ x. Find the criƟcal points of f and use the Second DerivaƟve
Test to label them as relaƟve maxima or minima.

SÊ½çã®ÊÄ We find f ′(x) = −100/x2 + 1 and f ′′(x) = 200/x3.We set
f ′(x) = 0 and solve for x to find the criƟcal values (note that f ′ is not defined at
x = 0, but neither is f so this is not a criƟcal value.) We find the criƟcal values
are x = ±10. EvaluaƟng f ′′ at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. EvaluaƟng f ′′(−10) = −0.1 < 0, determining a relaƟve maximum
at x = −10. These results are confirmed in Figure 3.29.
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3.4 Concavity and the Second DerivaƟve

We have been learning how the first and second derivaƟves of a funcƟon
relate informaƟon about the graph of that funcƟon. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locaƟons of relaƟve extrema and inflecƟon points. In Chapter 1
we saw how limits explained asymptoƟc behavior. In the next secƟon we com-
bine all of this informaƟon to produce accurate sketches of funcƟons.
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Exercises 3.4
Terms and Concepts

1. Sketch a graph of a funcƟon f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a funcƟon f(x) that is:

(a) Increasing, concave up on (0, 1),

(b) increasing, concave down on (1, 2),

(c) decreasing, concave down on (2, 3) and

(d) increasing, concave down on (3, 4).

3. Is is possible for a funcƟon to be increasing and concave
down on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a funcƟon.

4. Is is possible for a funcƟon to be increasing and concave up
on (0,∞)with a horizontal asymptote of y = 1? If so, give
a sketch of such a funcƟon.

Problems

5. Given the graph of f ′′, idenƟfy the concavity of f and its in-
flecƟon points.
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6. Given the graph of f ′, idenƟfy the concavity of f and its in-
flecƟon points.
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7. Given the graph of f, idenƟfy the concavity of f and its in-
flecƟon points.
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In Exercises 8–18, a funcƟon f(x) is given.

(a) Compute f ′′(x).

(b) Graph f and f ′′ on the same axes (using technology is
permiƩed) and verify Theorem 28.

8. f(x) = −7x+ 3

9. f(x) = −4x2 + 3x− 8

10. f(x) = 4x2 + 3x− 8

11. f(x) = x3 − 3x2 + x− 1

12. f(x) = −x3 + x2 − 2x+ 5

13. f(x) = cos x

14. f(x) = sin x

15. f(x) = tan x

16. f(x) = 1
x2 + 1

17. f(x) = 1
x

18. f(x) = 1
x2

In Exercises 19–37, a funcƟon f(x) is given.

(a) Find the possible points of inflecƟon of f.

(b) Create a number line to determine the intervals on
which f is concave up or concave down.

(c) Find the criƟcal points of f and use the Second Deriva-
Ɵve Test, when possible, to determine the relaƟve ex-
trema.

(d) Find the x values where f ′(x) has a relaƟve maximum
or minimum.

19. f(x) = x2 − 2x+ 1

20. f(x) = −x2 − 5x+ 7

21. f(x) = x3 − x+ 1

22. f(x) = 2x3 − 3x2 + 9x+ 5

23. f(x) = x4

4
+

x3

3
− 2x+ 3

24. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

25. f(x) = x4 − 4x3 + 6x2 − 4x+ 1
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26. f(x) = 1
x2 + 1

27. f(x) = x
x2 − 1

28. f(x) = sin x+ cos x on (−π, π)

29. f(x) = x2ex

30. f(x) = x2 ln x

31. f(x) = e−x2

32. f(x) = x
√
x+ 3

33. f(x) = cos2 x− 2 sin x on (0, 2π)

34. f(x) = x3 − 3x2 − 9x+ 4

35. f(x) = x4 − 2x2 + 3

36. f(x) = 1+ 3x2 − 2x3

37. f(x) =
√
x− 4

√
x
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Chapter 3 The Graphical Behavior of FuncƟons

3.5 Curve Sketching

Wehave been learning howwe can understand the behavior of a funcƟon based
on its first and second derivaƟves. While we have been treaƟng the properƟes
of a funcƟon separately (increasing and decreasing, concave up and concave
down, etc.), we combine themhere to produce an accurate graph of the funcƟon
without ploƫng lots of extraneous points.

Why bother? Graphing uƟliƟes are very accessible, whether on a computer,
a hand–held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not parƟcularly fast – it will require
Ɵme (but it is not hard). So again: why bother?

f ′ > 0, increasing

f ′′ < 0, c. down

f ′ < 0, decreasing

f ′′ < 0, c. down

f ′ < 0,decreasing

f ′′ > 0, c. up

f ′ > 0, increasing

f ′′ > 0, c. up

Figure 3.30: DemonstraƟng the 4 ways
that concavity interacts with increas-
ing/decreasing, along with the relaƟon-
ships with the first and second deriva-
Ɵves.

We are aƩempƟng to understand the behavior of a funcƟon f based on the
informaƟon given by its derivaƟves. While all of a funcƟon’s derivaƟves relay
informaƟon about it, it turns out that “most” of the behavior we care about is
explained by f ′ and f ′′. Understanding the interacƟons between the graph of f
and f ′ and f ′′ is important and is illustrated in Figure 3.30. To gain this under-
standing, onemight argue that all that is needed is to look at lots of graphs. This
is true to a point, but is somewhat similar to staƟng that one understands how
an engine works aŌer looking only at pictures. It is true that the basic ideas will
be conveyed, but “hands–on” access increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of funcƟons and gives a framework for puƫng that
informaƟon together. It is followed by several examples.

Key Idea 6 Curve Sketching
To produce an accurate sketch a given funcƟon f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
enƟre real line then find restricƟons, such as where a denomina-
tor is 0 or where negaƟves appear under the radical.

2. Find the locaƟon of any verƟcal asymptotes of f (usually done in
conjuncƟon with the previous step).

3. Find the x and y-intercepts of f, and any symmetry.

(conƟnued)
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3.5 Curve Sketching

Key Idea 6 Curve Sketching — ConƟnued

4. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behavior of the funcƟon.

5. Find the criƟcal values of f.

6. Find the possible points of inflecƟon of f.

7. Create a number line that includes all criƟcal points, possible
points of inflecƟon, and locaƟons of verƟcal asymptotes. For
each interval created, determine whether f is increasing or de-
creasing, concave up or down.

8. Evaluate f at each criƟcal point and possible point of inflecƟon.
Plot these points on a set of axes. Connect these points with
curves exhibiƟng the proper concavity. Sketch asymptotes and
x and y-intercepts where applicable.

Watch the video:
Summary of Curve Sketching — Example 2, Part 1 of
4 at
https://youtu.be/DMYUsv8ZaoY

Example 1 Curve sketching
Use Key Idea 6 to sketch f(x) = 3x3 − 10x2 + 4x+ 10.

SÊ½çã®ÊÄ We follow the steps outlined in the Key Idea.

1. The domain of f is the enƟre real line; there are no values x for which f(x)
is not defined.

2. There are no verƟcal asymptotes.

3. We see that f(0) = 10, and f does not appear to factor easily (so we skip
finding the roots). It has no symmetry.
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Chapter 3 The Graphical Behavior of FuncƟons

4. We determine the end behavior using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) =∞.

We do not have any horizontal asymptotes.

5. Find the criƟcal values of f. We compute f ′(x) = 9x2 − 20x+ 4 = (9x−
2)(x− 2), so that x = 2

9 , 2.

6. Find the possible points of inflecƟon of f. We see f ′′(x) = 18x − 20, so
that

f ′′(x) = 0⇒ x = 10/9 ≈ 1.111.

7. We place the values x = 2
9 ,

10
9 , 2 on a number line. We mark each subin-

terval as increasing or decreasing, concave up or down, using the tech-
niques used in SecƟons 3.3 and 3.4.
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Figure 3.31: Sketching f in Example 1.
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8. We plot the appropriate points on axes as shown in Figure 3.31(a) and
connect the points with the proper concavity. Our curve crosses the y axis
at y = 10 and crosses the x axis near x = −0.75. In Figure 3.31(b) we
show a graph of f drawn with a computer program, verifying the accuracy
of our sketch.

Example 2 Curve sketching

Sketch f(x) =
x2 − x− 2
x2 − x− 6

.

SÊ½çã®ÊÄ We again follow the steps outlined in Key Idea 6.

1. In determining the domain, we assume it is all real numbers and look for
restricƟons. We find that at x = −2 and x = 3, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −2, 3}.

Notes:
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3.5 Curve Sketching

2. The verƟcal asymptotes of f are at x = −2 and x = 3, the places where f is
undefined. We see that lim

x→−2−
f(x) =∞, lim

x→−2+
f(x) = −∞, lim

x→3−
f(x) =

−∞, and lim
x→3+

f(x) =∞.

3. We see that f(0) = 1
3 and that f(x) = 0when0 = x2−x−2 = (x−2)(x+1)

so that x = −1, 2. There is no symmetry.

4. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and lim
x→∞

f(x) =
1.

5. To find the criƟcal values of f, we first find f ′(x). Using the QuoƟent Rule,
we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4
(x− 3)2(x+ 2)2

.

f ′(x) = 0 when x = 1/2, and f ′ is undefined when x = −2, 3. Since f ′
is undefined only when f is, these are not criƟcal values. The only criƟcal
value is x = 1/2.

6. To find the possible points of inflecƟon, we find f ′′(x), again employing
the QuoƟent Rule:

f ′′(x) =
24x2 − 24x+ 56
(x− 3)3(x+ 2)3

.

Wefind that f ′′(x) is never 0 (seƫng the numerator equal to 0 and solving
for x, we find the only roots to this quadraƟc are imaginary) and f ′′ is
undefined when x = −2, 3. Thus concavity will possibly only change at
x = −2 and x = 3 (although these are not inflecƟon points, since f is not
defined there).

−4 −2 2 4

−5

5

x

y

(a)

−4 −2 2 4

−5

5

x

y

(b)

Figure 3.32: Sketching f in Example 2.

7. We place the values x = 1/2, x = −2 and x = 3 on a number line. We
mark in each interval whether f is increasing or decreasing, concave up
or down. We see that f has a relaƟve maximum at x = 1/2; concavity
changes only at the verƟcal asymptotes.

−2 1
2 3

x
f ′ + + − −

f ′′ + − − +

f incr
CU U

incr
CD max decr

CD U
decr
CU

Notes:
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Chapter 3 The Graphical Behavior of FuncƟons

8. In Figure 3.32(a), we plot the points from the number line on a set of axes
and connect the points with the appropriate concavity. We also show f
crossing the x axis at x = −1 and x = 2. Figure 3.32(b) shows a computer
generated graph of f, which verifies the accuracy of our sketch.

Example 3 Curve sketching

Sketch f(x) =
5(x− 2)(x+ 1)
x2 + 2x+ 4

.

SÊ½çã®ÊÄ We again follow Key Idea 6.

1. We assume that the domain of f is all real numbers and consider restric-
Ɵons. The only restricƟons come when the denominator is 0, but this
never occurs. Therefore the domain of f is all real numbers, R.

2. There are no verƟcal asymptotes.

3. We see that f(0) = −5
2
and that f(x) = 0 when x = −1, 2.

4. We have a horizontal asymptote of y = 5, as

lim
x→±∞

f(x) = lim
x→±∞

5(1− 2
x )(1+

1
x )

1+ 2
x +

4
x2

= 5.

5. We find the criƟcal values of f by seƫng f ′(x) = 0 and solving for x. We
find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2
⇒ f ′(x) = 0 when x = −4, 0.

6. We find the possible points of inflecƟon by solving f ′′(x) = 0 for x. We
find

f ′′(x) = −30x3 + 180x2 − 240
(x2 + 2x+ 4)3

.

The cubic in the numerator does not factor very “nicely.” We instead ap-
proximate the roots at x = −5.759, x = −1.305 and x = 1.064.

7. We place the criƟcal points and possible inflecƟon points on a number
line and mark each interval as increasing/decreasing, concave up/down
appropriately.

Notes:
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−5.8 −4 −1.3 0 1.1
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Figure 3.33: Sketching f in Example 3.

8. In Figure 3.33(a) we plot the significant points from the number line as
well as the two roots of f, x = −1 and x = 2, and connect the points with
the appropriate concavity. Figure 3.33(b) shows a computer generated
graph of f, affirming our results (but the top leŌ was slightly off).

In each of our examples, we found a few, significant points on the graph
of f that corresponded to changes in increasing/decreasing or concavity. We
connected these points with curves, and finished by showing a very accurate,
computer generated graph.

Why are computer graphics so good? It is not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
puƟng than we are. In general, computers graph funcƟons much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connecƟng lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate noƟceable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as
MathemaƟca, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 3.34, a graph of y = sin x is given, generated by MathemaƟca.
The small points represent each of the places MathemaƟca sampled the func-
Ɵon. NoƟce how at the “bends” of sin x, lots of points are used; where sin x
is relaƟvely straight, fewer points are used. (Many points are also used at the
endpoints to ensure the “end behavior” is accurate.)

How doesMathemaƟca know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
derivaƟves of a funcƟon work together to provide a measurement of “curvi-
ness.” MathemaƟca employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this secƟon is not “How to graph a funcƟon when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a funcƟon is largely determined by understanding the behavior of the

Notes:

183



Chapter 3 The Graphical Behavior of FuncƟons

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 3.34: A graph of y = sin x generated byMathemaƟca.

funcƟon at a few key places.” In Example 3, we were able to accurately sketch a
complicated graph using only 5 points and knowledge of asymptotes!

There aremany applicaƟons of our understanding of derivaƟves beyond curve
sketching. The next chapter explores some of these applicaƟons, demonstrat-
ing just a few kinds of problems that can be solved with a basic knowledge of
differenƟaƟon.

Notes:

184



Exercises 3.5
Terms and Concepts
1. Why is sketching curves by hand beneficial even though

technology is readily available?
2. T/F: When sketching graphs of funcƟons, it is useful to find

the criƟcal points.
3. T/F: When sketching graphs of funcƟons, it is useful to find

the possible points of inflecƟon.
4. T/F: When sketching graphs of funcƟons, it is useful to find

the horizontal and verƟcal asymptotes.

Problems
5. Given the graph of f, idenƟfy the concavity of f, its inflec-

Ɵon points, its regions of increasing and decreasing, and its
relaƟve extrema.

−2 2

−4

−2

2

4

x

y

6. Given the graph of f ′, idenƟfy the concavity of f, its inflec-
Ɵon points, its regions of increasing and decreasing, and its
relaƟve extrema.
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−4

−2

2

4

x

y

In Exercises 7–12, pracƟce using Key Idea 6 by applying the
principles to the given funcƟons with familiar graphs.

7. f(x) = 2x+ 4
8. f(x) = −x2 + 1
9. f(x) = sin x

10. f(x) = ex

11. f(x) = 1
x

12. f(x) = 1
x2

In Exercises 13–46, sketch a graph of the given funcƟon using
Key Idea 6. Show all work; check your answer with technology.

13. f(x) = x3 − 2x2 + 4x+ 1
14. f(x) = −x3 + 5x2 − 3x+ 2
15. f(x) = x3 + 3x2 + 3x+ 1
16. f(x) = x3 − x2 − x+ 1
17. f(x) = (x− 2) ln(x− 2)
18. f(x) = (x− 2)2 ln(x− 2)

19. f(x) = x2 − 4
x2

20. f(x) = x2 − 4x+ 3
x2 − 6x+ 8

21. f(x) = x+ sin x on [0, 2π].

22. f(x) = x2 − 2x+ 1
x2 − 6x+ 8

23. f(x) = x
√
x+ 1

24. f(x) = x2ex

25. f(x) = sin x cos x on [−π, π]

26. f(x) = (x− 3)2/3 + 2

27. f(x) = (x− 1)2/3

x

28. f(x) =
√

x
x− 5

29. f(x) = sec x− 2 cos x on [0, 2π].
30. f(x) = x

√
2− x2

31. f(x) = x√
x2 − 1

32. f(x) = x5/3 − 5x2/3

33. f(x) = sin x
2+ cos x

on [0, 2π].

34. f(x) = x
x2 + 3

35. f(x) = 4x2 − 4x+ 1
4x2 − 12x+ 9

Hint: f(x) can be simplified in a variety of ways. Use
whichever simplificaƟon works best for your current task.

36. y =
√
x2 + x− x

37. y = x+ cos x
38. y = x tan x on (− π

2 ,
π
2 )

39. y = sin x+
√
3 cos x on [−2π, 2π]

40. y = csc x− 2 sin x on (0, π)

41. f(x) = 3
x2 + 4

42. f(x) = 3
x2 − 4

43. f(x) = x
x2 + 4

44. f(x) = x
x2 − 4

45. f(x) = x
x− 4

46. f(x) = (x− 1)2

x2 + 1
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In Exercises 47–52, sketch the graph of a funcƟon that saƟsfies
all of the given condiƟons.
47. f ′(0) = f ′(2) = f ′(4) = 0,

f ′(x) > 0 if x < 0 or 2 < x < 4,
f ′(x) < 0 if 0 < x < 2 or x > 4,
f ′′(x) > 0 if 1 < x < 3, f ′′(x) < 0 if x < 1 or x > 4

48. f ′(5) = 0, f ′(x) < 0 when x < 5,
f ′(x) > 0 if x > 5, f ′′(2) = 0, f ′′(8) = 0,
f ′′(x) < 0 if x < 2 or x > 8,
f ′′(x) > 0 if 2 < x < 8

49. f(0) = 0, f ′(−2) = f ′(1) = f ′(9) = 0,
lim

x→∞
f(x) = 0, lim

x→6
f(x) = −∞,

f ′(x) < 0 on (−∞,−2), (1, 6), (9,∞),
f ′(x) > 0 on (−2, 1), (6, 9),
f ′′(x) > 0 on (−∞, 0), (12,∞),
f ′′(x) < 0 on (0, 6), (6, 12)

50. f is odd, f ′(x) < 0 on (0, 2),
f ′(x) > 0 on (2,∞), f ′′(x) > 0 on (0, 3),
f ′′(x) < 0 on (3,∞), lim

x→∞
f(x) = −2

51. concave up on (−∞,−1), (1,∞);
concave down on (−1, 1);
increasing on (−∞, 0); and
decreasing on (0,∞).

52. lim
x→−∞

f(x) = 1, lim
x→3−

f(x) = ∞,

lim
x→∞

f(x) = −1, lim
x→3+

f(x) = −∞;

f ′(x) > 0 on (−∞,−2), (−1, 0), (2, 3), (3,∞);
f ′(x) < 0 on (−2,−1), (0, 2);
f ′′(x) > 0 on (−∞,−3), (1, 3); and
f ′′(x) < 0 on (−3,−1), (−1, 1), (3,∞).

In Exercises 53–55, a funcƟon with the parameters a and b are
given. Describe the criƟcal points and possible points of inflec-
Ɵon of f in terms of a and b.

53. f(x) = a
x2 + b2

54. f(x) = sin(ax+ b)

55. f(x) = (x− a)(x− b)

56. Given x2 + y2 = 1, use implicit differenƟaƟon to find dy
dx

and d2y
dx2

. Use this informaƟon to jusƟfy the sketch of the
unit circle.
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In Chapter 3, we learned how the first and second derivaƟves of a funcƟon influ-
ence its graph. In this chapter we explore other applicaƟons of the derivaƟve.

4.1 Related Rates
When two quanƟƟes are related by an equaƟon, knowing the value of one quan-
Ɵty can determine the value of the other. For instance, the circumference and
radius of a circle are related by C = 2πr; knowing that C = 6π in determines
the radius must be 3 in.

The topic of related rates takes this one step further: knowing the rate
at which one quanƟty is changing can determine the rate at which the other
changes.

Watch the video:
Related Rates #6—Rate atWhich the Circumference
of a Circle is Changing at
https://youtu.be/tZl5h7590go

Note: This secƟon relies heavily on
implicit differenƟaƟon, so referring
back to SecƟon 2.6 may help.

We demonstrate the concepts of related rates through examples.

Example 1 Understanding related rates
The radius of a circle is growing at a rate of 5 in/hr. At what rate is the circum-
ference growing?

SÊ½çã®ÊÄ The circumference and radius of a circle are related by C =
2πr. We are given informaƟon about how the length of r changes with respect
to Ɵme; that is, we are told dr

dt = 5 in/hr. We want to know how the length of C
changes with respect to Ɵme, i.e., we want to know dC

dt .
Implicitly differenƟate both sides of C = 2πr with respect to t:

C = 2πr
d
dt
(
C
)
=

d
dt
(
2πr
)

dC
dt

= 2π
dr
dt
.

https://youtu.be/tZl5h7590go
https://youtu.be/tZl5h7590go
https://youtu.be/tZl5h7590go


Chapter 4 ApplicaƟons of the DerivaƟve

As we know dr
dt = 5 in/hr, we know

dC
dt

= 2π5 = 10π in/hr.

Before we look at another example, we’ll state a few ideas on approaching
these problems.

Key Idea 7 Solving Related Rates Problems

1. Understand the problem. Clearly idenƟfy what quanƟƟes are
given and what are to be found. Make a sketch if helpful.

2. Assign mathemaƟcal notaƟon to all quanƟƟes, including those
that are funcƟons of Ɵme.

3. Create an equaƟon relevant to the context of the problem, using
the informaƟon given.

4. SubsƟtute constant quanƟƟes and if necessary, use the given in-
formaƟon to eliminate other variables.

5. Use the Chain Rule to differenƟate both sides of the equaƟon.

6. SubsƟtute the known quanƟƟes, and solve for the unknown rate.

The important thing to remember is that you must differenƟate before you
subsƟtute varying values. Otherwise, you’ll subsƟtute a constant forwhat should
be a variable, and it’s derivaƟve will be zero. Consider another example.

Example 2 Finding related rates
Water streams out of a faucet at a rate of 2 in3/s onto a flat surface at a constant
rate, forming a circular puddle that is 1/8 in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

SÊ½çã®ÊÄ

1. We can answer this quesƟon two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 2 in3/s, where

volume of puddle = area of circle × depth.

Notes:
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4.1 Related Rates

Since the depth is constant at 1/8 in, the areamust be growing by 16in2/s.
This approach reveals the underlying related–rates principle. Let V and A
represent the Volume and Area of the puddle. We know V = A× 1

8 . Take
the derivaƟve of both sides with respect to t, employing implicit differen-
ƟaƟon.

V =
1
8
A

d
dt
(
V
)
=

d
dt

(
1
8
A
)

dV
dt

=
1
8
dA
dt

As dV
dt = 2, we know 2 = 1

8
dA
dt , and hence dA

dt = 16. Thus the area is
growing by 16 in2/s.

2. To start, we need an equaƟon that relates what we know to the radius.
We know that V = πr2h = π

8 r
2. Implicitly derive both sides with respect

to t:

V =
π

8
r2

d
dt
(
V
)
=

d
dt
(π
8
r2
)

dV
dt

=
π

8
· 2rdr

dt
=

π

4
r
dr
dt

Solving for
dr
dt
, we have

dr
dt

=
dV
dt
π
4 r

=
2
π
4 r

=
8
πr

.

Note how our answer is not a number, but rather a funcƟon of r. In other
words, the rate at which the radius is growing depends on how big the
circle already is. If the circle is very large, adding 2 in3 of water will not
make the circle much bigger at all. If the circle is dime–sized, adding the
sameamount ofwaterwillmake a radical change in the radius of the circle.
In someways, our problemwas (intenƟonally) ill–posed. Weneed to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of 10 in, the radius is growing at a rate of

dr
dt

=
8

10π
=

4
5π
≈ 0.25 in/s.

Notes:

189
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Example 3 Studying related rates
Radar gunsmeasure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “55 mph” means the object is moving
away from the gun at a rate of 55 miles per hour, whereas a measurement of
“−25 mph” would mean that the object is approaching the gun at a rate of 25
miles per hour.

If the radar gun is moving (say, aƩached to a police car) then radar readouts
are only immediately understandable if the gun and the object aremoving along
the same line. If a police officer is traveling 60mph and gets a readout of 15mph,
he knows that the car ahead of him is moving away at a rate of 15 miles an hour,
meaning the car is traveling 75 mph. (This straight–line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

B = 1/2

C

A
=

1/
2

N

E

Officer

Car

Figure 4.1: A sketch of a police car (at bot-
tom) aƩempƟng to measure the speed of
a car (at right) in Example 3.

Suppose an officer is driving due north at 30 mph and sees a car moving due
east, as shown in Figure 4.1. Using his radar gun, he measures a reading of 20
mph. By using landmarks, he believes both he and the other car are about 1/2
mile from the intersecƟon of their two roads.

If the speed limit on the other road is 55 mph, is the other driver speeding?

SÊ½çã®ÊÄ Using the diagram in Figure 4.1, let’s label what we know
about the situaƟon. As both the police officer and other driver are 1/2 mile
from the intersecƟon, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/

√
2 ≈ 0.707.

We know the police officer is traveling at 30 mph; that is, dA
dt = −30. The

reason this rate of change is negaƟve is that A is geƫng smaller; the distance
between the officer and the intersecƟon is shrinking. The radar measurement
is dC

dt = 20. We want to find dB
dt .

We need an equaƟon that relatesB toA and/or C. The Pythagorean Theorem
is a good choice: A2 + B2 = C2. DifferenƟate both sides with respect to t:

A2 + B2 = C2

d
dt
(
A2 + B2

)
=

d
dt
(
C2
)

2A
dA
dt

+ 2B
dB
dt

= 2C
dC
dt

Note: Example 3 is both interesƟng
and impracƟcal. It highlights the dif-
ficulty in using radar in a non–linear
fashion, and explains why “in real
life” the police officer would follow
the other driver to determine their
speed, and not pull out pencil and pa-
per.
The principles here are important,
though. Many automated vehicles
make judgments about other mov-
ing objects based on perceived dis-
tances, radar–likemeasurements and
the concepts of related rates.

We have values for everything except dB
dt . Solving for this we have

dB
dt

=
C dC

dt − A dA
dt

B
≈ 58.28 mph.

The other driver appears to be speeding slightly.

Notes:
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4.1 Related Rates

Example 4 Studying related rates
A camera is placed on a tripod 10 Ō from the side of a road. The camera is to turn
to track a car that is to drive by at 100 mph for a promoƟonal video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.2 shows the proposed
setup.

θ

10Ō

x

100mph

Figure 4.2: Tracking a speeding car (at
leŌ) with a rotaƟng camera.

How fast must the camera be able to turn to track the car?

SÊ½çã®ÊÄ We seek informaƟon about how fast the camera is to turn;
therefore, we need an equaƟon that will relate an angle θ to the posiƟon of the
camera and the speed and posiƟon of the car.

Figure 4.2 suggests we use a trigonometric equaƟon. Leƫng x represent the
distance the car is from the point on the road directly in front of the camera, we
have

tan θ =
x
10

. (4.1)

As the car ismoving at 100mph, wehave dx
dt = −100mph (as in the last example,

since x is geƫng smaller as the car travels, dx
dt is negaƟve). We need to convert

themeasurements so they use the same units; rewrite -100mph in terms of Ō/s:

dx
dt

= −100m
hr

= −100m
hr
· 5280 Ō

m
· 1
3600

hr
s

= −146.6 Ō/s.

Now take the derivaƟve of both sides of EquaƟon (4.1) using implicit differenƟ-
aƟon:

tan θ =
x
10

d
dt
(
tan θ

)
=

d
dt

( x
10

)
sec2 θ

dθ
dt

=
1
10

dx
dt

dθ
dt

=
cos2 θ
10

dx
dt

(4.2)

Wewant to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when θ = 0). Our mathe-
maƟcs bears this out. In EquaƟon (4.2) we see this is when cos2 θ is largest; this
is when cos θ = 1, or when θ = 0.

With dx
dt ≈ −146.67 Ō/s, we have

dθ
dt

= −1 rad
10 Ō

146.67 Ō/s = −14.667 radians/s.

Wefind that dθ
dt is negaƟve; this matches our diagram in Figure 4.2 for θ is geƫng

smaller as the car approaches the camera.

Notes:
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Chapter 4 ApplicaƟons of the DerivaƟve

What is the pracƟcal meaning of −14.667 radians/s? Recall that 1 circular
revoluƟon goes through 2π radians, thus 14.667 rad/s means 14.667/(2π) ≈
2.33 revoluƟons per second. The negaƟve sign indicates the camera is rotaƟng
in a clockwise fashion.

We introduced the derivaƟve as a funcƟon that gives the slopes of tangent
lines of funcƟons. This secƟon stresses the “rate of change” aspect of the deriva-
Ɵve to find a relaƟonship between the rates of change of two related quanƟƟes.
In the next secƟon we use Extreme Value concepts to opƟmize quanƟƟes.

Notes:
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Exercises 4.1
Terms and Concepts

1. T/F: Implicit differenƟaƟon is oŌen used when solving “re-
lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems

3. The area of a square is increasing at a rate of 42 Ō2/min.
How fast is the side length increasing when the length is 7
Ō?

4. Water flows onto a flat surface at a rate of 5cm3/s form-
ing a circular puddle 10mm deep. How fast is the radius
growing when the radius is:

(a) 1 cm?

(b) 10 cm?

(c) 100 cm?

5. A circular balloon is inflated with air flowing at a rate of
10cm3/s. How fast is the radius of the balloon increasing
when the radius is:

(a) 1 cm?

(b) 10 cm?

(c) 100 cm?

6. Consider the traffic situaƟon introduced in Example 3. How
fast is the “other car” traveling if the officer and the other
car are each 1/2mile from the intersecƟon, the other car is
traveling due west, the officer is traveling north at 50mph,
and the radar reading is−80mph?

7. Consider the traffic situaƟon introduced in Example 3. Cal-
culate how fast the “other car” is traveling in each of the
following situaƟons.

(a) The officer is traveling due north at 50mph and is
1/2 mile from the intersecƟon, while the other car is
1 mile from the intersecƟon traveling west and the
radar reading is−80mph?

(b) The officer is traveling due north at 50mph and is
1 mile from the intersecƟon, while the other car is
1/2mile from the intersecƟon traveling west and the
radar reading is−80mph?

8. An F-22 aircraŌ is flying at 500mph with an elevaƟon of
10,000Ō on a straight–line path that will take it directly
over an anƟ–aircraŌ gun.

θ

x

10,000 Ō

How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) 1 mile away?

(b) 1/5 mile away?

(c) Directly overhead?

9. An F-22 aircraŌ is flying at 500mph with an elevaƟon of
100Ō on a straight–line path that will take it directly over
an anƟ–aircraŌ gun as in Exercise 8 (note the lower eleva-
Ɵon here).
How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) 1000 feet away?

(b) 100 feet away?

(c) Directly overhead?

10. A 24Ō. ladder is leaning against a house while the base is
pulled away at a constant rate of 1Ō/s.

24
Ō

1 Ō/s

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) 1 foot from the house?

(b) 10 feet from the house?

(c) 23 feet from the house?

(d) 24 feet from the house?

11. A boat is being pulled into a dock at a constant rate of
30Ō/min by a winch located 10Ō above the deck of the
boat.

10Ō

At what rate is the boat approaching the dock when the
boat is:

(a) 50 feet out?

(b) 15 feet out?

(c) 1 foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than 10 feet long?
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12. An inverted cylindrical cone, 20Ō deep and 10Ō across at
the top, is being filled with water at a rate of 10Ō3/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) 1 foot?

(b) 10 feet?

(c) 19 feet?

How long will the tank take to fill when starƟng at empty?
13. A rope, aƩached to a weight, goes up through a pulley at

the ceiling and back down to a worker. The man holds the
rope at the same height as the connecƟon point between
rope and weight.

30
Ō

2 Ō/s

Suppose the man stands directly next to the weight (i.e., a
total rope length of 60 Ō) and begins to walk away at a rate
of 2Ō/s. How fast is the weight rising when the man has
walked:

(a) 10 feet?

(b) 40 feet?

How far must the man walk to raise the weight all the way
to the pulley?

14. Consider the situaƟon described in Exercise 13. Suppose
the man starts 40Ō from the weight and begins to walk
away at a rate of 2Ō/s.

(a) How long is the rope?

(b) How fast is the weight rising aŌer the man has
walked 10 feet?

(c) How fast is the weight rising aŌer the man has
walked 40 feet?

(d) How farmust themanwalk to raise theweight all the
way to the pulley?

15. A hot air balloon liŌs off from ground rising verƟcally. From
100 feet away, a 5’ woman tracks the path of the balloon.
When her sightline with the balloon makes a 45◦ angle
with the horizontal, she notes the angle is increasing at
about 5◦/min.

(a) What is the elevaƟon of the balloon?

(b) How fast is it rising?

16. A company that produces landscaping materials is dump-
ing sand into a conical pile. The sand is being poured at
a rate of 5Ō3/sec; the physical properƟes of the sand, in
conjuncƟon with gravity, ensure that the cone’s height is
roughly 2/3 the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?
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4.2 OpƟmizaƟon

4.2 OpƟmizaƟon
In SecƟon 3.1 we learned about extreme values – the largest and smallest values
a funcƟon aƩains on an interval. We moƟvated our interest in such values by
discussing how it made sense to want to know the highest/lowest values of a
stock, or the fastest/slowest an object was moving. In this secƟon we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situaƟons that require us to create the appropriate mathemaƟcal
framework in which to solve the problem.

Watch the video:
OpƟmizaƟon Problem #7 — Minimizing the Area of
Two Squares With Total Perimeter of Fixed Length at
https://youtu.be/BbTwa4Dbmmo

We start with a classic example which is followed by a discussion of the topic
of opƟmizaƟon.

Example 1 OpƟmizaƟon: perimeter and area
A man has 100 feet of fencing, a large yard, and a small dog. He wants to create
a rectangular enclosure for his dog with the fencing that provides the maximal
area. What dimensions provide the maximal area?

x

y

x

y

Figure 4.3: A sketch of the enclosure in
Example 1.

SÊ½çã®ÊÄ One can likely guess the correct answer — that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situaƟon. Our enclosure is sketched twice in
Figure 4.3, eitherwith green grass and nice fence boards or as a simple rectangle.
Either way, drawing a rectangle forces us to realize that we need to know the
dimensions of this rectangle so we can create an area funcƟon – aŌer all, we are
trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle funcƟons with 2 variables; we need to
reduce this down to a single variable. We know more about the situaƟon: the
man has 100 feet of fencing. By knowing the perimeter of the rectangle must
be 100, we can create another equaƟon:

Perimeter = 100 = 2x+ 2y.

Notes:
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Chapter 4 ApplicaƟons of the DerivaƟve

We now have 2 equaƟons and 2 unknowns. In the laƩer equaƟon, we solve
for y:

y = 50− x.

Now subsƟtute this expression for y in the area equaƟon:

Area = A(x) = x(50− x).

Note we now have an equaƟon of one variable; we can truly call the Area a
funcƟon of x.

This funcƟon onlymakes sensewhen 0 ≤ x ≤ 50, otherwisewe get negaƟve
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the criƟcal points, we take the derivaƟve of A(x) and set it equal to
0, then solve for x.

A(x) = x(50− x)
= 50x− x2

A′(x) = 50− 2x

We solve 50− 2x = 0 to find x = 25; this is the only criƟcal point. We evaluate
A(x) at the endpoints of our interval and at this criƟcal point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625 Ō2. This is the max-
imum. Since we earlier found y = 50 − x, we find that y is also 25. Thus the
dimensions of the rectangular enclosure with perimeter of 100 Ō. with maxi-
mum area is a square, with sides of length 25 Ō.

This example is very simplisƟc and a bit contrived. (AŌer all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equaƟons that de-
scribe a situaƟon, reduce an equaƟon to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equaƟons are oŌen
not reducible to a single variable (hence mulƟ–variable calculus is needed) and
the equaƟons themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundaƟon for the mathemaƟcs you will likely en-
counter later.

We outline here the basic process of solving these opƟmizaƟon problems.

Notes:

196



4.2 OpƟmizaƟon

Key Idea 8 Solving OpƟmizaƟon Problems

1. Understand the problem. Clearly idenƟfy what quanƟty is to be
maximized or minimized. Make a sketch if helpful.

2. Create equaƟons relevant to the context of the problem, using
the informaƟon given. (Oneof these should describe the quanƟty
to be opƟmized. We’ll call this the fundamental equaƟon.)

3. If the fundamental equaƟon defines the quanƟty to be opƟmized
as a funcƟon of more than one variable, reduce it to a single vari-
able funcƟon using subsƟtuƟons derived from the other equa-
Ɵons.

4. IdenƟfy the domain of this funcƟon, keeping in mind the context
of the problem.

5. Find the extreme values of this funcƟon on the determined do-
main.

6. IdenƟfy the values of all relevant quanƟƟes of the problem.

We will use Key Idea 8 in a variety of examples.

x

y

x

y

Figure 4.4: A sketch of the enclosure in
Example 2.

Example 2 OpƟmizaƟon: perimeter and area
Here is another classic calculus problem: A woman has a 100 feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

SÊ½çã®ÊÄ We will follow the steps outlined by Key Idea 8.

1. We are maximizing area. A sketch of the region will help; Figure 4.4 gives
two sketches of the proposed enclosed area. A key feature of the sketches
is to acknowledge that one side is not fenced.

2. We want to maximize the area; as in the example before,

Area = xy.

This is our fundamental equaƟon. This defines area as a funcƟon of two
variables, so we need another equaƟon to reduce it to one variable.

Notes:
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Chapter 4 ApplicaƟons of the DerivaƟve

We again appeal to the perimeter; here the perimeter is

Perimeter = 100 = x+ 2y.

Note how this is different than in our previous example.

3. We now reduce the fundamental equaƟon to a single variable. In the
perimeter equaƟon, solve for y: y = 50− x/2. We can now write Area as

Area = A(x) = x(50− x/2) = 50x− 1
2
x2.

Area is now defined as a funcƟon of one variable.

4. We want the area to be nonnegaƟve. Since A(x) = x(50− x/2), we want
x ≥ 0 and 50 − x/2 ≥ 0. The laƩer inequality implies that x ≤ 100, so
0 ≤ x ≤ 100.

5. We nowfind the extreme values. At the endpoints, theminimum is found,
giving an area of 0.

Find the criƟcal points. We have A′(x) = 50 − x; seƫng this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50−x/2; thus y = 25. Thus our rectangle will have two
sides of length 25 and one side of length 50, with a total area of 1250 Ō2.

Keep in mind as we do these problems that we are pracƟcing a process; that
is, we are learning to turn a situaƟon into a systemof equaƟons. These equaƟons
allow us to write a certain quanƟty as a funcƟon of one variable, which we then
opƟmize.

5000 Ō

1000 Ō

Figure 4.5: Running a power line from the
power staƟon to an offshore facility with
minimal cost in Example 3.

Example 3 OpƟmizaƟon: minimizing cost
A power line needs to be run from a power staƟon located on the beach to an
offshore facility. Figure 4.5 shows the distances between the power staƟon to
the facility.

It costs $50/Ō. to run a power line along the land, and $130/Ō. to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

Notes:

198



4.2 OpƟmizaƟon

SÊ½çã®ÊÄ We will follow the strategy of Key Idea 8 implicitly, without
specifically numbering steps.

There are two immediate soluƟons that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connecƟng the two locaƟons with a straight line. However, this requires
that all the wire be laid underwater, the most costly opƟon. Second, we could
minimize the underwater length by running a wire all 5000 Ō. along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non–minimal cost.

The opƟmal soluƟon likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
distances – the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure 4.6.

5000 − x x

1000 Ō√ x2 +
100

02

Figure 4.6: Labeling unknowndistances in
Example 3.

By choosing x as we did, wemake the expression under the square root sim-
ple. We now create the cost funcƟon.

Cost = land cost + water cost
= $50× land distance + $130× water distance
= 50(5000− x) + 130

√
x2 + 10002.

So we have c(x) = 50(5000 − x) + 130
√
x2 + 10002. This funcƟon only

makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we sƟll evaluate c(x) at each to verify.

c(0) = 380, 000 c(5000) ≈ 662, 873.

We now find the criƟcal values of c(x). We compute c ′(x) as

c ′(x) = −50+ 130x√
x2 + 10002

.

Recognize that this is never undefined. Seƫng c ′(x) = 0 and solving for x,

Notes:
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Chapter 4 ApplicaƟons of the DerivaƟve

we have:

−50+ 130x√
x2 + 10002

= 0

130x√
x2 + 10002

= 50

1302x2

x2 + 10002
= 502

1302x2 = 502(x2 + 10002)
1302x2 − 502x2 = 502 · 10002

(1302 − 502)x2 = 50, 0002

x2 =
50, 0002

1302 − 502

x =
50, 000√
1302 − 502

x =
50, 000
120

=
1250
3
≈ 416.67.

EvaluaƟng c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000− 416.67 = 4583.33 Ō., and the under-
water distance is

√
416.672 + 10002 ≈ 1083 Ō.

h

r

Figure 4.7: A sketch for Example 4.

Example 4 OpƟmizaƟon: Minimizing Surface Area
Design a closed cylindrical can of volume 8 Ō3 so that it uses the least amount
of metal. In other words, minimize the surface area of the can.

SÊ½çã®ÊÄ Following the strategy of Key Idea 8, we make a sketch in
Figure 4.7 and idenƟfy the quanƟty to be minimized as the surface area of the
cylinder. The formula for the surface area is our fundamental equaƟon since it
relates all of our relevant quanƟƟes.

A = πr2︸︷︷︸
Top

+ πr2︸︷︷︸
BoƩom

+ 2πrh︸︷︷︸
Side

= 2πr2 + 2πrh

Our surface area is now defined in terms of two variables. To reduce this to
a single variable we use the volume of a can, V = πr2h. Since the can must have
V = 8 Ō3, we set πr2h = 8. Thus h =

8
πr2

and

A(r) = 2πr2 + 2πr
8
πr2

= 2πr2 +
16
r

Notes:
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4.2 OpƟmizaƟon

Next we find the criƟcal values of A(r). We compute

A′(r) = 4πr− 16
r2

=
4πr3 − 16

r2

and find that A′(r) = 0 when r3 =
4
π
, that is, r =

(
4
π

)1/3

≈ 1.08 Ō.

Looking back at A(r), we noƟce that r is not restricted to a closed interval.
The radius can take on any posiƟve value making the interval of opƟmizaƟon
(0,∞). Since we do not have endpoints to test in A(r) we consider what hap-
pens to A(r) as r approaches the endpoints of (0,∞). We see that

A(r)→∞ as r→∞ (because of the r2 term) and

A(r)→∞ as r→ 0 (because of the
16
r

term)

Thus, the surface area must be minimized at the criƟcal value we found. Finally,
we determine the height of the cylinder.

h =
8
πr2

=
8
π
r−2 = 2

(
4
π

)(
4
π

)−2/3

= 2
(
4
π

)1/3

≈ 2.17 Ō.

NoƟce that the height is twice the length of the radius. This means that the
surface area is minimized when the can is as tall as it is wide.

In the exercises you will see a variety of situaƟons that require you to com-
bine problem–solving skills with calculus. Focus on the process; learn how to
form equaƟons from situaƟons that can be manipulated into what you need.
Eschew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

The next secƟon introduces another applicaƟon of the derivaƟve: differen-
Ɵals. Given y = f(x), they offer a method of approximaƟng the change in y aŌer
x changes by a small amount.

Notes:
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Exercises 4.2
Terms and Concepts
1. T/F: An “opƟmizaƟon problem” is essenƟally an “extreme

values” problem in a “story problem” seƫng.
2. T/F: This secƟon teaches one to find the extreme values of

funcƟon that have more than one variable.

Problems
3. Find the maximum product of two numbers (not necessar-

ily integers) that have a sum of 100.
4. Find the minimum sum of two posiƟve numbers whose

product is 500.
5. Find the maximum sum of two posiƟve numbers whose

product is 500.
6. Find the maximum sum of two numbers, each of which is

in [0, 300] whose product is 500.
7. Find the maximal area of a right triangle with hypotenuse

of length 1.
8. A rancher has 1000 feet of fencing in which to construct

adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

9. A standard soda can is roughly cylindrical and holds 355cm3

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of
206in3 that minimizes the surface area.
The “#10 can”is a standard sized can used by the restau-
rant industry that holds about 206in3 with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
where chosen with minimizaƟon in mind?

11. The United States Postal Service charges more for boxes
whose combined length and girth exceeds 108” (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross secƟon, i.e., 2w+ 2h).
What is the maximum volume of a package with a square
cross secƟon (w = h) that does not exceed the 108” stan-
dard?

12. The strength S of a wooden beam is directly proporƟonal
to its cross secƟonal width w and the square of its height
h; that is, S = kwh2 for some constant k.

12 h

w

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

13. A power line is to be run to an offshore facility in the man-
ner described in Example 3. The offshore facility is 2 miles
at sea and 5 miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
How much of the power line should be run underground
to minimize the overall costs?

14. A power line is to be run to an offshore facility in the man-
ner described in Example 3. The offshore facility is 5 miles
at sea and 2 miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
How much of the power line should be run underground
to minimize the overall costs?

15. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about 22Ō/s and
swims about 1.5Ō/s.
How far along the shore should the dog run to minimize
the Ɵme it takes to get to the sƟck? (Hint: the figure from
Example 3 can be useful.)

16. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about 22Ō/s and
swims about 1.5Ō/s.
How far along the shore should the dog run to minimize
the Ɵme it takes to get to the sƟck? (Google “calculus dog” to
learn more about a dog’s ability to minimize Ɵmes.)

17. What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?

18. Four squares are going to be cut from a larger square piece
of paper of side length 10 inches. AŌer the paper is folded
into a topless box, what is the largest volume the box could
have?

19. The material to make the sides of a box costs 2 ¢/in2. Mak-
ing the boƩom costs 4 ¢/in2, while the top costs 1 ¢/in2.
What are the dimensions of the least expensive box with a
square base and a volume of 10 in3?

20. A box needs to have a surface area of 12 in2 and be twice
as long as it is wide. What is the largest volume the box can
have?
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4.3 DifferenƟals
In SecƟon 2.2 we explored the meaning and use of the derivaƟve. This secƟon
starts by revisiƟng some of those ideas.

Recall that the derivaƟve of a funcƟon f can be used to find the slopes of
lines tangent to the graph of f. At x = c, the tangent line to the graph of f has
equaƟon

y = f ′(c)(x− c) + f(c).

The tangent line can be used to find good approximaƟons of f(x) for values of x
near c. (This tangent line is also called the linearizaƟon of f at c.)

For instance, we can approximate sin 1.1 using the tangent line to the graph
of f(x) = sin x at x = π/3 ≈ 1.05. Recall that sin(π/3) =

√
3/2 ≈ 0.866, and

cos(π/3) = 1/2. Thus the tangent line to f(x) = sin x at x = π/3 is:

ℓ(x) =
1
2
(x− π/3) + 0.866.

0.5

1

π
3

√
3

2

x

y

(a)

0.87

0.88

0.89

π
3 1.1

√
3

2

ℓ(1.1) ≈ sin 1.1

sin 1.1

x

y

(b)

Figure 4.8: Graphing f(x) = sin x and its
tangent line at x = π/3 in order to esƟ-
mate sin 1.1.

In Figure 4.8(a), we see a graph of f(x) = sin x graphed along with its tan-
gent line at x = π/3. The small rectangle shows the region that is displayed in
Figure 4.8(b). In this figure, we see how we are approximaƟng sin 1.1 with the
tangent line, evaluated at 1.1. Together, the two figures show how close these
values are.

Using this line to approximate sin 1.1, we have:

ℓ(1.1) =
1
2
(1.1− π/3) + 0.866

=
1
2
(0.053) + 0.866 = 0.8925.

(We leave it to the reader to see how good of an approximaƟon this is.)

We now generalize this concept. Given f(x) and an x–value c, the tangent
line is ℓ(x) = f ′(c)(x− c)+ f(c). Clearly, f(c) = ℓ(c). Let∆x be a small number,
represenƟng a small change in x value. We assert that:

f(c+∆x) ≈ ℓ(c+∆x),

since the tangent line to a funcƟon approximates well the values of that funcƟon
near x = c.

As the x value changes from c to c +∆x, the y value of f changes from f(c)
to f(c+∆x). We call this change of y value∆y. That is:

∆y = f(c+∆x)− f(c).

Notes:
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Replacing f(c+∆x) with its tangent line approximaƟon, we have

∆y ≈ ℓ(c+∆x)− f(c)
= f ′(c)

(
(c+∆x)− c

)
+ f(c)− f(c)

= f ′(c)∆x (4.3)

This final equaƟon is important; we’ll come back to it in Key Idea 9.
We introduce two new variables, dx and dy in the context of a formal defini-

Ɵon.

DefiniƟon 20 DifferenƟals of x and y.
Let y = f(x) be differenƟable. The differenƟal of x, denoted dx, is any
nonzero real number (usually taken to be a small number). The differ-
enƟal of y, denoted dy, is

dy = f ′(x)dx.

We can solve for f ′(x) in the above equaƟon: f ′(x) = dy/dx. This states that
the derivaƟve of f with respect to x is the differenƟal of y divided by the differ-
enƟal of x; this is not the alternate notaƟon for the derivaƟve, dy

dx . This laƩer
notaƟon was chosen because of the fracƟon–like qualiƟes of the derivaƟve, but
again, it is one symbol and not a fracƟon.

It is helpful to organize our new concepts and notaƟons in one place and an
accompanying figure.

dx = ∆x

}
dy

}
∆y

x

y

Figure 4.9: The distances involved in Key
Idea 9.

Key Idea 9 DifferenƟal NotaƟon
Let y = f(x) be a differenƟable funcƟon.

1. ∆x represents a small, nonzero change in x value.

2. dx represents a small, nonzero change in x value (i.e.,∆x = dx).

3. ∆y is the change in y value as x changes by∆x; hence

∆y = f(x+∆x)− f(x).

4. dy = f ′(x)dxwhich, by EquaƟon (4.3), is an approximaƟon of the
change in y value as x changes by∆x; dy ≈ ∆y.

Notes:
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4.3 DifferenƟals

What is the value of differenƟals? Like many mathemaƟcal concepts, differ-
enƟals provide both pracƟcal and theoreƟcal benefits. We explore both here.

Watch the video:
DifferenƟals 2 at
https://youtu.be/AvM8-LUdg84

Example 1 Finding and using differenƟals
Consider f(x) = x2. Knowing f(3) = 9, approximate f(3.1).

SÊ½çã®ÊÄ The x value is changing from x = 3 to x = 3.1; therefore, we
see that dx = 0.1. If we know howmuch the y value changes from f(3) to f(3.1)
(i.e., if we know∆y), we will know exactly what f(3.1) is (since we already know
f(3)). We can approximate∆y with dy.

∆y ≈ dy
= f ′(3)dx
= 2 · 3 · 0.1 = 0.6.

We expect the y value to change by about 0.6, so we approximate f(3.1) ≈
9.6.

We leave it to the reader to verify this, but the preceding discussion links the
differenƟal to the tangent line of f(x) at x = 3. One can verify that the tangent
line, evaluated at x = 3.1, also gives y = 9.6.

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approximaƟon is really good!)

So why bother?
In “most” real life situaƟons, we do not know the funcƟon that describes

a parƟcular behavior. Instead, we can only take measurements of how things
change – measurements of the derivaƟve.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direcƟon (i.e., the velocity) of water at any locaƟon. It is very hard
to create a funcƟon that describes the overall flow, hence it is hard to predict
where a floaƟng object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differenƟals. Over small

Notes:
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Chapter 4 ApplicaƟons of the DerivaƟve

intervals, the path taken by a floaƟng object is essenƟally linear. DifferenƟals
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
Ɵal EquaƟons courses.

We use differenƟals once more to approximate the value of a funcƟon. Even
though calculators are very accessible, it is neat to see how these techniques can
someƟmes be used to easily compute something that looks rather hard.

Example 2 Using differenƟals to approximate a funcƟon value
Approximate

√
4.5.

SÊ½çã®ÊÄ We expect
√
4.5 ≈ 2, yet we can do beƩer. Let f(x) =

√
x,

and let c = 4. Thus f(4) = 2. We can compute f ′(x) = 1/(2
√
x), so f ′(4) =

1/4.
We approximate the difference between f(4.5) and f(4) using differenƟals,

with dx = 0.5:

f(4.5)− f(4) = ∆y ≈ dy = f ′(4) · dx = 1/4 · 1/2 = 1/8 = 0.125.

The approximate change in f from x = 4 to x = 4.5 is 0.125, so we approximate√
4.5 ≈ 2.125.

DifferenƟals are important when we discuss integraƟon. When we study
that topic, we will use notaƟon such as

ˆ
f(x) dx

quite oŌen. While we don’t discuss here what all of that notaƟon means, note
the existence of the differenƟal dx. Proper handling of integrals comes with
proper handling of differenƟals.

In light of that, we pracƟce finding differenƟals in general.

Example 3 Finding differenƟals
In each of the following, find the differenƟal dy.

1. y = sin x 2. y = ex(x2 + 2) 3. y =
√

x2 + 3x− 1

SÊ½çã®ÊÄ

1. y = sin x: As f(x) = sin x, f ′(x) = cos x. Thus

dy = cos(x)dx.

Notes:
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4.3 DifferenƟals

2. y = ex(x2 + 2): Let f(x) = ex(x2 + 2). We need f ′(x), requiring the
Product Rule.
We have f ′(x) = ex(x2 + 2) + 2xex, so

dy =
(
ex(x2 + 2) + 2xex

)
dx.

3. y =
√
x2 + 3x− 1: Let f(x) =

√
x2 + 3x− 1; we need f ′(x), requiring

the Chain Rule.

We have f ′(x) =
1
2
(x2 + 3x− 1)−

1
2 (2x+ 3) =

2x+ 3
2
√
x2 + 3x− 1

. Thus

dy =
(2x+ 3)dx

2
√
x2 + 3x− 1

.

Finding the differenƟal dy of y = f(x) is really no harder than finding the
derivaƟve of f; we justmulƟply f ′(x) by dx. It is important to remember that we
are not simply adding the symbol “dx” at the end.

We have seen a pracƟcal use of differenƟals as they offer a good method of
making certain approximaƟons. Another use is error propagaƟon. Suppose a
length is measured to be x, although the actual value is x+∆x (where we hope
∆x is small). This measurement of xmay be used to compute some other value;
we can think of this as f(x) for some funcƟon f. As the true length is x + ∆x,
one really should have computed f(x + ∆x). The difference between f(x) and
f(x+∆x) is the propagated error.

How close are f(x) and f(x+∆x)? This is a difference in “y” values;

f(x+∆x)− f(x) = ∆y ≈ dy.

We can approximate the propagated error using differenƟals.

Example 4 Using differenƟals to approximate propagated error
A steel ball bearing is to be manufactured with a diameter of 2cm. The manu-
facturing process has a tolerance of ±0.1mm in the diameter. Given that the
density of steel is about 7.85g/cm3, esƟmate the propagated error in the mass
of the ball bearing.

SÊ½çã®ÊÄ Themass of a ball bearing is found using the equaƟon “mass
= volume× density.” In this situaƟon themass funcƟon is a product of the radius
of the ball bearing, hence it ism = 7.85 4

3πr
3. The differenƟal of the mass is

dm = 31.4πr2dr.
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Chapter 4 ApplicaƟons of the DerivaƟve

The radius is to be 1cm; the manufacturing tolerance in the radius is±0.05mm,
or±0.005cm. The propagated error is approximately:

∆m ≈ dm
= 31.4π(1)2(±0.005)
= ±0.493g

Is this error significant? It certainly depends on the applicaƟon, but we can get
an idea by compuƟng the relaƟve error. The raƟo between amount of error to
the total mass is

dm
m

= ± 0.493
7.85 4

3π

= ±0.493
32.88

= ±0.015,

or±1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball was

supposed to be 10cm, the same manufacturing tolerance would give a propa-
gated error inmass of±12.33g, which corresponds to apercent error of±0.188%.
While the amount of error is much greater (12.33 > 0.493), the percent error
is much lower.

Notes:
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Exercises 4.3
Terms and Concepts
1. T/F: Given a differenƟable funcƟon y = f(x), we are gen-

erally free to choose a value for dx, which then determines
the value of dy.

2. T/F: The symbols “dx” and “∆x” represent the same con-
cept.

3. T/F: The symbols “dy” and “∆y” represent the same con-
cept.

4. T/F: DifferenƟals are important in the study of integraƟon.
5. How are differenƟals and tangent lines related?

Problems
In Exercises 6–16, use differenƟals to approximate the given
value by hand.

6. 2.052

7. 5.932

8. 5.13

9. 6.83

10.
√
16.5

11.
√
24

12. 3√63
13. 3√8.5
14. sin 3
15. cos 1.5
16. e0.1

In Exercises 17–29, compute the differenƟal dy.

17. y = x2 + 3x− 5
18. y = x7 − x5

19. y = 1
4x2

20. y = (2x+ sin x)2

21. y = x2e3x

22. y = 4
x4

23. y = 2x
tan x+ 1

24. y = ln(5x)
25. y = ex sin x
26. y = cos(sin x)

27. y = x+ 1
x+ 2

28. y = 3x ln x
29. y = x ln x− x

30. Show that the linearizaƟon of f(x) = (1 + x)k at x = 0 is
L(x) = 1+ kx.

In Exercises 31–36, use the linear approximaƟon (1 + x)k ≈
1+ kx to find an approximaƟon for the funcƟon f(x) for values
of x near zero.

31. f(x) = (1− x)6

32. f(x) = 2
1− x

33. f(x) = 1√
1+ x

34. f(x) =
√
2+ x2

35. f(x) = (4+ 3x)1/3

36. f(x) = 3

√(
1− 1

2+ x

)2

37. A set of plasƟc spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

38. The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t2. The depth of a hole is to be approximated
by dropping a rock and listening for it to hit the boƩom.
What is the propagated error if the Ɵme measurement is
accurate to 2/10ths of a second and the measured Ɵme is:

(a) 2 seconds?

(b) 5 seconds?

39. What is the propagated error in the measurement of the
cross secƟonal area of a circular log if the diameter is mea-
sured at 15′′, accurate to 1/4′′?

40. A wall is to be painted that is exactly 8′ high and is mea-
sured to be 10′, 7′′ long. Find the propagated error in
themeasurement of the wall’s surface area if themeasure-
ment of the length is accurate to 1/2′′.

Exercises 41–45 explore some issues related to surveying in
which distances are approximated using other measured dis-
tances and measured angles. (Hint: Convert all angles to radi-
ans before compuƟng.)

41. The length l of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to
be 85.2◦, accurate to 1◦. Assume that the triangle formed
is a right triangle.

l =?

θ

25′

(a) What is the measured length l of the wall?

(b) What is the propagated error?

(c) What is the percent error?

42.
Answer the quesƟons of Exercise 41, but with a measured
angle of 71.5◦, accurate to 1◦, measured from a point 100′
from the wall.
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43. The length l of a long wall is to be calculated by measuring
the angle θ shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143◦, accurate to 1◦.

l =?θ 50′

(a) What is the measured length of the wall?

(b) What is the propagated error?

(c) What is the percent error?

44. The length of the walls in Exercises 41 – 43 are essenƟally
the same. Which setup gives the most accurate result?

45. Consider the setup in Exercise 43. This Ɵme, assume the
angle measurement of 143◦ is exact but the measured 50′
from the wall is accurate to 6′′. What is the approximate
percent error?
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4.4 Newton’s Method

4.4 Newton’s Method
Solving equaƟons is one of the most important things we do in mathemaƟcs,
yet we are surprisingly limited in what we can solve analyƟcally. For instance,
equaƟons as simple as x5+ x+1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar funcƟons. Fortunately, there are methods that
can give us approximate soluƟons to equaƟons like these. These methods can
usually give an approximaƟon correct to as many decimal places as we like. In
SecƟon 1.6 we learned about the BisecƟon Method. This secƟon focuses on
another technique (which generally works faster), called Newton’s Method.
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Figure 4.10: DemonstraƟng the geomet-
ric concept behind Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an iniƟal guess about roughly where the
root is. Call this x0. (See Figure 4.10(a).) Draw the tangent line to the graph at
(x0, f(x0)) and see where it meets the x-axis. Call this point x1. Then repeat the
process – draw the tangent line to the graph at (x1, f(x1)) and seewhere itmeets
the x-axis. (See Figure 4.10(b).) Call this point x2. Repeat the process again to
get x3, x4, etc. This sequence of points will oŌen converge rather quickly to a
root of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x1. We started with the tangent line to the graph at (x0, f(x0)).
The slope of this tangent line is f ′(x0) and the equaƟon of the line is

y = f ′(x0)(x− x0) + f(x0).

This line crosses the x-axis when y = 0, and the x–value where it crosses is what
we called x1. So let y = 0 and replace x with x1, giving the equaƟon:

0 = f ′(x0)(x1 − x0) + f(x0).

Now solve for x1:

x1 = x0 −
f(x0)
f ′(x0)

.

Since we repeat the same geometric process to find x2 from x1, we have

x2 = x1 −
f(x1)
f ′(x1)

.

In general, given an approximaƟon xn, we can find the next approximaƟon, xn+1
as follows:

xn+1 = xn −
f(xn)
f ′(xn)

.

We summarize this process as follows.

Notes:
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Key Idea 10 Newton’s Method
Let f be a differenƟable funcƟon on an interval I with a root in I. To
approximate the value of the root, accurate to d decimal places:

1. Choose a value x0 as an iniƟal approximaƟon of the root. (This is
oŌen done by looking at a graph of f.)

2. Create successive approximaƟons iteraƟvely; given an approxi-
maƟon xn, compute the next approximaƟon xn+1 as

xn+1 = xn −
f(xn)
f ′(xn)

.

3. Stop the iteraƟons when successive approximaƟons do not differ
in the first d places aŌer the decimal point.

Note: Newton’s Method is not in-
fallible. The sequence of approxi-
mate values may not converge, or it
may converge so slowly that one is
“tricked” into thinking a certain ap-
proximaƟon is beƩer than it actually
is. These issues will be discussed at
the end of the secƟon.

Watch the video:
Newton’s Method at
https://youtu.be/1uN8cBGVpfs

Let’s pracƟce Newton’s Method with a concrete example.

Example 1 Using Newton’s Method
Approximate the real root of x3− x2− 1 = 0, accurate to the first 3 places aŌer
the decimal, using Newton’s Method and an iniƟal approximaƟon of x0 = 1.

SÊ½çã®ÊÄ To begin, we compute f ′(x) = 3x2 − 2x. Then we apply the
Newton’s Method algorithm, outlined in Key Idea 10.

x1 = 1− f(1)
f ′(1)

= 1− 13 − 12 − 1
3 · 12 − 2 · 1

= 2,

x2 = 2− f(2)
f ′(2)

= 2− 23 − 22 − 1
3 · 22 − 2 · 2

= 1.625,

Notes:
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4.4 Newton’s Method

x3 = 1.625− f(1.625)
f ′(1.625)

= 1.625− 1.6253 − 1.6252 − 1
3 · 1.6252 − 2 · 1.625

≈ 1.48579,

x4 = 1.48579− f(1.48579)
f ′(1.48579)

≈ 1.46596,

x5 = 1.46596− f(1.46596)
f ′(1.46596)

≈ 1.46557

We performed 5 iteraƟons of Newton’s Method to find a root accurate to the
first 3 places aŌer the decimal; our final approximaƟon is 1.465. The exact value
of the root, to six decimal places, is 1.465571; It turns out that our x5 is accurate
to more than just 3 decimal places.
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Figure 4.11: A graph of f(x) = x3− x2− 1
in Example 1.

A graph of f(x) is given in Figure 4.11. We can see from the graph that our
iniƟal approximaƟon of x0 = 1 was not parƟcularly accurate; a closer guess
would have been x0 = 1.5. Our choice was based on ease of iniƟal calculaƟon,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate iniƟal approximaƟon.

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calculaƟon. Start by pressing 1 and then Enter.
(We have just entered our iniƟal guess, x0 = 1.) Now compute

Ans− f(Ans)
f ′(Ans)

by entering the following and repeatedly press the Enter key:

Ans-(Ans^3-Ans^2-1)/(3*Ans^2-2*Ans)

Each Ɵmewepress the Enter key, we are finding the successive approximaƟons,
x1, x2, …, and each one is geƫng closer to the root. In fact, once we get past
around x7 or so, the approximaƟons don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
preƩy confident that we have found an accurate approximaƟon.

We can use a similar approach in most spreadsheet programs, which intelli-
gently copy formulas. Start by entering 1 in cell A1. Then in cell A2, enter:

A1-(A1^3-A1^2-1)/(3*A1^2-2*A1)

Copy this cell, and paste it into A3. The spreadsheet will automaƟcally change
A1 to A2, giving you the next approximaƟon. ConƟnue pasƟng this into A4, A5,
and so on. Each Ɵme we paste the formula, we are finding the successive ap-
proximaƟons, and each one is geƫng closer to the root.

Using a calculator in this manner makes the calculaƟons simple; many iter-
aƟons can be computed very quickly.

Notes:
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Example 2 Using Newton’s Method to find where funcƟons intersect
Use Newton’s Method to approximate a soluƟon to cos x = x, accurate to 5
places aŌer the decimal.

SÊ½çã®ÊÄ Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equaƟons like f(x) = g(x). However, this is
not a problem; we can rewrite the laƩer equaƟon as f(x) − g(x) = 0 and then
use Newton’s Method.

So we rewrite cos x = x as cos x − x = 0. WriƩen this way, we are finding
a root of f(x) = cos x − x. We compute f ′(x) = − sin x − 1. Next we need a
starƟng value, x0. Consider Figure 4.12, where f(x) = cos x − x is graphed. It
seems that x0 = 0.75 is preƩy close to the root, so we will use that as our x0.
(The figure also shows the graphs of y = cos x and y = x, drawn with dashed
lines. Note how they intersect at the same x value as when f(x) = 0.)
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Figure 4.12: A graph of f(x) = cos x − x
used to find an iniƟal approximaƟon of its
root.

We now compute x1, x2, etc. The formula for x1 is

x1 = 0.75− cos(0.75)− 0.75
− sin(0.75)− 1

≈ 0.7391111388.

Apply Newton’s Method again to find x2:

x2 = 0.7391111388− cos(0.7391111388)− 0.7391111388
− sin(0.7391111388)− 1

≈ 0.7390851334.

We can conƟnue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing 0.75, then Enter, inpuƫng
our iniƟal approximaƟon. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

(In a spreadsheet, we would enter A1-(cos(A1)-A1)/(-sin(A1)-1) in A2.)
Repeatedly pressing the Enter key gives successive approximaƟons. We

quickly find:

x3 = 0.7390851332
x4 = 0.7390851332.

Our approximaƟons x2 and x3 did not differ for at least the first 5 places aŌer the
decimal, sowe could have stopped. However, using our calculator in themanner
described is easy, so finding x4was not hard. It is interesƟng to see howwe found
an approximaƟon, accurate to asmany decimal places as our calculator displays,
in just 4 iteraƟons.

Notes:
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4.4 Newton’s Method

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computaƟon in this problem.

x = .75
while true

oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < .0000000001

break
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Figure 4.13: A graph of f(x) = x3−x2−1,
showing why an iniƟal approximaƟon of
x0 = 0 with Newton’s Method fails.

This code calculates x1, x2, etc., storing each result in the variable x. The
previous approximaƟon is stored in the variable oldx. We conƟnue looping unƟl
the difference between two successive approximaƟons, abs(x-oldx), is less
than some small tolerance, in this case, .0000000001.

Convergence of Newton’s Method
What should one use for the iniƟal guess, x0? Generally, the closer to the actual
root the iniƟal guess is, the beƩer. However, some iniƟal guesses should be
avoided. For instance, consider Example 1 where we sought the root to f(x) =
x3 − x2 − 1. Choosing x0 = 0 would have been a parƟcularly poor choice.
Consider Figure 4.13, where f(x) is graphed along with its tangent line at x = 0.
Since f ′(0) = 0, the tangent line is horizontal and does not intersect the x–axis.
Graphically, we see that Newton’s Method fails.

We can also see analyƟcally that it fails. Since

x1 = 0− f(0)
f ′(0)

and f ′(0) = 0, we see that x1 is not well defined.
This problem can also occur if, for instance, it turns out that f ′(x5) = 0.

AdjusƟng the iniƟal approximaƟon x0 by a very small amount will likely fix the
problem.

It is also possible forNewton’sMethod to not convergewhile each successive
approximaƟon is well defined. Consider f(x) = x1/3, as shown in Figure 4.14.
It is clear that the root is x = 0, but let’s approximate this with x0 = 0.1.
Figure 4.14(a) shows graphically the calculaƟon of x1; noƟce how it is farther
from the root than x0. Figures 4.14(b) and (c) show the calculaƟon of x2 and x3,
which are even farther away; our successive approximaƟons are geƫng worse.
(It turns out that in this parƟcular example, each successive approximaƟon is
twice as far from the true answer as the previous approximaƟon.)
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Figure 4.14: Newton’s Method fails to
find a root of f(x) = x1/3, regardless of
the choice of x0.

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

Notes:
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Chapter 4 ApplicaƟons of the DerivaƟve

While Newton’s Method does not always work, it does work “most of the
Ɵme,” and it is generally very fast. Once the approximaƟons get close to the root,
Newton’s Method can as much as double the number of correct decimal places
with each successive approximaƟon. A course in Numerical Analysis will intro-
duce the reader to more iteraƟve root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.

We first learned of the derivaƟve in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the derivaƟve by studying how it relates to the graph of a funcƟon
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the derivaƟve to yet more uses:

• Related Rates (furthering our use of the derivaƟve to find instantaneous
rates of change)

• OpƟmizaƟon (applied extreme values), and

• DifferenƟals (useful for various approximaƟons and for something called
integraƟon).

• EquaƟon solving (Newton’s Method)

In the next chapters, we will consider the “reverse” problem to compuƟng
the derivaƟve: given a funcƟon f, can we find a funcƟon whose derivaƟve is f?
Be able to do so opens up an incredible world of mathemaƟcs and applicaƟons.

Notes:
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Exercises 4.4
Terms and Concepts
1. T/F: Given a funcƟon f(x), Newton’s Method produces an

exact soluƟon to f(x) = 0.
2. T/F: In order to get a soluƟon to f(x) = 0 accurate to d

places aŌer the decimal, at least d + 1 iteraƟons of New-
tons’ Method must be used.

Problems
In Exercises 3–7, the roots of f(x) are known or are easily
found. Use 5 iteraƟons of Newton’s Method with the given
iniƟal approximaƟon to approximate the root. Compare it to
the known value of the root.

3. f(x) = cos x, x0 = 1.5
4. f(x) = sin x, x0 = 1
5. f(x) = x2 + x− 2, x0 = 0
6. f(x) = x2 − 2, x0 = 1.5
7. f(x) = ln x, x0 = 2

In Exercises 8–11, use Newton’s Method to approximate all
roots of the given funcƟons accurate to 3 places aŌer the dec-
imal. If an interval is given, find only the roots that lie in that
interval. Use technology to obtain good iniƟal approximaƟons.

8. f(x) = x3 + 5x2 − x− 1
9. f(x) = x4 + 2x3 − 7x2 − x+ 5

10. f(x) = x17 − 2x13 − 10x8 + 10 on (−2, 2)
11. f(x) = x2 cos x+ (x− 1) sin x on (−3, 3)

In Exercises 12–15, use Newton’s Method to approximate
when the given funcƟons are equal, accurate to 3 places aŌer
the decimal. Use technology to obtain good iniƟal approxima-
Ɵons.

12. f(x) = x2, g(x) = cos x

13. f(x) = x2 − 1, g(x) = sin x

14. f(x) = ex
2
, g(x) = cos x

15. f(x) = x, g(x) = tan x on [−6, 6]

16. Why does Newton’s Method fail in finding a root of f(x) =
x3 − 3x2 + x+ 3 when x0 = 1?

17. Why does Newton’s Method fail in finding a root of f(x) =
−17x4 + 130x3 − 301x2 + 156x+ 156 when x0 = 1?

In Exercises 18–21, use Newton’s Method to approximate the
given value.

18.
√
16.5.

19.
√
24.

20. 3√63.

21. 3√8.5.

22. Show graphically what happens when Newton’s Method is
used at different x0 for the funcƟon shown. (a) x0 = 0
(b) x0 = 1 (c) x0 = 3 (d) x0 = 4 (e) x0 = 5

−2 2 4 6

−2

−1

1

2

x

y
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5: IÄã�¦Ù�ã®ÊÄ
We have spent considerable Ɵme considering the derivaƟves of a funcƟon and
their applicaƟons. In the following chapters, we are going to starƟng thinking
in “the other direcƟon.” That is, given a funcƟon f(x), we are going to consider
funcƟons F(x) such that F ′(x) = f(x). There are numerous reasons this will
prove to be useful: these funcƟons will help us compute areas, volumes, mass,
force, pressure, work, and much more.

5.1 AnƟderivaƟves and Indefinite IntegraƟon

Given a funcƟon y = f(x), a differenƟal equaƟon is one that incorporates y, x,
and the derivaƟves of y. For instance, a simple differenƟal equaƟon is:

y ′ = 2x.

Solving a differenƟal equaƟon amounts to finding a funcƟon y that saƟsfies
the given equaƟon. Take a moment and consider that equaƟon; can you find a
funcƟon y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one soluƟon: y = x2. “Find-

ing another” may have seemed impossible unƟl one realizes that a funcƟon like
y = x2 + 1 also has a derivaƟve of 2x. Once that discovery is made, finding “yet
another” is not difficult; the funcƟon y = x2+123,456,789 also has a derivaƟve
of 2x. The differenƟal equaƟon y ′ = 2x has many soluƟons. This leads us to
some definiƟons.

DefiniƟon 21 AnƟderivaƟves
Let a funcƟon f(x) be given. An anƟderivaƟve of f(x) is a funcƟon F(x)
such that F ′(x) = f(x).

We refer to an anƟderivaƟve of f, as opposed to the anƟderivaƟve of f, since
anƟderivaƟves are not unique. We oŌen use upper-case leƩers to denote an-
ƟderivaƟves.



Chapter 5 IntegraƟon

Theorem 31 AnƟderivaƟve Forms
Let F(x) and G(x) be anƟderivaƟves of f(x) on an interval. Then there
exists a constant C such that

G(x) = F(x) + C.

Proof
Suppose that a and b are two disƟnct points in the interval. Then by applying
theMean Value Theorem to the funcƟon G(x)−F(x), there is a point c between
a and b so that

(G(b)−F(b))−(G(a)−F(a)) = (G′(c)−F′(c))(b−a) = (f(c)−f(c))(b−a) = 0.

Because this holds for any a and b in the interval, G(b)− F(b) is constant for all
possible b. □

Given a funcƟon f and one of its anƟderivaƟves F, we know all anƟderivaƟves
of f have the form F(x) + C for some constant C.

DefiniƟon 22 Indefinite Integrals
The set of all anƟderivaƟves of f(x) is the indefinite integral of f, de-
noted by ˆ

f(x) dx.

Using DefiniƟons 21 and 22, we can say that on an interval
ˆ

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notaƟon.

ˆ
f(x) dx = F(x) + C

Integrand

IntegraƟon
symbol

DifferenƟal
of x

One
anƟderivaƟve

Constant of
integraƟon

Notes:
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5.1 AnƟderivaƟves and Indefinite IntegraƟon

The integraƟon symbol,
´
, is in reality an “elongated S,” represenƟng “take the

sum.” We will later see how sums and anƟderivaƟves are related.
The funcƟon we want to find an anƟderivaƟve of is called the integrand. It

contains the differenƟal of the variable we are integraƟngwith respect to. The
´

symbol and the differenƟal dx are not “bookends” with a funcƟon sandwiched in
between; rather, the symbol

´
means “find all anƟderivaƟves of what follows,”

and the funcƟon f(x) and dx are mulƟplied together; the dx does not “just sit
there.”

Let’s pracƟce using this notaƟon.

Example 1 EvaluaƟng indefinite integrals
Evaluate

ˆ
sin x dx.

SÊ½çã®ÊÄ We are asked to find all funcƟons F(x) such that F ′(x) =
sin x. Some thought will lead us to one soluƟon: F(x) = − cos x, because
d
dx (− cos x) = sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integraƟon.
So: ˆ

sin x dx = − cos x+ C.

A commonly asked quesƟon is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

Note: Recall from DefiniƟon 20 that
dx is any nonzero real number and
dy = f ′(x)dx.

This process of anƟdifferenƟaƟon is really solving a differenƟal quesƟon. The
integral ˆ

sin x dx

presents us with a differenƟal, dy = sin x dx. It is asking: “What is y?” We found
lots of soluƟons, all of the form y = − cos x+ C.

Leƫng dy = sin x dx, rewriteˆ
sin x dx as

ˆ
dy.

This is asking: “What funcƟons have a differenƟal of the form dy?” The answer
is “FuncƟons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.

Understanding all of this is more important later as we try to find anƟderiva-
Ɵves of more complicated funcƟons. In this secƟon, we will simply explore the
rules of indefinite integraƟon, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s pracƟce once more before staƟng integraƟon rules.

Notes:
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Chapter 5 IntegraƟon

Example 2 EvaluaƟng indefinite integrals
Evaluate

ˆ
(3x2 + 4x+ 5) dx.

SÊ½çã®ÊÄ We seek a funcƟon F(x) whose derivaƟve is 3x2 + 4x + 5.
When taking derivaƟves, we can consider funcƟons term–by–term, so we can
likely do that here.

What funcƟons have a derivaƟve of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

What funcƟons have a derivaƟve of 4x? Here the x term is raised to the first
power, so we likely seek a quadraƟc. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what funcƟons have a derivaƟve of 5? FuncƟons of the form 5x+C3,
where C3 is a constant.

Our answer appears to be
ˆ
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integraƟon; combine them as one
constant, giving the final answer of

ˆ
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivaƟve of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5.

This final step of “verifying our answer” is important both pracƟcally and
theoreƟcally. In general, taking derivaƟves is easier than finding anƟderivaƟves
so checking our work is easy and vital as we learn.

We also see that taking the derivaƟve of our answer returns the funcƟon in
the integrand. Thus we can say that:

d
dx

(ˆ
f(x) dx

)
= f(x).

DifferenƟaƟon “undoes” the work done by anƟdifferenƟaƟon.
Theorem21gave a list of the derivaƟves of common funcƟonswehad learned

at that point. We restate part of that list here to stress the relaƟonship between
derivaƟves and anƟderivaƟves. This list will also be useful as a glossary of com-
mon anƟderivaƟves as we learn.

Notes:
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5.1 AnƟderivaƟves and Indefinite IntegraƟon

Theorem 32 DerivaƟves and AnƟderivaƟves
Common DifferenƟaƟon Rules

1. d
dx

(
cf(x)

)
= c · f ′(x)

2. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx

(
C
)
= 0

Common Indefinite Integral Rules

1.
´
c · f(x) dx = c ·

´
f(x) dx

2.
´ (

f(x)± g(x)
)
dx =´

f(x) dx±
´
g(x) dx

3.
´
0 dx = C

We highlight a few important points from Theorem 32:

• Rule #1 states
´
c · f(x) dx = c ·

´
f(x) dx. This is the Constant MulƟple

Rule: we can temporarily ignore constants when finding anƟderivaƟves,
just as we did when compuƟng derivaƟves (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:

ˆ
5 cos x dx = 5 ·

ˆ
cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being mulƟplied by
5, but “5 Ɵmes a constant” is sƟll a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Exam-
ple 2. So:

ˆ
(3x2 + 4x+ 5) dx =

ˆ
3x2 dx+

ˆ
4x dx+

ˆ
5 dx

= 3
ˆ

x2 dx+ 4
ˆ

x dx+
ˆ

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C

In pracƟce we generally do not write out all these steps, but we demon-
strate them here for completeness.

Notes:
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Theorem 33 DerivaƟves and AnƟderivaƟves
Common DerivaƟves

4. d
dx

(
xn
)
= n · xn−1

5. d
dx

(
ln |x|

)
= 1

x

6. d
dx

(
ex
)
= ex

7. d
dx

(
sin x

)
= cos x

8. d
dx

(
cos x

)
= − sin x

9. d
dx

(
tan x

)
= sec2 x

10. d
dx

(
cot x

)
= − csc2 x

11. d
dx

(
sec x

)
= sec x tan x

12. d
dx

(
csc x

)
= − csc x cot x

Common Indefinite Integrals

4.
´
xn dx = xn+1

n+1 + C (n ̸= −1)

5.
´ 1

x dx = ln |x|+ C

6.
´
ex dx = ex + C

7.
´
cos x dx = sin x+ C

8.
´
sin x dx = − cos x+ C

9.
´
sec2 x dx = tan x+ C

10.
´
csc2 x dx = − cot x+ C

11.
´
sec x tan x dx = sec x+C

12.
´
csc x cot x dx = − csc x+ C

• Rule #4 is the Power Rule of indefinite integraƟon. There are two impor-
tant things to keep in mind:

1. NoƟce the restricƟon that n ̸= −1. This is important:
´ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #5.

2. We are presenƟng anƟdifferenƟaƟon as the “inverse operaƟon” of
differenƟaƟon. Here is a useful quote to remember:

“Inverse operaƟons do the opposite things in the opposite
order.”

When taking a derivaƟve using the Power Rule, we first mulƟply by
the power, then second subtract 1 from the power. To find the an-
ƟderivaƟve, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

• Note that Rule #5 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

Notes:
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5.1 AnƟderivaƟves and Indefinite IntegraƟon

IniƟal Value Problems
In SecƟon 2.3 we saw that the derivaƟve of a posiƟon funcƟon gave a velocity
funcƟon, and the derivaƟve of a velocity funcƟondescribes acceleraƟon. We can
now go “the other way:” the anƟderivaƟve of an acceleraƟon funcƟon gives a
velocity funcƟon, etc. While there is just one derivaƟve of a given funcƟon, there
are infinite anƟderivaƟves. Therefore we cannot ask “What is the velocity of an
object whose acceleraƟon is−32Ō/s2?”, since there is more than one answer.

Watch the video:
AnƟderivaƟves: AcceleraƟon, Velocity, PosiƟon
FuncƟons — AWord Problem at
https://youtu.be/brNADtx8Qu8

We can find the answer if we provide more informaƟon with the quesƟon,
as done in the following example. OŌen the addiƟonal informaƟon comes in the
form of an iniƟal value, a value of the funcƟon that one knows beforehand.

Example 3 Solving iniƟal value problems
The acceleraƟon due to gravity of a falling object is −32 Ō/s2. At Ɵme t = 3,
a falling object had a velocity of −10 Ō/s. Find the equaƟon of the object’s
velocity.

SÊ½çã®ÊÄ We want to know a velocity funcƟon, v(t). We know two
things:

• The acceleraƟon, i.e., v ′(t) = −32, and

• the velocity at a specific Ɵme, i.e., v(3) = −10.

Using the first piece of informaƟon, we know that v(t) is an anƟderivaƟve of
v ′(t) = −32. So we begin by finding the indefinite integral of−32:

v(t) =
ˆ
(−32) dt = −32t+ C.

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86

Notes:
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Thus v(t) = −32t+ 86. We can use this equaƟon to understand the moƟon
of the object: when t = 0, the object had a velocity of v(0) = 86 Ō/s. Since the
velocity is posiƟve, the object was moving upward.

When did the object begin moving down? Immediately aŌer v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16
≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleraƟon and its velocity at a single point in Ɵme.

Example 4 Solving iniƟal value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

SÊ½çã®ÊÄ We start by finding f ′(t), which is an anƟderivaƟve of f ′′(t):

f ′(t) =
ˆ

f ′′(t) dt =
ˆ

cos t dt = sin t+ C.

So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the iniƟal value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integraƟng again.

f(t) =
ˆ

f ′(t) dt =
ˆ

(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6.

This secƟon introduced anƟderivaƟves and the indefinite integral. We found
they are needed when finding a funcƟon given informaƟon about its deriva-
Ɵve(s). For instance, we found a posiƟon funcƟon given a velocity funcƟon.

In the next secƟon, we will see how posiƟon and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity funcƟon. Then,
in SecƟon5.4, wewill see howareas and anƟderivaƟves are closely Ɵed together.

Notes:
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Exercises 5.1
Terms and Concepts
1. Define the term “anƟderivaƟve” in your own words.

2. Is it more accurate to refer to “the” anƟderivaƟve of f(x)
or “an” anƟderivaƟve of f(x)?

3. Use your ownwords to define the indefinite integral of f(x).

4. Fill in the blanks: “Inverse operaƟons do the
things in the order.”

5. What is an “iniƟal value problem”?

6. The derivaƟve of a posiƟon funcƟon is a func-
Ɵon.

7. The anƟderivaƟve of an acceleraƟon funcƟon is a
funcƟon.

Problems
In Exercises 8–40, evaluate the given indefinite integral.

8.
ˆ

3x3 dx

9.
ˆ

x8 dx

10.
ˆ

(10x2 − 2) dx

11.
ˆ

dt

12.
ˆ

1
3t2

dt

13.
ˆ

3
t2

dt

14.
ˆ

1√
x
dx

15.
ˆ

sec2 θ dθ

16.
ˆ

sin θ dθ

17.
ˆ

(sec x tan x+ csc x cot x) dx

18.
ˆ

et

2
dt

19.
ˆ

(2t+ 3)2 dt

20.
ˆ

(t2 + 3)(t3 − 2t) dt

21.
ˆ

x2x3 dx

22.
ˆ

eπ dx

23.
ˆ

3
x4

dx

24.
ˆ

4x5 − 7
x3

dx

25.
ˆ √

x7 dx

26.
ˆ

x3 − 7x√
x

dx

27.
ˆ

5− 2
3
x2 + 3

4
x3 dx

28.
ˆ

u6 − 2u5 − u3 + 2
7
du

29.
ˆ

(u+ 4)(2u+ 1) du

30.
ˆ √

t(t2 + 3t+ 2) dt

31.
ˆ

1+
√
x+ x√
x

dx

32.
ˆ

sin2 x+ cos2 x dx

33.
ˆ

2+ tan2 θ dθ

34.
ˆ

sec t(sec t+ tan t) dt

35.
ˆ

1− sin2 t
sin2 t

dt

36.
ˆ

sin 2x
sin x

dx

37.
ˆ

4+ 6u√
u

du

38.
ˆ

sin θ + sin θ tan2 θ
sec2

dθ

39.
ˆ

2+ t
3√t2

dt

40.
ˆ

4√x5 + 5√x4 dx

41. This problem invesƟgates why Theorem 32 states thatˆ
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?

(b) Find d
dx

(
ln x
)
.

(c) What is the domain of y = ln(−x)?

(d) Find d
dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of anƟderiva-
Ɵves, depending on whether x > 0 or x < 0. In
one expression, give a formula for

ˆ
1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 42–52, find f(x) described by the given iniƟal value
problem.
42. f ′(x) = sin x and f(0) = 2
43. f ′(x) = 5ex and f(0) = 10
44. f ′(x) = 4x3 − 3x2 and f(−1) = 9
45. f ′(x) = sec2 x and f(π/4) = 5
46. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3
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47. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10

48. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

49. f ′′(θ) = sin θ and f ′(π) = 2, f(π) = 4

50. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

51. f ′(x) = −2
x3

and f(1) = 2

52. f ′(x) = 1√
x
and f(4) = 0

53. An object is moving so that its velocity at Ɵme t is given by
v(t) = 3

√
t. If the object was at the origin at Ɵme t = 0,

find it’s posiƟon s(t) at Ɵme t.

54. A nickel dropped from the top of the North Dakota State
Capital Building has acceleraƟon a(t) = −32 Ō/sec2 (ig-
noring air resistance), iniƟal velocity v(0) = 0, and iniƟal
height s(0) = 241.67 Ō. How long will it take the nickel to
hit the ground?

55. Given the graph of f below, sketch the graph of the an-
ƟderivaƟve F of f that passes through the origin. What do
the graphs of the other anƟderivaƟves of f look like?

2 4

2

4

x

y

56. Given the graph of f below, sketch the graph of the an-
ƟderivaƟve F of f that passes through the origin. What do
the graphs of the other anƟderivaƟves of f look like?

2 4

−2

2

4

x

y

Review
57. Use informaƟon gained from the first and second deriva-

Ɵves to sketch f(x) = 1
ex + 1

.

58. Given y = x2ex cos x, find dy.
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5.2 The Definite Integral

5.2 The Definite Integral
We start with an easy problem. An object travels in a straight line at a constant
velocity of 5 Ō/s for 10 seconds. How far away from its starƟng point is the
object?

We approach this problemwith the familiar “Distance= Rate× Time” equa-
Ɵon. In this case, Distance = 5Ō/s× 10s= 50 feet.

It is interesƟng to note that this soluƟon of 50 feet can be represented graph-
ically. Consider Figure 5.1, where the constant velocity of 5Ō/s is graphed on the
axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 Ō.

5 10

5

t (s)

y (Ō/s)

Figure 5.1: The area under a constant
velocity funcƟon corresponds to distance
traveled.

Now consider a slightly harder situaƟon (and not parƟcularly realisƟc): an
object travels in a straight line with a constant velocity of 5Ō/s for 10 seconds,
then instantly reverses course at a rate of 2Ō/s for 4 seconds. (Since the object
is traveling in the opposite direcƟon when reversing course, we say the velocity
is a constant−2Ō/s.) How far away from the starƟng point is the object – what
is its displacement?

Here we use “Distance= Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10+ (−2) · 4 = 42 Ō.

Hence the object is 42 feet from its starƟng locaƟon.
We can again depict this situaƟon graphically. In Figure 5.2 we have the

velociƟes graphed as straight lines on [0, 10] and [10, 14], respecƟvely. The dis-
placement of the object is

“Area above the t–axis − Area below the t–axis,”

which is easy to calculate as 50− 8 = 42 feet.

5 10 15

−2

5

t (s)

y (Ō/s)

Figure 5.2: The total displacement is the
area above the t–axis minus the area be-
low the t–axis.

Now consider a more difficult problem.

Example 1 Finding posiƟon using velocity
The velocity of an object moving straight up/down under the acceleraƟon of
gravity is given as v(t) = −32t+48, where Ɵme t is given in seconds and velocity
is in Ō/s. When t = 0, the object had a height of 0 Ō.

1. What was the iniƟal velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at Ɵme t = 2?

Notes:
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Chapter 5 IntegraƟon

SÊ½çã®ÊÄ It is straighƞorward to find the iniƟal velocity; at Ɵme t = 0,
v(0) = −32 · 0+ 48 = 48 Ō/s.

To answer quesƟons about the height of the object, we need to find the
object’s posiƟon funcƟon s(t). This is an iniƟal value problem, which we studied
in the previous secƟon. We are told the iniƟal height is 0, i.e., s(0) = 0. We
know s ′(t) = v(t) = −32t+ 48. To find s, we find the indefinite integral of v(t):

s(t) =
ˆ

v(t) dt =
ˆ

(−32t+ 48) dt = −16t2 + 48t+ C.

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maximum of

s. Recalling our work finding extreme values, we find the criƟcal points of s by
seƫng its derivaƟve equal to 0 and solving for t:

s ′(t) = −32t+ 48 = 0 ⇒ t = 48/32 = 1.5s.

(NoƟce how we ended up just finding when the velocity was 0Ō/s.) The first
derivaƟve test shows this is a maximum, so the maximum height of the object
is found at

s(1.5) = −16(1.5)2 + 48(1.5) = 36Ō.

The height at Ɵme t = 2 is now straighƞorward to compute: it is s(2) = 32Ō.

While we have answered all three quesƟons, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure 5.3 shows a graph of v(t) on axes from t = 0 to t = 3. It is again
straighƞorward to find v(0). How can we use the graph to find the maximum
height of the object?

1 2 3

−50

50

t (s)

y (Ō/s)

Figure 5.3: A graph of v(t) = −32t +
48; the shaded areas help determine dis-
placement.

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t–axis that is below the
t–axis counted as “negaƟve” area. That is, it represents the object coming back
toward its starƟng posiƟon. So to find the maximum distance from the starƟng
point – the maximum height – we find the area under the velocity line that is
above the t–axis, i.e., from t = 0 to t = 1.5. This region is a triangle; its area is

Area =
1
2
Base× Height =

1
2
× 1.5s× 48Ō/s = 36Ō,

which matches our previous calculaƟon of the maximum height.
Finally, we find the total signed area under the velocity funcƟon from t = 0

to t = 2 to find the s(2), the height at t = 2, which is a displacement, the
distance from the current posiƟon to the starƟng posiƟon. That is,

Notes:
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5.2 The Definite Integral

Displacement = Area above the t–axis− Area below t–axis.

The regions are triangles, and we find

Displacement =
1
2
(1.5s)(48Ō/s)− 1

2
(.5s)(16Ō/s) = 32Ō.

This also matches our previous calculaƟon of the height at t = 2.
NoƟce howweanswered each quesƟon in this example in twoways. Our first

methodwas tomanipulate equaƟons using our understanding of anƟderivaƟves
and derivaƟves. Our second method was geometric: we answered quesƟons
looking at a graph and finding the areas of certain regions of this graph.

The above example does not prove a relaƟonship between area under a ve-
locity funcƟon and displacement, but it does indicate that there may be a rela-
Ɵonship. SecƟon 5.4 will fully establish fact that the area under a velocity func-
Ɵon is displacement.

Given a graph of a conƟnuous funcƟon y = f(x), we will find that there is
great use in compuƟng the area between the curve y = f(x) and the x-axis.
Because of this, we need to define some terms. The total signed area from
x = a to x = b under a conƟnuous funcƟon f is

(area under f and above the x–axis on [a, b])−
(area above f and under the x–axis on [a, b]).

DefiniƟon 23 The Definite Integral
Let y = f(x) be conƟnuous on a closed interval [a, b]. The definite inte-
gral of f on [a, b] is the total signed area of f on [a, b], denoted

ˆ b

a
f(x) dx,

where a and b are the bounds of integraƟon.

By our definiƟon, the definite integral gives the “signed area under f.” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f ” or, more commonly,
“the area under the curve.”

The previous secƟon introduced the indefinite integral, which is related to
anƟderivaƟves. We have now defined the definite integral, which relates to ar-
eas under a curve. The two are very much related, as we’ll see when we learn

Notes:
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the Fundamental Theorem of Calculus in SecƟon 5.4. Recall that earlier we said
that the “

´
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this notaƟon makes a bit more sense, as we
are adding up areas under the funcƟon f.

We pracƟce using this notaƟon.

Example 2 EvaluaƟng definite integrals
Consider the funcƟon f given in Figure 5.4. Find:

1 2 3 4 5

−1

1

x

y

Figure 5.4: A graph of f(x) in Example 2.

1.
ˆ 3

0
f(x) dx

2.
ˆ 5

3
f(x) dx

3.
ˆ 5

0
f(x) dx

4.
ˆ 3

0
5f(x) dx

5.
ˆ 1

1
f(x) dx

SÊ½çã®ÊÄ

1.
´ 3
0 f(x) dx is the area under f on the interval [0, 3]. This region is a triangle,
so the area is

´ 3
0 f(x) dx = 1

2 (3)(1) = 1.5.

2.
´ 5
3 f(x) dx represents the area of the triangle found under the x–axis on
[3, 5]. The area is 1

2 (2)(1) = 1; since it is found under the x–axis, this is
“negaƟve area.” Therefore

´ 5
3 f(x) dx = −1.

3.
´ 5
0 f(x) dx is the total signed area under fon [0, 5]. This is 1.5+(−1) = 0.5.

4.
´ 3
0 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.5.
Again, the region is a triangle, with height 5 Ɵmes that of the height of
the original triangle. Thus the area is

´ 3
0 5f(x) dx = 15/2 = 7.5.

1 2 3 4 5

−5

5

x

y

Figure 5.5: A graph of 5f in Example 2.
(Yes, it looks just like the graph of f in Fig-
ure 5.4, just with a different y-scale.)

5.
´ 1
1 f(x) dx is the area under f on the “interval” [1, 1]. This describes a line
segment, not a region; it has no width. Therefore the area is 0.

This example illustrates some of the properƟes of the definite integral, given
in Theorem 34.

So far, when we have computed a definite integral
´ b
a f(x) dx, we have re-

quired that a ≤ b. In pracƟce, it is someƟmes convenient to be able to compute´ b
a f(x) dx for a > b. To do so, we introduce the convenƟon that for any a and
b,
´ b
a f(x) dx = −

´ a
b f(x) dx. It will be clear why this makes sense aŌer we intro-

duce Riemann sums.

Notes:
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5.2 The Definite Integral

Theorem 34 ProperƟes of the Definite Integral
Let f and g be conƟnuous on a closed interval I that contains the values
a, b, and c, and let k be a constant. The following hold:

1.
ˆ a

a
f(x) dx = 0

2.
ˆ b

a
f(x) dx = −

ˆ a

b
f(x) dx

3.
ˆ b

a
f(x) dx+

ˆ c

b
f(x) dx =

ˆ c

a
f(x) dx

4.
ˆ b

a
(f(x)± g(x)) dx =

ˆ b

a
f(x) dx±

ˆ b

a
g(x) dx

5.
ˆ b

a
k · f(x) dx = k ·

ˆ b

a
f(x) dx

We will jusƟfy these properƟes aŌer introducing Riemann sums. For now,
we note that properƟes 1 and 5 are illustrated in Example 2 and property 2 is
our convenƟon from above. To see why property 3 makes sense geometrically,
consider the figure below:

a b c

x

y

Property 3 says that the total area under this curve should be the sum of the
area under the curve from a to b and the area under the curve from b to c.

What if the picture were like the following?

Notes:
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a c b

x

y

Then we have ˆ b

a
f(x) dx =

ˆ c

a
f(x) dx+

ˆ b

c
f(x) dx

and we can apply property 2.
ˆ c

a
f(x) dx =

ˆ b

a
f(x) dx−

ˆ b

c
f(x) dx, so property 2 yields

ˆ c

a
f(x) dx =

ˆ b

a
f(x) dx+

ˆ c

b
f(x) dx

Example 3 EvaluaƟng definite integrals using Theorem 34.
Consider the graph of a funcƟon f(x) shown in Figure 5.6. Answer the following:

a b c
x

y

Figure 5.6: A graph of a funcƟon in Exam-
ple 3.

1. Which value is greater:
ˆ b

a
f(x) dx or

ˆ c

b
f(x) dx?

2. Is
ˆ c

a
f(x) dx greater or less than 0?

3. Which value is greater:
ˆ b

a
f(x) dx or

ˆ b

c
f(x) dx?

SÊ½çã®ÊÄ

1.
´ b
a f(x) dx has a posiƟve value (since the area is above the x–axis) whereas´ c
b f(x) dx has a negaƟve value. Hence

´ b
a f(x) dx is bigger.

2.
´ c
a f(x) dx is the total signed area under f between x = a and x = c. Since
the region below the x–axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Note how the second integral has the bounds “reversed.” Therefore
´ b
c f(x)dx

represents a posiƟve number, greater than the area described by the first
definite integral. Hence

´ b
c f(x) dx is greater.

Notes:
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5.2 The Definite Integral

The area definiƟon of the definite integral allows us to use geometry to com-
pute the definite integral of some simple funcƟons.

(−2,−8)

(5, 6)

R1

R2

−2 2 5

−10

−5

5

10

x

y

(a)

−3 3

5

x

y

(b)

Figure 5.7: A graph of f(x) = 2x − 4 in
(a) and f(x) =

√
9− x2 in (b), from Ex-

ample 4.

Example 4 EvaluaƟng definite integrals using geometry
Evaluate the following definite integrals:

1.
ˆ 5

−2
(2x− 4) dx 2.

ˆ 3

−3

√
9− x2 dx.

SÊ½çã®ÊÄ

1. It is useful to sketch the funcƟon in the integrand, as shown in Figure 5.7(a).
We see we need to compute the areas of two regions, which we have la-
beled R1 and R2. Both are triangles, so the area computaƟon is straight-
forward:

R1 :
1
2
(4)(8) = 16 R2 :

1
2
(3)6 = 9.

Region R1 lies under the x–axis, hence it is counted as negaƟve area (we
can think of the triangle’s height as being “−8”), so

ˆ 5

−2
(2x− 4) dx = −16+ 9 = −7.

2. Recognize that the integrand of this definite integral describes a half circle,
as sketched in Figure 5.7(b), with radius 3. Thus the area is:

ˆ 3

−3

√
9− x2 dx =

1
2
πr2 =

9
2
π.

11 11

38

−5

5

10

15

a b c
t (s)

y (Ō/s)

Figure 5.8: A graph of a velocity in Exam-
ple 5.

Example 5 Understanding moƟon given velocity
Consider the graph of a velocity funcƟon of an object moving in a straight line,
given in Figure 5.8, where the numbers in the given regions gives the area of that
region. Assume that the definite integral of a velocity funcƟon gives displace-
ment. Find the maximum speed of the object and its maximum displacement
from its starƟng posiƟon.

SÊ½çã®ÊÄ Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15Ō/s.

Note: The displacement of the object
is different from the distance trav-
eled since the object moves back-
wards and forwards at different Ɵmes
in this example. The displacement
measures how far the object is from
where it started, without regard for
how far it actually traveled to get
there.

At Ɵme t = 0, the displacement is 0; the object is at its starƟng posiƟon.
At Ɵme t = a, the object has moved backward 11 feet. Between Ɵmes t =
a and t = b, the object moves forward 38 feet, bringing it into a posiƟon 27
feet forward of its starƟng posiƟon. From t = b to t = c the object is moving

Notes:
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backwards again, hence its maximum displacement is 27 feet from its starƟng
posiƟon.

We can also analyze the displacement by drawing the path of the parƟcle’s
locaƟon as Ɵme varies, as in Figure 5.9.

0

16

−11

27

Figure 5.9: Number line for Example 5.
The object starts at the origin, and moves to the leŌ with a negaƟve velocity 11
units. It then reverses direcƟon and moves to the right with a posiƟve velocity
38 units, arriving at 27. Finally, it reverses direcƟon again and moves to the leŌ
with a negaƟve velocity 11 units, ending at 26.

Watch the video:
Definite Integral as Area 2— Breaking Up the Region
at
https://youtu.be/Z7uyQjcFSy4

1 2 3

5

10

x

y

Figure 5.10: What is the area below y =
x2 on [0, 3]? The region is not a usual ge-
ometric shape.

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.10, where a region below y = x2 is shaded. What
is its area? The funcƟon y = x2 is relaƟvely simple, yet the shape it defines has
an area that is not simple to find geometrically.

In the next secƟon we will explore how to find the areas of such regions.

Notes:
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Exercises 5.2
Terms and Concepts

1. What is “total signed area”?

2. What is “displacement”?

3. What is
ˆ 3

3
sin x dx?

4. Give a single definite integral that has the same value asˆ 1

0
(2x+ 3) dx+

ˆ 2

1
(2x+ 3) dx.

Problems

In Exercises 5–9, a graph of a funcƟon f(x) is given. Using the
geometry of the graph, evaluate the definite integrals.

5.

y = −2x + 4

2 4

−4

−2

2

4

x

y

(a)
ˆ 1

0
(−2x+ 4) dx

(b)
ˆ 2

0
(−2x+ 4) dx

(c)
ˆ 3

0
(−2x+ 4) dx

(d)
ˆ 3

1
(−2x+ 4) dx

(e)
ˆ 4

2
(−2x+ 4) dx

(f)
ˆ 1

0
(−6x+ 12) dx

6.

y = f(x)

1 2 3 4 5

−2

−1

1

2

x

y

(a)
ˆ 2

0
f(x) dx

(b)
ˆ 3

0
f(x) dx

(c)
ˆ 5

0
f(x) dx

(d)
ˆ 5

2
f(x) dx

(e)
ˆ 3

5
f(x) dx

(f)
ˆ 3

0
−2f(x) dx

7. y = f(x)

1 2 3 4

2

4

x

y

(a)
ˆ 2

0
f(x) dx

(b)
ˆ 4

2
f(x) dx

(c)
ˆ 4

2
2f(x) dx

(d)
ˆ 1

0
4x dx

(e)
ˆ 3

2
(2x− 4) dx

(f)
ˆ 3

2
(4x− 8) dx

8.

y = x − 1

1 2 3 4

−1

1

2

3

x

y

(a)
ˆ 1

0
(x− 1) dx

(b)
ˆ 2

0
(x− 1) dx

(c)
ˆ 3

0
(x− 1) dx

(d)
ˆ 3

2
(x− 1) dx

(e)
ˆ 4

1
(x− 1) dx

(f)
ˆ 4

1

(
(x− 1) + 1

)
dx

9.
f(x) =

√
4 − (x − 2)2

1 2 3 4

1

2

3

x

y

(a)
ˆ 2

0
f(x) dx

(b)
ˆ 4

2
f(x) dx

(c)
ˆ 4

0
f(x) dx

(d)
ˆ 4

0
5f(x) dx

In Exercises 10–13, a graph of a funcƟon f(x) is given; the num-
bers inside the shaded regions give the area of that region.
Evaluate the definite integrals using this area informaƟon.
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10.

y = f(x)

59

11 21

1 2 3

−100

−50

50

x

y

(a)
ˆ 1

0
f(x) dx

(b)
ˆ 2

0
f(x) dx

(c)
ˆ 3

0
f(x) dx

(d)
ˆ 2

1
−3f(x) dx

(e)
ˆ 2

0
|f(x)| dx

(f)
ˆ 3

0
|f(x)| dx

11.

f(x) = sin(πx/2)
4/π

4/π

1 2 3 4

−1

1

x

y

(a)
ˆ 2

0
f(x) dx

(b)
ˆ 4

2
f(x) dx

(c)
ˆ 4

0
f(x) dx

(d)
ˆ 1

0
f(x) dx

(e)
ˆ 2

0
|f(x)| dx

(f)
ˆ 4

0
|f(x)| dx

12.

f(x) = 3x2 − 3

4 4

4−2 −1 1 2

−5

5

10

x

y

(a)
ˆ −1

−2
f(x) dx

(b)
ˆ 2

1
f(x) dx

(c)
ˆ 1

−1
f(x) dx

(d)
ˆ 1

0
f(x) dx

(e)
ˆ 2

0
|f(x)| dx

(f)
ˆ 1

0
|f(x)| dx

13.

f(x) = x2

1/3 7/3

1 2

1

2

3

4

x

y

(a)
ˆ 2

0
5x2 dx

(b)
ˆ 2

0
(x2 + 3) dx

(c)
ˆ 3

1
(x− 1)2 dx

(d)
ˆ 4

2

(
(x− 2)2 + 5

)
dx

In Exercises 14–15, a graph of the velocity funcƟon of an object
moving in a straight line is given. Answer the quesƟons based
on that graph.

14.

1 2 3

−1

1

2

t (s)

y (Ō/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [0, 3]?

15.

1 2 3 4 5

1

2

3

t (s)

y (Ō/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [0, 5]?

16. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t+ 64, where t is in seconds, from a height
of 48 feet.

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) When does the maximum displacement occur?

(d) When will the object reach a height of 0? (Hint: find
when the displacement is−48Ō.)

238



17. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t+ 96, where t is in seconds, from a height
of 64 feet.

(a) What is the object’s iniƟal velocity?

(b) When is the object’s displacement 0?

(c) How long does it take for the object to return to its
iniƟal height?

(d) When will the object reach a height of 210 feet?

In Exercises 18–21, let

•
ˆ 2

0
f(x) dx = 5,

•
ˆ 3

0
f(x) dx = 7,

•
ˆ 2

0
g(x) dx = −3, and

•
ˆ 3

2
g(x) dx = 5.

Use these values to evaluate the given definite integrals.

18.
ˆ 2

0

(
f(x) + g(x)

)
dx

19.
ˆ 3

0

(
f(x)− g(x)

)
dx

20.
ˆ 3

2

(
3f(x) + 2g(x)

)
dx

21. Find values for a and b such thatˆ 3

0

(
af(x) + bg(x)

)
dx = 0

In Exercises 22–25, let

•
ˆ 3

0
s(t) dt = 10,

•
ˆ 5

3
s(t) dt = 8,

•
ˆ 5

3
r(t) dt = −1, and

•
ˆ 5

0
r(t) dt = 11.

Use these values to evaluate the given definite integrals.

22.
ˆ 3

0

(
s(t) + r(t)

)
dt

23.
ˆ 0

5

(
s(t)− r(t)

)
dt

24.
ˆ 3

3

(
πs(t)− 7r(t)

)
dt

25. Find values for a and b such thatˆ 5

0

(
ar(t) + bs(t)

)
dt = 0

Review
In Exercises 26–29, evaluate the given indefinite integral.

26.
ˆ (

x3 − 2x2 + 7x− 9
)
dx

27.
ˆ (

sin x− cos x+ sec2 x
)
dx

28.
ˆ ( 3√t+ 1

t2
+ 2t

)
dt

29.
ˆ (

1
x
− csc x cot x

)
dx
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Chapter 5 IntegraƟon

5.3 Riemann Sums
In the previous secƟon we defined the definite integral of a funcƟon on [a, b] to
be the signed area between the curve and the x–axis. Some areas were simple
to compute; we ended the secƟon with a region whose area was not simple to
compute. In this secƟon we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximaƟon, then refine that approximaƟon to make it beƩer, then use limits
in the refining process to find the exact answer. That is exactly what we will do
here.

Consider the region given in Figure 5.11, which is the area under y = 4x−x2

on [0, 4]. What is the signed area of this region – i.e., what is
ˆ 4

0
(4x− x2) dx?

1 2 3 4

1

2

3

4

x

y

Figure 5.11: A graph of f(x) = 4x − x2.
What is the area of the shaded region?

We start by approximaƟng. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over–approximaƟon; we are including area in the rectangle
that is not under the parabola.

We have an approximaƟon of the area, using one rectangle. How can we
refine our approximaƟon tomake it beƩer? The key to this secƟon is this answer:
use more rectangles.

Let’s use 4 rectangles of equal width of 1. This parƟƟons the interval [0, 4]
into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval we will
draw a rectangle.

There are three common ways to determine the height of these rectangles:
the LeŌ Hand Rule, the Right Hand Rule, and theMidpoint Rule. The LeŌ Hand
Rule says to evaluate the funcƟon at the leŌ–hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.12, the rectangle drawn on the
interval [2, 3] has height determined by the LeŌ Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

RHR MPR LHR other

1 2 3 4

1

2

3

4

x

y

Figure 5.12: ApproximaƟng
´ 4
0 (4x−x2) dx

using rectangles. The heights of the
rectangles are determined using different
rules.

The Right Hand Rule says the opposite: on each subinterval, evaluate the
funcƟon at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the funcƟon at
the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap-
proximaƟng rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

Notes:
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5.3 Riemann Sums

The following example will approximate the value of
ˆ 4

0
(4x − x2) dx using

these rules.

Example 1 Using the LeŌ Hand, Right Hand and Midpoint Rules

Approximate the value of
ˆ 4

0
(4x − x2) dx using the LeŌ Hand Rule, the Right

Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

SÊ½çã®ÊÄ We break the interval [0, 4] into four subintervals as before.
In Figure 5.13 we first see 4 rectangles drawn on f(x) = 4x − x2 using the LeŌ
Hand Rule. (The areas of the rectangles are given in each figure.)

0 3 4 3
1 2 3 4

1

2

3

4

x

y

LeŌ Hand Rule

3 4 3 0
1 2 3 4

1

2

3

4

x

y

Right Hand Rule

1.75 3.75 3.75 1.75
1 2 3 4

1

2

3

4

x

y

Midpoint Rule

Figure 5.13: ApproximaƟng
´ 4
0 (4x−x2) dx

in Example 1.

Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0.
We add up the areas of each rectangle (height× width) for our LeŌ Hand Rule
approximaƟon:

f(0) · 1+ f(1) · 1+ f(2) · 1+ f(3) · 1 =

0+ 3+ 4+ 3 = 10.

Figure 5.13 next shows 4 rectangles drawn under f using the Right Hand Rule;
note how the [3, 4] subinterval has a rectangle of height 0.

These rectangle seem to be the mirror image of those found with the LeŌ
Hand Rule. (This is because of the symmetry of our shaded region.) Our approx-
imaƟon gives the same answer as before, though calculated a different way:

f(1) · 1+ f(2) · 1+ f(3) · 1+ f(4) · 1 =

3+ 4+ 3+ 0 = 10.

Figure 5.13 last shows 4 rectangles drawn under f using the Midpoint Rule.

This gives an approximaƟon of
ˆ 4

0
(4x− x2) dx as:

f(0.5) · 1+ f(1.5) · 1+ f(2.5) · 1+ f(3.5) · 1 =

1.75+ 3.75+ 3.75+ 1.75 = 11.

Our three methods provide two approximaƟons of
ˆ 4

0
(4x− x2) dx: 10 and 11.

SummaƟon NotaƟon
It is hard to tell at this moment which is a beƩer approximaƟon: 10 or 11? We
can conƟnue to refineour approximaƟonbyusingmore rectangles. The notaƟon

Notes:
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Chapter 5 IntegraƟon

can become unwieldy, though, as we add up longer and longer lists of numbers.
We introduce summaƟon notaƟon to ameliorate this problem.

Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
wriƟng

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summaƟon notaƟon and write

9∑
i=1

ai

Lets analyze this notaƟon.

9∑
i=1

ai.

i=index
of summaƟon

lower
bound

upper
bound summand

summaƟon
symbol

(an upper case
sigma)

Figure 5.14: Understanding summaƟon notaƟon.
The upper case sigma,

∑
, represents the term “sum.” The index of summa-

Ɵon in this example is i; any symbol can be used. By convenƟon, the index takes
on only the integer values between (and including) the lower and upper bounds.

Let’s pracƟce using this notaƟon.

Example 2 Using summaƟon notaƟon
Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where i ≥ 1. So
a1 = 1, a2 = 3, a3 = 5, etc. (The output is the posiƟve odd integers). Evaluate
the following summaƟons:

1.
6∑

i=1

ai 2.
7∑

i=3

(3ai − 4) 3.
4∑

i=1

(ai)2

SÊ½çã®ÊÄ

1.
6∑

i=1

ai = a1 + a2 + a3 + a4 + a5 + a6

= 1+ 3+ 5+ 7+ 9+ 11
= 36.

Notes:
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5.3 Riemann Sums

2. Note the starƟng value is different than 1:
7∑

i=3

(3ai − 4) = (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)

= 11+ 17+ 23+ 29+ 35
= 115.

3. 4∑
i=1

(ai)2 = (a1)2 + (a2)2 + (a3)2 + (a4)2

= 12 + 32 + 52 + 72

= 84

It might seem odd to stress a new, concise way of wriƟng summaƟons only
to write each term out as we add them up. It is. The following theorem gives
some of the properƟes of summaƟons that allow us to work with them without
wriƟng individual terms. Examples will follow.

Theorem 35 ProperƟes of SummaƟons

1.
n∑

i=1

c = c · n, where c is a constant.

2.
n∑

i=m

(ai ± bi) =
n∑

i=m

ai ±
n∑

i=m

bi

3.
n∑

i=m

c · ai = c ·
n∑

i=m

ai

4.
j∑

i=m

ai +
n∑

i=j+1

ai =
n∑

i=m

ai

5.
n∑

i=1

i =
n(n+ 1)

2

6.
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

7.
n∑

i=1

i3 =
(
n(n+ 1)

2

)2

Note: In pracƟce we will someƟmes need variaƟons on formulas 5, 6, and 7
above. For example, we note that

n∑
i=0

i = 0+ 1+ 2+ · · ·+ n = 0+
n∑

i=1

i = 0+
n(n+ 1)

2
=

n(n+ 1)
2

,

Notes:
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Chapter 5 IntegraƟon

so we see that
n∑

i=0

i =
n(n+ 1)

2
.

Similarly, we find that
n∑

i=0

i2 =
n(n+ 1)(2n+ 1)

6
, and

n∑
i=0

i3 =
(
n(n+ 1)

2

)2

Example 3 EvaluaƟng summaƟons using Theorem 35
Revisit Example 2 and, using Theorem 35, evaluate

6∑
i=1

ai =
6∑

i=1

(2i− 1).

SÊ½çã®ÊÄ

6∑
i=1

(2i− 1) =
6∑

i=1

2i−
6∑

i=1

(1) (Theorem 35(2))

=

(
2

6∑
i=1

i

)
−

6∑
i=1

(1) (Theorem 35(3))

= 2
(
6(6+ 1)

2

)
− 6 (Theorem 35(1,5))

= 2(21)− 6 = 36

We obtained the same answer without wriƟng out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 35 is incredibly important when dealing with large sums as we’ll soon
see.

Riemann Sums

Consider again
ˆ 4

0
(4x− x2) dx. We will approximate this definite integral using

16 equally spaced subintervals and the Right Hand Rule in Example 4. Before
doing so, it will pay to do some careful preparaƟon.

0 1 2 3 4
x0 x4 x8 x12 x16

Figure 5.15: Dividing [0, 4] into 16 equally
spaced subintervals. Notes:

244



5.3 Riemann Sums

Figure 5.15 shows a number line of [0, 4] subdivided into 16 equally spaced
subintervals. We denote 0 as x0; we have marked the values of x4, x8, x12, and
x16. We could mark them all, but the figure would get crowded. While it is easy
to figure that x9 = 2.25, in general, we want a method of determining the value
of xi without consulƟng the figure. Consider:

xi = x0 + i∆x

starƟng
value

number of
subintervals

between x0 and xi

subinterval
size

So x9 = x0 + 9(4/16) = 9/4 = 2.25.
If we had parƟƟoned [0, 4] into 100 equally spaced subintervals, each subin-

terval would have length∆x = 4/100 = 0.04. We could compute x31 as

x31 = x0 + 31(4/100) = 124/100 = 1.24.

(That was far faster than creaƟng a sketch first.)
Given any subdivision of [0, 4], the first subinterval is [x0, x1]; the second is

[x1, x2]; the ith subinterval is [xi−1, xi].
When using the LeŌ Hand Rule, the height of the ith rectangle will be f(xi−1).
When using the Right Hand Rule, the height of the ith rectangle will be f(xi).

When using theMidpoint Rule, the height of the ith rectangle will be f
(

xi−1+xi
2

)
.

Thus approximaƟng
ˆ 4

0
(4x− x2) dxwith 16 equally spaced subintervals can

be expressed as follows, where∆x = 4/16 = 1/4:

LeŌ Hand Rule:
16∑
i=1

f(xi−1)∆x

Right Hand Rule:
16∑
i=1

f(xi)∆x

Midpoint Rule:
16∑
i=1

f
(
xi−1 + xi

2

)
∆x

Notes:
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Chapter 5 IntegraƟon

Watch the video:
CalculaƟng a Definite Integral Using Riemann Sums
— Part 1 at
https://youtu.be/gFpHHTxsDkI

Weuse these formulas in the next two examples. The following example lets
us pracƟce using the LeŌ Hand Rule and the summaƟon formulas introduced in
Theorem 35.

Example 4 ApproximaƟng definite integrals using sums

Approximate
ˆ 4

0
(4x−x2) dx using the Right Hand Rule and summaƟon formulas

with 16 and 1000 equally spaced intervals.

SÊ½çã®ÊÄ Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16∑
i=1

f(xi)∆x.

We have ∆x = 4/16 = 0.25, xi = 0 + i∆x = i∆x, and f(xi) = f(i∆x) =
4i∆x− i2∆x2. Using the summaƟon formulas, we see:

ˆ 4

0
(4x− x2) dx ≈

16∑
i=1

f(xi)∆x

=

16∑
i=1

f(i∆x)∆x

=

16∑
i=1

(4i∆x− i2(∆x)2)∆x (from above)

=

16∑
i=1

(4i(∆x)2 − i2(∆x)3)

=

16∑
i=1

4i(∆x)2 −
16∑
i=1

i2(∆x)3 (Theorem 35(2))

Notes:
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5.3 Riemann Sums

= 4(∆x)2
16∑
i=1

i− (∆x)3
16∑
i=1

i2 (*) (Theorem 35(3))

= 4
(
1
4

)2(
(16)(17)

2

)
−
(
1
4

)3(
(16)(17)(33)

6

)
(Theorem 35(5,6))

= 34− 187
8

=
85
8

= 10.625

Wewere able to sum up the areas of 16 rectangles with very liƩle computaƟon.

1 2 3 4
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x

y

Figure 5.16: ApproximaƟng
´ 4
0 (4x−x2) dx

with the Right Hand Rule and 16 evenly
spaced subintervals.

In Figure 5.16 the funcƟon and the 16 rectangles are graphed. While some rect-
angles over-approximate the area, others under-approximate the area by about
the same amount. Thus our approximate area of 10.625 is likely a fairly good
approximaƟon.

NoƟce EquaƟon (*); by changing the 16’s to 1000’s and changing the value
of ∆x to 4/1000 = 0.004, we can use the equaƟon to sum up the areas of
1000 rectangles. We do so here, skipping from the original summand to the
equivalent of EquaƟon (*) to save space.
ˆ 4

0
(4x− x2) dx ≈

1000∑
i=1

f(xi)∆x

= 4(∆x)2
1000∑
i=1

i− (∆x)3
1000∑
i=1

i2

= 4(.004)2
(
(1000)(1001)

2

)
− (0.004)3

(
(1000)(1001)(2001)

6

)
= 10.666656

Usingmany,many rectangles, we likely have a good approximaƟonof
ˆ 4

0
(4x−

x2) dx. That is, ˆ 4

0
(4x− x2) dx ≈ 10.666656.

Before the above example, we statedwhat the summaƟons for the LeŌHand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as∆x, and

2. each rectangle’s height is determined by evaluaƟng f at a parƟcular point
in each subinterval. For instance, the LeŌ Hand Rule states that each rect-
angle’s height is determined by evaluaƟng f at the leŌ hand endpoint of
the subinterval the rectangle lives on.

Notes:
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Chapter 5 IntegraƟon

One could parƟƟon an interval [a, b]with subintervals that did not have the same
size. We refer to the length of the first subinterval as∆x1, the length of the sec-
ond subinterval as∆x2, and so on, giving the length of the i th subinterval as∆xi.
Also, one could determine each rectangle’s height by evaluaƟng f at any point in
the i th subinterval. We refer to the point picked in the first subinterval as c1, the
point picked in the second subinterval as c2, and so on, with ci represenƟng the
point picked in the i th subinterval. Thus the height of the i th subinterval would
be f(ci), and the area of the i th rectangle would be f(ci)∆xi.

SummaƟons of rectangleswith area f(ci)∆xi are named aŌermathemaƟcian
Georg Friedrich Bernhard Riemann, as given in the following definiƟon.

DefiniƟon 24 Riemann Sum
Let f be defined on the closed interval [a, b] and let∆x be a parƟƟon of
[a, b], with

a = x0 < x1 < . . . < xn−1 < xn = b.

Let ∆xi denote the length of the i th subinterval [xi−1, xi] and let ci de-
note any value in the i th subinterval. The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].

1 2 3 4

1

2

3

4

x

y

Figure 5.17: An example of a general Rie-
mann sum to approximate

´ 4
0 (4x−x2) dx.

Figure 5.17 shows the approximaƟng rectangles of a Riemann sumof
ˆ 4

0
(4x−

x2) dx. While the rectangles in this example do not approximate well the shaded
area, they demonstrate that the subinterval widths may vary and the heights of
the rectangles can be determined without following a parƟcular rule.

Usually, Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construcƟon makes computaƟons easier.
We have ∆xi = ∆x =

b− a
n

and the i th term of the parƟƟon is xi = a + i∆x.
Then the LeŌ Hand Rule uses ci = xi−1, the Right Hand Rule uses ci = xi, and
the Midpoint Rule uses ci =

xi−1 + xi
2

.
Let’s do another example.

Example 5 ApproximaƟng definite integrals with sums

Approximate
ˆ 3

−2
(5x + 2) dx using the Midpoint Rule and 10 equally spaced

intervals.

Notes:
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5.3 Riemann Sums

SÊ½çã®ÊÄ We see that

∆x =
3− (−2)

10
=

1
2

and xi = (−2) + 1
2
i =

i
2
− 2.

As we are using the Midpoint Rule, we will also need xi−1 and
xi−1 + xi

2
. Since

xi = i
2 −

5
2 , xi−1 =

i−1
2 − 2 = i

2 −
5
2 . This gives

xi−1 + xi
2

=
( i
2 −

5
2 ) + ( i

2 − 2)
2

=
i− 9

2
2

=
i
2
− 9

4
.

We now construct the Riemann sum and compute its value using summaƟon
formulas. ˆ 3

−2
(5x+ 2) dx ≈

10∑
i=1

f
(
xi−1 + xi

2

)
∆x

=

10∑
i=1

f
(

i
2
− 9

4

)
∆x

=

10∑
i=1

(
5
(

i
2
− 9

4

)
+ 2
)(

1
2

)

=

10∑
i=1

(
5i
4
− 37

8

)

=

(
5
4

10∑
i=1

(i)−
10∑
i=1

(
37
8

))

=

(
5
4
· (10)(11)

2
− 10 · 37

8

)
=

45
2

= 22.5

−2 −1 1 2 3

10

17

−8

x

y

Figure 5.18: ApproximaƟng
´ 3
−2(5x +

2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Example 5.

Note the graph of f(x) = 5x + 2 in Figure 5.18. The regions whose area is
computed by the definite integral are triangles, meaning we can find the exact
answer without summaƟon techniques. We find that the exact answer is indeed
22.5. One of the strengths of the Midpoint Rule is that oŌen each rectangle
includes area that should not be counted, but misses other area that should.
When∆x is small, these two amounts are about equal and these errors almost
“subtract each other out.” In this example, since our funcƟon is a line, these
errors are exactly equal and they do subtract each other out, giving us the exact
answer.

Note too thatwhen the funcƟon is negaƟve, the rectangles have a “negaƟve”
height. When we compute the area of the rectangle, we use f(ci)∆x; when f is
negaƟve, the area is counted as negaƟve.

Notes:
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NoƟce in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculaƟons unƟl the very end.
MathemaƟcians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, where we do not specify a value of n unƟl the very
end.

Example 6 ApproximaƟng definite integrals with a sum formula

Revisit
ˆ 4

0
(4x − x2) dx yet again. Approximate this definite integral using the

Right Hand Rule with n equally spaced subintervals.

SÊ½çã®ÊÄ We see that∆x =
4− 0
n

=
4
n
. We also find xi = 0+∆xi =

4i
n
.
We construct the Right Hand Rule Riemann sum as follows. Be sure to fol-

low each step carefully. If you get stuck, and do not understand how one line
proceeds to the next, you may skip to the result and consider how this result
is used. You should come back, though, and work through each step for full
understanding.
ˆ 4

0
(4x− x2) dx ≈

n∑
i=1

f(xi)∆x

=

n∑
i=1

f
(
4i
n

)
∆x

=

n∑
i=1

[
4
4i
n
−
(
4i
n

)2
]
4
n

=

n∑
i=1

(
64
n2

)
i−

n∑
i=1

(
64
n3

)
i2

=

(
64
n2

) n∑
i=1

i−
(
64
n3

) n∑
i=1

i2

=

(
64
n2

)
· n(n+ 1)

2
−
(
64
n3

)
n(n+ 1)(2n+ 1)

6

=
32(n+ 1)

n
− 32(n+ 1)(2n+ 1)

3n2
(now simplify)

=
32
3

(
1− 1

n2

)
The result is an amazing, easy to use formula. To approximate the definite

integral with 10 equally spaced subintervals and the Right Hand Rule, set n = 10

Notes:
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5.3 Riemann Sums

and compute
ˆ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.

Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

It is noweasy to approximate the integralwith 1,000,000 subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of
10.66666667. (The actual answer is 10.666666666656.)

We now take an important leap. Up to this point, our mathemaƟcs has been
limited to geometry and algebra (finding areas and manipulaƟng expressions).
Now we apply calculus. For any finite n, we know that

ˆ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.

Both common sense and high–level mathemaƟcs tell us that as n gets large, the
approximaƟon gets beƩer. In fact, if we take the limit as n → ∞, we get the

exact area described by
ˆ 4

0
(4x− x2) dx. That is,

ˆ 4

0
(4x− x2) dx = lim

n→∞

32
3

(
1− 1

n2

)
=

32
3

(1− 0)

=
32
3

= 10.6

This is a fantasƟc result. By considering n equally–spaced subintervals, we ob-
tained a formula for an approximaƟon of the definite integral that involved our
variable n. As n grows large – without bound – the error shrinks to zero and we
obtain the exact area.

This secƟon started with a fundamental calculus technique: make an ap-
proximaƟon, refine the approximaƟon to make it beƩer, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s pracƟce this again.

Example 7 ApproximaƟng definite integrals with a sum formula

Find a formula that approximates
ˆ 5

−1
x3 dx using the Right Hand Rule and n

equally spaced subintervals, then take the limit as n → ∞ to find the exact
area.
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SÊ½çã®ÊÄ We see that ∆x = 5−(−1)
n = 6

n and xi = (−1) + i∆x =
−1+ 6i

n .
The Riemann sum corresponding to the Right Hand Rule is (followed by sim-

plificaƟons):
ˆ 5

−1
x3 dx ≈

n∑
i=1

f(xi)∆x

=

n∑
i=1

f(−1+ i∆x)∆x

=

n∑
i=1

(
−1+ i

6
n

)3 6
n

=

n∑
i=1

1296i3

n4
− 648i2

n3
+

108i
n2
− 6

n

=
1296
n4

n∑
i=1

i3 − 648
n3

n∑
i=1

i2 +
108
n2

n∑
i=1

i−
n∑

i=1

6
n

=
1296
n4

(
n(n+ 1)

2

)2

− 648
n3

n(n+ 1)(2n+ 1)
6

+
108
n2

n(n+ 1)
2

− 6

= 156+
378
n

+
216
n2

(aŌer a sizable amount of algebra)

Once again, we have found a compact formula for approximaƟng the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approximaƟon of 195.96 (these rectangles are shown
in Figure 5.19). Using n = 100 gives an approximaƟon of 159.802.

−1 1 2 3 4 5

50

100

x

y

Figure 5.19: ApproximaƟng
ˆ 5

−1
x3 dx us-

ing the LeŌ Hand Rule and 10 evenly
spaced subintervals.

Now find the exact answer using a limit:
ˆ 5

−1
x3 dx = lim

n→∞

(
156− 378

n
+

216
n2

)
= 156.

Limits of Riemann Sums
We have used limits to find the exact value of certain definite integrals. Will this
always work? We will show, given not–very–restricƟve condiƟons, that yes, it
will always work.

The previous two examples demonstrated how an expression such as
n∑

i=1

f(xi)∆x
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can be rewriƩen as an expression explicitly involving n, such as
32
3
(1− 1

n2
).

Viewed in this manner, we can think of the summaƟon as a funcƟon of n.
An n value is given (where n is a posiƟve integer), and the sum of areas of n
equally spaced rectangles is returned, using the LeŌ Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
ˆ b

a
f(x) dx, let:

• SL(n) =
n∑

i=1

f(xi−1)∆x, the sumof equally spaced rectangles formedusing

the LeŌ Hand Rule,

• SR(n) =
n∑

i=1

f(xi)∆x, the sum of equally spaced rectangles formed using

the Right Hand Rule, and

• SM(n) =

n∑
i=1

f
(
xi−1 + xi

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the definiƟon of a limit as n→∞: lim
n→∞

SL(n) = K if, given any ε > 0,
there exists N > 0 such that

|SL(n)− K| < ε when n ≥ N.

The following theorem states that we can use any of our three rules to find

the exact value of a definite integral
ˆ b

a
f(x) dx. It also goes two steps further.

The theorem states that the height of each rectangle doesn’t have to be deter-
mined following a specific rule, but could be f(ci), where ci is any point in the i th
subinterval, as discussed before Riemann Sums where defined in DefiniƟon 24.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notaƟon of DefiniƟon 24, let ∆xi denote the length of
the i th subinterval in a parƟƟon of [a, b]. Now let ∥∆x∥ represent the length of
the largest subinterval in the parƟƟon: that is, ∥∆x∥ is the largest of all the∆xi’s
(this is someƟmes called the size of the parƟƟon). If ∥∆x∥ is small, then [a, b]
must be parƟƟoned into many subintervals, since all subintervals must have
small lengths. “Taking the limit as ∥∆x∥ goes to zero” implies that the number
n of subintervals in the parƟƟon is growing to infinity, as the largest subinterval
length is becoming arbitrarily small. We then interpret the expression

lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi

Notes:
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as “the limit of the sum of rectangles, where the width of each rectangle can be
different but geƫng small, and the height of each rectangle is not necessarily
determined by a parƟcular rule.” The theorem states that this Riemann Sum
also gives the value of the definite integral of f over [a, b].

Theorem 36 Definite Integrals and the Limit of Riemann Sums
Let f be conƟnuous on the closed interval [a, b] and let SL(n), SR(n) and
SM(n) be defined as before. Then:

1. lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n) = lim
n→∞

n∑
i=1

f(ci)∆x,

2. lim
n→∞

n∑
i=1

f(ci)∆x =
ˆ b

a
f(x) dx, and

3. lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi =
ˆ b

a
f(x) dx.

Now that we have more tools to work with, we can jusƟfy the remaining
properƟes in Theorem 34.

Proof

1. To see why this property holds note that for any Riemann sum we have
∆x = 0, from which we see that:

ˆ b

a
f(x) dx = lim

n→∞

n∑
i=1

f(ci)∆x (by Theorem 36(2))

= lim
n→∞

0

= 0

2. Applying Theorem 36(2), we have:
ˆ b

a
f(x) dx = lim

n→∞

n∑
i=1

f(ci)∆x.

When we compute
ˆ a

b
f(x) dx, we can use the same parƟƟons and the

same points ci, so the heights f(ci) will remain the same. Since we want
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to start at x = b and finish at x = a, we use ∆̃x = a−b
n = −∆x. We now

have:

ˆ a

b
f(x) dx = lim

n→∞

n∑
i=1

f(ci)∆̃x (Theorem 36(2))

= lim
n→∞

n∑
i=1

f(ci)(−∆x)

= lim
n→∞

−

(
n∑

i=1

f(ci)∆x

)
(using Theorem 35(3))

= − lim
n→∞

n∑
i=1

f(ci)∆x

= −
ˆ b

a
f(x) dx (Theorem 36(2))

3. This property was jusƟfied previously.

4. To see why this property holds, we again use Theorems 35 and 36. In this
case we have:

ˆ b

a
(f(x) + g(x)) dx = lim

n→∞
(f(ci) + g(ci))∆x

= lim
n→∞

n∑
i=1

(f(ci)∆x+ g(ci)∆x)

= lim
n→∞

(
n∑

i=1

f(ci)∆x+
n−1∑
i=0

g(ci)∆x

)

= lim
n→∞

n∑
i=1

f(ci)∆x+ lim
n→∞

n∑
i=1

g(ci)∆x

=

ˆ b

a
f(x) dx+

ˆ b

a
g(x) dx

5. The jusƟficaƟon of this property is leŌ as an exercise. □
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Theorem 37 Further ProperƟes of the Definite Integral
Let f be conƟnuous on the interval [a, b] and let k, m, and M be con-
stants. The following hold:

1.
ˆ b

a
k dx = k(b− a).

2. Ifm ≤ f(x) for all x in [a, b], thenm(b− a) ≤
ˆ b

a
f(x) dx.

3. If f(x) ≤ M for all x in [a, b], then
ˆ b

a
f(x) dx ≤ M(b− a).

Proof
Before jusƟfying these properƟes, note that for any subdivision of [a, b]wehave:

n∑
i=1

∆x = n
b− a
n

= b− a.

To see why (a) holds, let k be a constant. We apply Theorem 36 to see that:

ˆ b

a
k dx = lim

n→∞

n∑
i=1

k∆x

= lim
n→∞

k

(
n∑

i=1

∆x

)
(using Theorem 35)

= k

(
lim

n→∞

n∑
i=1

∆x

)
= k

(
lim

n→∞
(b− a)

)
= k(b− a)

We can now use this property to see why (b) holds. Let f andm be as given.
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Then we have:

m(b− a) =
ˆ b

a
mdx

= lim
n→∞

n∑
i=1

m∆x (Theorem 36)

≤ lim
n→∞

n∑
i=1

f(ci)∆x

=

ˆ b

a
f(x) dx (Theorem 36)

JusƟfying property (c) is similar and is leŌ as an exercise. □

We summarize what we have learned over the past few secƟons here.

• Knowing the “area under the curve” can be useful. One common example
is: the area under a velocity curve is displacement.

• We have defined the definite integral,
ˆ b

a
f(x) dx, to be the signed area

under f on the interval [a, b].

• While we can approximate a definite integral manyways, we have focused
on using rectangleswhose heights can be determined using: the LeŌHand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

We first learned of derivaƟves through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next secƟonwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connecƟon between
the indefinite integral and the definite integral.
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Exercises 5.3
Terms and Concepts

1. A fundamental calculus technique is to use to
refine approximaƟons to get an exact answer.

2. What is the upper bound in the summaƟon
14∑
i=7

(48i−201)?

3. This secƟon approximates definite integrals using what ge-
ometric shape?

4. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems

In Exercises 5–11, write out each term of the summaƟon and
compute the sum.

5.
4∑

i=2

i2

6.
3∑

i=−1

(4i− 2)

7.
2∑

i=−2

sin(πi/2)

8.
5∑

i=1

1
i

9.
6∑

i=1

(−1)ii

10.
4∑

i=1

(
1
i
− 1

i+ 1

)

11.
5∑

i=0

(−1)i cos(πi)

In Exercises 12–15, write each sum in summaƟon notaƟon.

12. 3+ 6+ 9+ 12+ 15

13. −1+ 0+ 3+ 8+ 15+ 24+ 35+ 48+ 63

14. 1
2
+

2
3
+

3
4
+

4
5

15. 1− e+ e2 − e3 + e4

In Exercises 16–22, evaluate the summaƟon using Theorem35.

16.
25∑
i=1

i

17.
10∑
i=1

(3i2 − 2i)

18.
15∑
i=1

(2i3 − 10)

19.
10∑
i=1

(−4i3 + 10i2 − 7i+ 11)

20.
10∑
i=1

(i3 − 3i2 + 2i+ 7)

21. 1+ 2+ 3+ . . .+ 99+ 100
22. 1+ 4+ 9+ . . .+ 361+ 400
Theorem 35 states

n∑
i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai , so

n∑
i=k+1

ai =
n∑

i=1

ai −
k∑

i=1

ai .

Use this fact, alongwith other parts of Theorem35, to evaluate
the summaƟons given in Exercises 23–26.

23.
20∑

i=11

i

24.
25∑

i=16

i3

25.
12∑
i=7

4

26.
10∑
i=5

4i3

In Exercises 27–30, express the limit as a definite integral.

27. lim
n→∞

π

n

n∑
i=1

sin πi
n

1+ πi
n

28. lim
n→∞

n∑
i=1

3
n

(
2+ 3i

n

)√
1+

(
2+ 3i

n

)3

29. lim
n→∞

5
n

n∑
i=1

(
5
(
2+ 5i

n

)3

− 4
(
2+ 5i

n

)
+ 7
)

30. lim
n→∞

2
n

n∑
i=1

1+ 2i
n(

1+ 2i
n

)2

+ 4

In Exercises 31–33, express the definite integral as a limit of a
sum.

31.
ˆ 5

2
4− 2x dx

32.
ˆ 0

−2
x2 + 3x dx

33.
ˆ π/2

−π/2

sin3 x
2+ cos x

dx

In Exercises 34–39, a definite integral
ˆ b

a
f(x) dx is given.

(a) Graph f(x) on [a, b].
(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
ˆ b

a
f(x) dx by summing the areas of the

rectangles.
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34.
ˆ 3

−3
x2 dx, with 6 rectangles using the LeŌ Hand Rule.

35.
ˆ 2

0
(5− x2) dx, with 4 rectangles using the Midpoint Rule.

36.
ˆ π

0
sin x dx, with 6 rectangles using the Right Hand Rule.

37.
ˆ 3

1

√
10− x2 dx with 4 rectangles using the Right Hand

Rule.

38.
ˆ 2

1
ln x dx, with 3 rectangles using the Midpoint Rule.

39.
ˆ 9

1

1
x
dx, with 4 rectangles using the Right Hand Rule.

In Exercises 40–45, a definite integral
ˆ b

a
f(x) dx is given. As

demonstrated in Examples 6 and 7, do the following.

(a) Find a formula to approximate
ˆ b

a
f(x) dx using n subin-

tervals and the provided rule.

(b) Evaluate the formula using n = 10, 100 and 1, 000.

(c) Find the limit of the formula, as n → ∞, to find the

exact value of
ˆ b

a
f(x) dx.

40.
ˆ 1

0
x3 dx, using the Right Hand Rule.

41.
ˆ 1

−1
3x2 dx, using the LeŌ Hand Rule.

42.
ˆ 3

−1
(3x− 1) dx, using the Midpoint Rule.

43.
ˆ 4

1
(2x2 − 3) dx, using the LeŌ Hand Rule.

44.
ˆ 10

−10
(5− x) dx, using the Right Hand Rule.

45.
ˆ 1

0
(x3 − x2) dx, using the Right Hand Rule.

46. Use six rectangles to approximate the area under the given
graph of f from x = 0 to x = 12, using:

(a) The LeŌ Hand Rule,

(b) The Right Hand Rule,

(c) The Midpoint Rule.

2 4 6 8 10 12

2

4

6

8

10

x

y

47. A car accelerates from 0 to 40 mph in 30 seconds. The
speedometer reading at each 5 second interval during this
Ɵme is given in the table below. EsƟmate how far the car
travels during this 30 second period using the velociƟes at:

(a) The beginning of each Ɵme interval.

(b) The end of each Ɵme interval.

t (sec) 0 5 10 15 20 25 30
v (mph) 0 6 14 23 30 36 40

48. Use Theorems 35 and 36 to jusƟfy the remaining property
in Theorem 34:

ˆ b

a
k · f(x) dx = k

ˆ b

a
f(x) dx

49. Use Theorems 35 and 36 to jusƟfy the remaining property
in Theorem 37: If f(x) ≤ M for all x in [a, b], then

ˆ b

a
f(x) dx ≤ M(b− a).

Review
In Exercises 50–54, find an anƟderivaƟve of the given funcƟon.

50. f(x) = 5 sec2 x

51. f(x) = 7
x

52. g(t) = 4t5 − 5t3 + 8

53. g(t) = cos t+ sin t

54. f(x) = 1√
x
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5.4 The Fundamental Theorem of Calculus
In this secƟonwewill find connecƟons between differenƟal calculus (derivaƟves
and anƟderivaƟves) and integral calculus (definite integrals). These connecƟons
between the major ideas of calculus are important enough to be called the Fun-
damental Theorem of Calculus. These connecƟons will also explain why we use
the term indefinite integral for the set of all anƟderivaƟves, and why we use
such similar notaƟons for anƟderivaƟves and definite integrals.

Let f(t) be a conƟnuous funcƟon defined on [a, b]. The definite integral´ b
a f(x) dx is the “area under f ” on [a, b]. We can turn this concept into a funcƟon
by leƫng the upper (or lower) bound vary.

Let F(x) =
´ x
a f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure 5.20. We can study this funcƟon using our knowledge of the definite
integral. For instance, F(a) = 0 since

´ a
a f(t) dt = 0.

a x b
t

y

Figure 5.20: The area of the shaded re-
gion is F(x) =

´ x
a f(t) dt.

The first part of the Fundamental Theorem of Calculus tells us how to find
derivaƟves of these kinds of funcƟons.

Theorem 38 The Fundamental Theorem of Calculus, Part 1
Let f be conƟnuous on [a, b] and let F(x) =

´ x
a f(t) dt. Then F is a differ-

enƟable funcƟon on (a, b), and

F ′(x) = f(x).

Proof
In order to seewhy this is true, wemust compute lim

h→0

F(x+ h)− F(x)
h

. Suppose
x and x+ h are in [a, b]. Theorem 34 implies that

ˆ x+h

a
f(t) dt =

ˆ x

a
f(t) dt+

ˆ x+h

x
f(t) dt,

which we can rewrite asˆ x+h

x
f(t) dt =

ˆ x+h

a
f(t) dt−

ˆ x

a
f(t) dt.

This allows us to simplify the denominator of the difference quoƟent in our limit
as follows:

F(x+ h)− F(x) =
ˆ x+h

a
f(t) dt−

ˆ x

a
f(t) dt (by the definiƟon of F)

=

ˆ x+h

x
f(t) dt,
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so we see that

lim
h→0

F(x+ h)− F(x)
h

= lim
h→0

1
h

ˆ x+h

x
f(t) dt.

Assume for the moment that h > 0. Since x and x+ h are both in [a, b] and
f is conƟnuous on [a, b], f is also conƟnuous on [x, x+ h]. Applying the Extreme
Value Theorem (Theorem 22), we know that fmust have an absolute minimum
value f(u) = m and an absolute maximum value f(v) = M on this interval. In
other words, m ≤ f(t) ≤ M whenever x ≤ t ≤ x + h. Using the Comparison
ProperƟes of Integrals, we can now say that

ˆ x+h

x
mdt ≤

ˆ x+h

x
f(t) dt ≤

ˆ x+h

x
Mdt.

CompuƟng the outer integrals, this becomes

m(x+ h− x) ≤
ˆ x+h

x
f(t) dt ≤ M(x+ h− x), or

mh ≤
ˆ x+h

x
f(t) dt ≤ Mh.

Since h > 0, we may divide by h to obtain

f(u) = m ≤ 1
h

ˆ x+h

x
f(t) dt ≤ M = f(v).

Now suppose that h < 0. Preceding as before, we know that f has an abso-
lute minimum value f(u) = m and an absolute maximum value f(v) = M on the
interval [x+ h, x]. We know thatm ≤ f(t) ≤ M whenever x+ h ≤ t ≤ x, so we
have ˆ x

x+h
mdt ≤

ˆ x

x+h
f(t) dt ≤

ˆ x

x+h
Mdt.

Once again we compute to obtain

−mh ≤
ˆ x

x+h
f(t) dt ≤ −Mh.

Since−h > 0, we can divide by−h to obtain:

m ≤ −1
h

ˆ x

x+h
f(t) dt ≤ M

f(u) = m ≤ 1
h

ˆ x+h

x
f(t) dt ≤ M = f(v) (using Theorem 34(2))
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We are now ready to compute the desired limit,

lim
h→0

F(x+ h)− F(x)
h

= lim
h→0

1
h

ˆ x+h

x
f(t) dt.

Whether h > 0 or h < 0, we know that

f(u) ≤ 1
h

ˆ x+h

x
f(t) dt ≤ f(v),

where u and v are both between x and x+ h. Note that

lim
h→0

(x+ h) = x and lim
h→0

x = x,

so the Squeeze Theorem (Theorem 5) says that

lim
h→0

u = x and lim
h→0

v = x.

Since f is conƟnuous at x, we know that

lim
h→0

f(u) = f(x) and lim
h→0

f(v) = f(x).

Finally, we know that

f(u) ≤ 1
h

ˆ x+h

x
f(t) dt ≤ f(v),

so applying the Squeeze Theorem again tells us that

lim
h→0

1
h

ˆ x+h

x
f(t) dt = f(x).

Therefore F ′(x) = f(x) as desired. □

Watch the video:
Fundamental Theorem of Calculus Part 1 at
https://youtu.be/PGmVvIglZx8

IniƟally this seems simple, as demonstrated in the following example.

Notes:
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5.4 The Fundamental Theorem of Calculus

Example 1 Using the Fundamental Theorem of Calculus, Part 1

Let F(x) =
ˆ x

−5
(t2 + sin t) dt. What is F ′(x)?

SÊ½çã®ÊÄ Using the Fundamental Theorem of Calculus, we have
F ′(x) = x2 + sin x.

This simple example reveals something incredible: F(x) is an anƟderivaƟve
of x2 + sin x. Therefore, F(x) = 1

3x
3 − cos x + C for some value of C. (We can

find C, but generally we do not care. We know that F(−5) = 0, which allows us
to compute C. In this case, C = cos(−5) + 125

3 .)
We have done more than found a complicated way of compuƟng an an-

ƟderivaƟve. Consider a funcƟon f defined on an open interval containing a, b
and c. Suppose we want to compute

´ b
a f(t) dt. First, let F(x) =

´ x
c f(t) dt. Using

the properƟes of the definite integral found in Theorem 34, we know

ˆ b

a
f(t) dt =

ˆ c

a
f(t) dt+

ˆ b

c
f(t) dt

= −
ˆ a

c
f(t) dt+

ˆ b

c
f(t) dt

= −F(a) + F(b)
= F(b)− F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using anƟderivaƟves. Furthermore, Theorem 31 told
us that any other anƟderivaƟve G differs from F by a constant: G(x) = F(x) + C.
This means that G(b)−G(a) = (F(b) + C)− (F(a) + C) = F(b)− F(a), and the
formula we’ve just found holds for any anƟderivaƟve. Consequently, it does not
maƩer what value of C we use, and we might as well let C = 0. This proves the
second part of the Fundamental Theorem of Calculus.

Theorem 39 The Fundamental Theorem of Calculus, Part 2
Let f be conƟnuous on [a, b] and let F be any anƟderivaƟve of f. Then

ˆ b

a
f(x) dx = F(b)− F(a).

Notes:
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Watch the video:
The Fundamental Theorem of Calculus. Part 2 at
https://youtu.be/nHnZVFeQvNQ

Example 2 Using the Fundamental Theorem of Calculus, Part 2
We spent a great deal of Ɵme in the previous secƟon studying

´ 4
0 (4x − x2) dx.

Using the Fundamental Theorem of Calculus, evaluate this definite integral.

SÊ½çã®ÊÄ We need an anƟderivaƟve of f(x) = 4x− x2. All anƟderiva-
Ɵves of f have the form F(x) = 2x2 − 1

3x
3 + C; for simplicity, choose C = 0.

The Fundamental Theorem of Calculus states
ˆ 4

0
(4x− x2) dx = F(4)− F(0) =

(
2(4)2− 1

3
43
)
−
(
0− 0

)
= 32− 64

3
= 32/3.

This is the same answer we obtained using limits in the previous secƟon, just
with much less work.

NotaƟon: A special notaƟon is oŌen used in the process of evaluaƟng defi-
nite integrals using the Fundamental Theorem of Calculus. Instead of explicitly
wriƟng F(b)− F(a), the notaƟon F(x)

∣∣∣b
a
is used. Thus the soluƟon to Example 2

would be wriƩen as:
ˆ 4

0
(4x− x2) dx =

(
2x2 − 1

3
x3
)∣∣∣∣4

0
=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32/3.

Example 3 Using the Fundamental Theorem of Calculus, Part 2
Evaluate the following definite integrals.

1.
ˆ 2

−2
x3 dx 2.

ˆ π

0
sin x dx 3.

ˆ 5

0
et dt 4.

ˆ 9

4

√
u du 5.

ˆ 5

1
2 dx

SÊ½çã®ÊÄ

1.
ˆ 2

−2
x3 dx =

1
4
x4
∣∣∣∣2
−2

=

(
1
4
24
)
−
(
1
4
(−2)4

)
= 0.

Notes:
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2.
ˆ π

0
sin x dx = − cos x

∣∣∣π
0
= − cos π −

(
− cos 0

)
= 1+ 1 = 2.

(This is interesƟng; it says that the area under one “hump” of a sine curve
is 2.)

3.
ˆ 5

0
et dt = et

∣∣∣5
0
= e5 − e0 = e5 − 1 ≈ 147.41.

4.
ˆ 9

4

√
u du =

ˆ 9

4
u

1
2 du =

2
3
u

3
2

∣∣∣∣9
4
=

2
3

(
9

3
2 − 4

3
2

)
=

2
3
(
27− 8

)
=

38
3
.

5.
ˆ 5

1
2 dx = 2x

∣∣∣5
1
= 2(5)− 2 = 2(5− 1) = 8.

This integral is interesƟng; the integrand is a constant funcƟon, hence we
are finding the area of a rectangle with width (5 − 1) = 4 and height 2.
NoƟce how the evaluaƟon of the definite integral led to 2(4) = 8.

In general, if c is a constant, then
´ b
a c dx = c(b− a).

The Fundamental Theorem of Calculus and the Chain Rule
Part 1 of the Fundamental Theorem of Calculus (FTC) states that given F(x) =ˆ x

a
f(t) dt, F ′(x) = f(x). Using other notaƟon,

d
dx
(
F(x)

)
= f(x). While we have

just pracƟced evaluaƟng definite integrals, someƟmes finding anƟderivaƟves is
impossible and we need to rely on other techniques to approximate the value
of a definite integral. FuncƟons wriƩen as F(x) =

´ x
a f(t) dt are useful in such

situaƟons.
It may be of further use to compose such a funcƟon with another. As an

example, we may compose F(x) with g(x) to get

F
(
g(x)

)
=

ˆ g(x)

a
f(t) dt.

What is the derivaƟve of such a funcƟon? The Chain Rule can be employed to
state

d
dx

(
F
(
g(x)

))
= F ′

(
g(x)

)
g ′(x) = f

(
g(x)

)
g ′(x).

An example will help us understand this.

Example 4 The FTC, Part 1, and the Chain Rule

Find the derivaƟve of F(x) =
ˆ x2

2
ln t dt.

Notes:
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SÊ½çã®ÊÄ We can view F(x) as being the funcƟon G(x) =

ˆ x

2
ln t dt

composed with g(x) = x2; that is, F(x) = G
(
g(x)

)
. The Fundamental Theorem

of Calculus states that G ′(x) = ln x. The Chain Rule gives us

F ′(x) = G ′(g(x))g ′(x)
= ln(g(x))g ′(x)
= ln(x2)2x
= 2x ln x2

Normally, the steps defining G(x) and g(x) are skipped.

PracƟce this once more.

Example 5 The FTC, Part 1, and the Chain Rule

Find the derivaƟve of F(x) =
ˆ 5

cos x
t3 dt.

SÊ½çã®ÊÄ Note that F(x) = −
ˆ cos x

5
t3 dt. Viewed this way, the deriva-

Ɵve of F is straighƞorward:

F ′(x) = sin x cos3 x.

Understanding MoƟon with the Fundamental Theorem of Calcu-
lus
We established, starƟng with Key Idea 3, that the derivaƟve of a posiƟon func-
Ɵon is a velocity funcƟon, and the derivaƟve of a velocity funcƟon is an accel-
eraƟon funcƟon. Now consider definite integrals of velocity and acceleraƟon

funcƟons. Specifically, if v(t) is a velocity funcƟon, what does
ˆ b

a
v(t) dtmean?

The Fundamental Theorem of Calculus states that
ˆ b

a
v(t) dt = V(b)− V(a),

where V(t) is any anƟderivaƟve of v(t). Since v(t) is a velocity funcƟon, V(t)
must be a posiƟon funcƟon, and V(b)− V(a)measures a change in posiƟon, or
displacement.

Notes:
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5.4 The Fundamental Theorem of Calculus

How would we measure total distance traveled? We have to consider the
intervals when v(t) ≥ 0 and when v(t) ≤ 0. Therefore,

total distance traveled =

ˆ b

a
|v(t)| dt.

Example 6 Finding displacement and total distance traveled
A ball is thrown straight up with velocity given by v(t) = −32t + 20Ō/s, where
t is measured in seconds. Find, and interpret,

1.
ˆ 1

0
v(t) dt and 2.

ˆ 1

0
|v(t)| dt.

SÊ½çã®ÊÄ

1. Using the Fundamental Theorem of Calculus, we have

ˆ 1

0
v(t) dt =

ˆ 1

0
(−32t+ 20) dt

= −16t2 + 20t
∣∣∣1
0

= 4 Ō.

Thus if a ball is thrown straight up into the air with velocity v(t) = −32t+
20, the height of the ball, 1 second later, will be 4 feet above the iniƟal
height. We will see in part 2. that the distance traveled is much farther.
It has gone up to its peak and is falling down, but the difference between
its height at t = 0 and t = 1 is 4 Ō.

2. Here we are trying to find the total distance traveled by the ball. Wemust
first consider where v(t) > 0 and v(t) < 0.

v(t) = −32t+ 20 = 0
−32t = −20

t =
5
8

Notes:

267



Chapter 5 IntegraƟon

This means v(t) > 0 for t < 5
8 and v(t) < 0 for t > 5

8 so we have

ˆ 1

0
|v(t)| dt =

ˆ 5/8

0
v(t) dt+

ˆ 1

5/8
−v(t) dt

=

ˆ 5/8

0
−32t+ 20 dt+

ˆ 1

5/8
32t− 20 dt

=
34
4

= 8.5 Ō.

IntegraƟng a rate of change funcƟon gives total change. Velocity is the rate
of posiƟon change; integraƟng velocity gives the total change of posiƟon, i.e.,
displacement.

IntegraƟng a speed funcƟon gives a similar, though different, result. Speed
is also the rate of posiƟon change, but does not account for direcƟon. So inte-
graƟng a speed funcƟon gives total change of posiƟon, without the possibility
of “negaƟve posiƟon change.” Hence the integral of a speed funcƟon gives dis-
tance traveled.

As acceleraƟon is the rate of velocity change, integraƟng an acceleraƟon
funcƟon gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = 5miles/h2 and t is measured in hours,
then ˆ 3

0
a(t) dt = 15

means the velocity has increased by 15m/h from t = 0 to t = 3.

The Mean Value Theorem and Average Value

1 2 3 4
x

y

(a)

1 2 3 4
x

y

(b)

1 2 3 4
x

y

(c)

1 2 3 4
x

y

(d)

Figure 5.21: A graph of a funcƟon f to in-
troduce theMean Value Theoremand dif-
ferently sized rectangles giving upper and
lower bounds on

´ 4
1 f(x) dx; the last rect-

angle matches the area exactly.

Consider the graph of a funcƟon f in Figure 5.21(a) and the area defined by´ 4
1 f(x) dx. Three rectangles are then drawn; in (b), the height of the rectan-
gle is greater than f on [1, 4], hence the area of this rectangle is is greater than´ 4
1 f(x) dx.

In (c), the height of the rectangle is smaller than f on [1, 4], hence the area
of this rectangle is less than

´ 4
1 f(x) dx.

Finally, in (d) the height of the rectangle is such that the area of the rectangle
is exactly that of

´ 4
1 f(x) dx. Since rectangles that are “too big”, as in (b), and

rectangles that are “too liƩle,” as in (c), give areas greater/lesser than
´ 4
1 f(x) dx,

it makes sense that there is a rectangle, whose top intersects f(x) somewhere
on [1, 4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.

Notes:
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5.4 The Fundamental Theorem of Calculus

Theorem 40 The Mean Value Theorem of IntegraƟon
Let f be conƟnuous on [a, b]. There exists a value c in [a, b] such that

ˆ b

a
f(x) dx = f(c)(b− a).

This is an existenƟal statement; c exists, but we do not provide a method
of finding it. Theorem 40 is directly connected to the Mean Value Theorem of
DifferenƟaƟon, given as Theorem 24.

Proof
If a = b, then

´ a
a f(x) dx = 0 = f(a)(a− a). Otherwise, we define the following

for x in [a, b]:

F(x) =
ˆ x

a
f(t) dt.

Applying Theorem 38 we know that F is differenƟable on [a, b] and that F ′(x) =
f(x) for any x in [a, b]. We may now apply the Mean Value Theorem for Differ-
enƟaƟon (Theorem 24) to see that there is a value c in (a, b) such that

F′(c) =
F(b)− F(a)

b− a
.

Note that F′(c) = f(c) and that F(b)− F(a) =
´ b
a f(x) dx by Theorem 39. There-

fore we can rewrite our equaƟon as:

f(c) =
´ b
a f(x) dx
b− a

, or

f(c)(b− a) =
ˆ b

a
f(x) dx. □

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

1 2

1

c π

sin 0.69

x

y

Figure 5.22: A graph of y = sin x on
[0, π] and the rectangle guaranteed by
the Mean Value Theorem.

Example 7 Using the Mean Value Theorem

Consider
ˆ π

0
sin x dx. Find a value c guaranteed by the Mean Value Theorem.

SÊ½çã®ÊÄ We first need to evaluate
ˆ π

0
sin x dx. (This was previously

done in Example 3.) ˆ π

0
sin x dx = − cos x

∣∣∣π
0
= 2.

Notes:
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Thus we seek a value c in [0, π] such that π sin c = 2.

π sin c = 2 ⇒ sin c =
2
π
⇒ c = sin−1

(
2
π

)
≈ 0.69.

In Figure 5.22 sin x is sketched along with a rectangle with height sin(0.69).
The area of the rectangle is the same as the area under sin x on [0, π].

y = f(x)

a bc

f(c)

x

y

y = f(x) − f(c)

a bc

f(c)

x

y

Figure 5.23: On top, a graph of y =
f(x) and the rectangle guaranteed by the
Mean Value Theorem. Below, y = f(x) is
shiŌed down by f(c); the resulƟng “area
under the curve” is 0.

Let f be a funcƟon on [a, b]with c such that f(c)(b−a) =
´ b
a f(x) dx. Consider´ b

a

(
f(x)− f(c)

)
dx:

ˆ b

a

(
f(x)− f(c)

)
dx =

ˆ b

a
f(x)−

ˆ b

a
f(c) dx

= f(c)(b− a)− f(c)(b− a)
= 0.

When f(x) is shiŌed by −f(c), the amount of area under f above the x–axis on
[a, b] is the same as the amount of area below the x–axis above f; see Figure 5.23
for an illustraƟon of this. In this sense, we can say that f(c) is the average value
of f on [a, b].

The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewriƩen as

f(c) =
1

b− a

ˆ b

a
f(x) dx,

for some value of c in [a, b]. Next, parƟƟon the interval [a, b] into n equally
spaced subintervals, a = x1 < x2 < . . . < xn+1 = b and choose any ci in
[xi, xi+1]. The average of the numbers f(c1), f(c2), …, f(cn) is:

1
n

(
f(c1) + f(c2) + . . .+ f(cn)

)
=

1
n

n∑
i=1

f(ci).

Notes:
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5.4 The Fundamental Theorem of Calculus

MulƟply this last expression by 1 in the form of (b−a)
(b−a) :

1
n

n∑
i=1

f(ci) =
n∑

i=1

f(ci)
1
n

=

n∑
i=1

f(ci)
1
n
(b− a)
(b− a)

=
1

b− a

n∑
i=1

f(ci)
b− a
n

=
1

b− a

n∑
i=1

f(ci)∆x (where∆x = (b − a)/n)

Now take the limit as n→∞:

lim
n→∞

1
b− a

n∑
i=1

f(ci)∆x =
1

b− a

ˆ b

a
f(x) dx = f(c).

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n→∞.

This leads us to a definiƟon.

DefiniƟon 25 The Average Value of f on [a, b]
Let f be conƟnuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by theMean Value Theorem. I.e.,

Average Value of f on [a, b] =
1

b− a

ˆ b

a
f(x) dx.

An applicaƟon of this definiƟon is given in the following example.

Example 8 Finding the average value of a funcƟon
An object moves back and forth along a straight line with a velocity given by
v(t) = (t − 1)2 on [0, 3], where t is measured in seconds and v(t) is measured
in Ō/s.

What is the average velocity of the object?

SÊ½çã®ÊÄ By our definiƟon, the average velocity is:

1
3− 0

ˆ 3

0
(t− 1)2 dt =

1
3

ˆ 3

0

(
t2 − 2t+ 1

)
dt =

1
3

(
1
3
t3 − t2 + t

)∣∣∣∣3
0
= 1 Ō/s.

Notes:
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We can understand the above example through a simpler situaƟon. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/Ɵme = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 8? We calculate this
by integraƟng its velocity funcƟon:

´ 3
0 (t− 1)2 dt = 3 Ō. Its final posiƟon was 3

feet from its iniƟal posiƟon aŌer 3 seconds: its average velocity was 1 Ō/s.

This secƟon has laid the groundwork for a lot of great mathemaƟcs to fol-
low. The most important lesson is this: definite integrals can be evaluated using
anƟderivaƟves. Since the previous secƟon established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, compuƟng anƟderivaƟves is much
more difficult than compuƟng derivaƟves. Much of our Ɵme in Calculus II will be
devoted to techniques of finding anƟderivaƟves so that awide variety of definite
integrals can be evaluated.

Notes:
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Exercises 5.4
Terms and Concepts
1. How are definite and indefinite integrals related?

2. What constant of integraƟon ismost commonly usedwhen
evaluaƟng definite integrals?

3. T/F: If f is a conƟnuous funcƟon, then F(x) =
ˆ x

a
f(t) dt is

also a conƟnuous funcƟon.
4. The definite integral can be used to find “the area under a

curve.” Give two other uses for definite integrals.

Problems
In Exercises 5–34, use the Fundamental Theorem of Calculus
Part 2 to evaluate the definite integral.

5.
ˆ 3

1
(3x2 − 2x+ 1) dx

6.
ˆ 4

0
(x− 1)2 dx

7.
ˆ 1

−1
(x3 − x5) dx

8.
ˆ π

π/2
cos x dx

9.
ˆ π/4

0
sec2 x dx

10.
ˆ e

1

1
x
dx

11.
ˆ −1

−2
(4− 2x3) dx

12.
ˆ π

0
(2 cos x− 2 sin x) dx

13.
ˆ 3

1
ex dx

14.
ˆ 4

0

√
t dt

15.
ˆ 25

9

1√
t
dt

16.
ˆ 8

1

3√x dx

17.
ˆ 2

1

1
x
dx

18.
ˆ 2

1

1
x2

dx

19.
ˆ 1

0
x3 dx

20.
ˆ 1

0
x100 dx

21.
ˆ −5

−10
3 dx

22.
ˆ π/3

π/6
csc x cot x dx

23.
ˆ 2

0

∣∣x2 − 1
∣∣ dx

24.
ˆ 3

0
|1− 2x| dx

25.
ˆ 2

−1
(u+ 4)(2u+ 1) du

26.
ˆ 9

1

1+
√
x+ x√
x

dx

27.
ˆ π

π/7
sin2 x+ cos2 x dx

28.
ˆ π/4

−π/4
2+ tan2 θ dθ

29.
ˆ π/4

0
sec t(sec t+ tan t) dt

30.
ˆ π/2

π/6

sin 2x
sin x

dx

31.
ˆ 4

1

4+ 6u√
u

du

32.
ˆ π/3

0

sin θ + sin θ tan2 θ
sec2

dθ

33.
ˆ 8

1

2+ t
3√t2

dt

34.
ˆ 1

0

4√x5 + 5√x4 dx

35. Explain why:

(a)
ˆ 1

−1
xn dx = 0, when n is a posiƟve, odd integer, and

(b)
ˆ 1

−1
xn dx = 2

ˆ 1

0
xn dx when n is a posiƟve, even

integer.

In Exercises 36–39, find a value c guaranteed by the Mean
Value Theorem.

36.
ˆ 2

0
x2 dx

37.
ˆ 2

−2
x2 dx

38.
ˆ 1

0
ex dx

39.
ˆ 16

0

√
x dx

In Exercises 40–45, find the average value of the funcƟon on
the given interval.

40. f(x) = sin x on [0, π/2]
41. y = sin x on [0, π]
42. y = x on [0, 4]
43. y = x2 on [0, 4]
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44. y = x3 on [0, 4]
45. g(t) = 1/t on [1, e]

In Exercises 46–49, a velocity funcƟon of an object moving
along a straight line is given. Find (a) the displacement of the
object over the given Ɵme interval and (b) the total distance
traveled by the object over the given Ɵme interval.

46. v(t) = −32t+ 20Ō/s on [0, 5]
47. v(t) = −32t+ 200Ō/s on [0, 10]
48. v(t) = cos t Ō/s on [0, 3π/2]
49. v(t) = 4√t Ō/s on [0, 16]

In Exercises 50–53, an acceleraƟon funcƟon of an object mov-
ing along a straight line is given. Find the change of the object’s
velocity over the given Ɵme interval.

50. a(t) = −32Ō/s2 on [0, 2]
51. a(t) = 10Ō/s2 on [0, 5]
52. a(t) = t Ō/s2 on [0, 2]
53. a(t) = cos t Ō/s2 on [0, π]

In Exercises 54–61, use the Fundamental Theorem of Calculus
Part 1 to find F′(x).

54. F(x) =
ˆ x3+x

2

1
t
dt

55. F(x) =
ˆ 0

x3
t3 dt

56. F(x) =
ˆ x2

x
(t+ 2) dt

57. F(x) =
ˆ ex

ln x
sin t dt

58. F(x) =
ˆ x

1

ln t+ 4
t2 + 7

dt

59. F(x) =
ˆ sin x

2
cos3 t+ 3 tan3 t dt

60. F(x) =
ˆ 4

5x3

√
cos t+ 5
t2 + et

dt

61. F(x) =
ˆ 10

tan2 x
ln t+ et

2−7 dt

62. Let g(x) =
ˆ x

0
f(t) dt where f is the funcƟon whose graph

is shown below.

(a) Evaluate g(x) for x = 0, 1, 2, 3, 4, 5, 6.

(b) EsƟmate g(7).

(c) Where does g have a minimum value? a maximum
value?

(d) Sketch the graph of g.

2 4 6

−2

2

4

x

y
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5.5 SubsƟtuƟon

5.5 SubsƟtuƟon
We moƟvate this secƟon with an example. Let f(x) = (x2 + 3x − 5)10. We can
compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3) = (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
´
(20x+ 30)(x2 + 3x− 5)9 dx? We have the answer

in front of us;
ˆ

(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starƟng with f(x)
as we did?

This secƟon explores integraƟon by subsƟtuƟon. It allows us to “undo the
Chain Rule.” SubsƟtuƟon allows us to evaluate the above integral without know-
ing the original funcƟon first.

The underlying principle is to rewrite a “complicated” integral of the form´
f(x) dx as a not–so–complicated integral

´
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,´
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the

integrand is (x2 + 3x − 5)9. We wish to make this simpler; we do so through a
subsƟtuƟon. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.

We have established u as a funcƟon of x, so now consider the differenƟal of u:

du = (2x+ 3)dx.

Keep inmind that (2x+3) and dx aremulƟplied; the dx is not “just siƫng there.”

Note: Recall from SecƟon 4.3 that
the differenƟal of x, denoted dx, is
any nonzero real number. If u is a
funcƟon of x, then the differenƟal of
u, denoted du, is defined by du =
u′(x) dx.

Return to the original integral and do some subsƟtuƟons through algebra:
ˆ
(20x+ 30)(x2 + 3x− 5)9 dx =

ˆ
10(2x+ 3)(x2 + 3x− 5)9 dx

=

ˆ
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

ˆ
10u9 du

= u10 + C (replace u with x2 + 3x − 5)

= (x2 + 3x− 5)10 + C

Notes:
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One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This secƟon contains numerous examples through which the reader will gain
understanding and mathemaƟcal maturity enabling them to regard subsƟtuƟon
as a natural tool when evaluaƟng integrals.

We stated before that integraƟon by subsƟtuƟon “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differenƟable funcƟons and consider the deriva-
Ɵve of their composiƟon:

d
dx

(
F
(
g(x)

))
= F ′(g(x))g ′(x).

Thus ˆ
F ′(g(x))g ′(x) dx = F(g(x)) + C.

IntegraƟon by subsƟtuƟon works by recognizing the “inside” funcƟon g(x) and
replacing it with a variable. By seƫng u = g(x), we can rewrite the derivaƟve
as

d
dx

(
F
(
u
))

= F ′(u)u ′.

Since du = g ′(x)dx, we can rewrite the above integral asˆ
F ′(g(x))g ′(x) dx =

ˆ
F ′(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Theorem 41 IntegraƟon by SubsƟtuƟon
Let F and g be differenƟable funcƟons, where the range of g is an inter-
val I contained in the domain of F. Thenˆ

F ′(g(x))g ′(x) dx = F(g(x)) + C.

If u = g(x), then du = g ′(x)dx and
ˆ

F ′(g(x))g ′(x) dx =
ˆ

F ′(u) du = F(u) + C = F(g(x)) + C.

The point of subsƟtuƟon is to make the integraƟon step easy. Indeed, the
step
´
F ′(u) du = F(u) + C looks easy, as the anƟderivaƟve of the derivaƟve of

F is just F, plus a constant. The “work” involved is making the proper subsƟtu-
Ɵon. There is not a step–by–step process to memorize; rather, experience will
be your guide. To gain experience, we now embark on many examples.
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Watch the video:
IntegraƟon by U-SubsƟtuƟon (Indefinite Integral) at
https://youtu.be/li1SMPsqNuw

Example 1 IntegraƟng by subsƟtuƟon
Evaluate

ˆ
x sin(x2 + 5) dx.

SÊ½çã®ÊÄ Knowing that subsƟtuƟon is related to the Chain Rule, we
choose to let u be the “inside” funcƟon of sin(x2+5). (This is not always a good
choice, but it is oŌen the best place to start.)

Let u = x2 + 5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that mulƟplicaƟon is commutaƟve, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

du = 2x dx ⇒ 1
2
du = x dx.

We can now subsƟtute.
ˆ

x sin(x2 + 5) dx =
ˆ

sin(x2 + 5︸ ︷︷ ︸
u

) x dx︸︷︷︸
1
2 du

=

ˆ
1
2
sin u du

= −1
2
cos u+ C (now replace u with x2 + 5)

= −1
2
cos(x2 + 5) + C.

Thus
´
x sin(x2 + 5) dx = − 1

2 cos(x
2 + 5) + C. We can check our work by

evaluaƟng the derivaƟve of the right hand side.

Example 2 IntegraƟng by subsƟtuƟon
Evaluate

ˆ
cos(5x) dx.

Notes:
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SÊ½çã®ÊÄ Again let u replace the “inside” funcƟon. Leƫng u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equaƟon by 5 to obtain 1

5du = dx. We can now subsƟtute.
ˆ

cos(5x) dx =
ˆ

cos( 5x︸︷︷︸
u

) dx︸︷︷︸
1
5 du

=

ˆ
1
5
cos u du

=
1
5
sin u+ C

=
1
5
sin(5x) + C.

We can again check our work through differenƟaƟon.

The previous example exhibited a common, and simple, type of subsƟtuƟon.
The “inside” funcƟon was a linear funcƟon (in this case, y = 5x). When the
inside funcƟon is linear, the resulƟng integraƟon is very predictable, so that we
can say ˆ

F ′(ax+ b) dx =
1
a
F(ax+ b) + C.

For example,
´
sin(7x− 4) dx = − 1

7 cos(7x− 4) + C. Our next example can
use this idea, but we will only employ it aŌer going through all of the steps.

Example 3 IntegraƟng by subsƟtuƟng a linear funcƟon
Evaluate

ˆ
7

−3x+ 1
dx.

SÊ½çã®ÊÄ View this as a composiƟonof funcƟons f(g(x)), where f(x) =
7/x and g(x) = −3x + 1. Employing our understanding of subsƟtuƟon, we let
u = −3x + 1, the inside funcƟon. Thus du = −3dx. The integrand lacks a −3;
hence divide the previous equaƟon by −3 to obtain −du/3 = dx. We can now
evaluate the integral through subsƟtuƟon.

ˆ
7

−3x+ 1
dx =

ˆ (
7
u

)(
du
−3

)
=
−7
3

ˆ
du
u

=
−7
3

ln |u|+ C

= −7
3
ln |−3x+ 1|+ C.

Notes:
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Not all integrals that benefit from subsƟtuƟon have a clear “inside” funcƟon.
Several of the following examples will demonstrate ways in which this occurs.

Example 4 IntegraƟng by subsƟtuƟon
Evaluate

ˆ
sin x cos x dx.

SÊ½çã®ÊÄ There is not a composiƟonof funcƟonhere to exploit; rather,
just a product of funcƟons. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is oŌen beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand. The subsƟtuƟon becomes very straighƞorward:

ˆ
sin x cos x dx =

ˆ
u du

=
1
2
u2 + C

=
1
2
sin2 x+ C.

One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral leƫng u = cos x and discover why the answer is the same,
yet looks different.

Our examples so far have required “basic subsƟtuƟon.” The next example
demonstrates how subsƟtuƟons can be made that oŌen strike the new learner
as being “nonstandard.”

Example 5 IntegraƟng by subsƟtuƟon
Evaluate

ˆ
x
√
x+ 3 dx.

SÊ½çã®ÊÄ Recognizing the composiƟon of funcƟons, set u = x + 3.
Then du = dx, giving what seems iniƟally to be a simple subsƟtuƟon. But at this
stage, we have: ˆ

x
√
x+ 3 dx =

ˆ
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Notes:
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Since we set u = x+3, we can also state that u−3 = x. Thus we can replace
x in the integrand with u− 3. It will also be helpful to rewrite

√
u as u 1

2 .
ˆ

x
√
x+ 3 dx =

ˆ
(u− 3)u

1
2 du

=

ˆ (
u

3
2 − 3u

1
2
)
du

=
2
5
u

5
2 − 2u

3
2 + C

=
2
5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this parƟcular case, some alge-
bra will be needed to make one’s answer match the integrand in the original
problem.

Example 6 IntegraƟng by subsƟtuƟon
Evaluate

ˆ
1

x ln x
dx.

SÊ½çã®ÊÄ This is another example where there does not seem to be
an obvious composiƟon of funcƟons. The line of thinking used in Example 5 is
useful here: choose something for u and consider what this implies du must
be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/xmakes du = −1/x2 dx; that does not seem helpful. How-
ever, seƫng u = ln xmakes du = 1/x dx, which is part of the integrand. Thus:

ˆ
1

x ln x
dx =

ˆ
1
ln x︸︷︷︸
1/u

1
x
dx︸︷︷︸

du

=

ˆ
1
u
du

= ln |u|+ C
= ln |ln x|+ C.

The final answer is interesƟng; the natural log of the natural log. Take the deriva-
Ɵve to confirm this answer is indeed correct.

Notes:
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Integrals Involving Trigonometric FuncƟons
SecƟon 8.2 delves deeper into integrals of a variety of trigonometric funcƟons;
here we use subsƟtuƟon to establish a foundaƟon that we will build upon.

The next three examples will help fill in some missing pieces of our anƟder-
ivaƟve knowledge. We know the anƟderivaƟves of the sine and cosine func-
Ɵons; what about the other standard funcƟons tangent, cotangent, secant and
cosecant? We discover these next.

Example 7 IntegraƟon by subsƟtuƟon: anƟderivaƟves of tan x
Evaluate

ˆ
tan x dx.

SÊ½çã®ÊÄ The previous paragraph established that we did not know
the anƟderivaƟves of tangent, hence we must assume that we have learned
something in this secƟon that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composiƟon of func-
Ɵons may not be immediately obvious, recognize that cos x is “inside” the 1/x
funcƟon. Therefore, we see if seƫng u = cos x returns usable results. We have
that du = − sin x dx, hence−du = sin x dx. We can integrate:

ˆ
tan x dx =

ˆ
sin x
cos x

dx

=

ˆ
1

cos x︸︷︷︸
u

sin x dx︸ ︷︷ ︸
−du

=

ˆ
−1
u

du

= − ln |u|+ C
= − ln |cos x|+ C.

Some texts prefer to bring the−1 inside the logarithm as a power of cos x, as in:

− ln |cos x|+ C = ln
∣∣(cos x)−1∣∣+ C

= ln
∣∣∣∣ 1
cos x

∣∣∣∣+ C

= ln |sec x|+ C.

Thus the result they give is
´
tan x dx = ln |sec x| + C. These two answers are

equivalent.
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Example 8 IntegraƟng by subsƟtuƟon: anƟderivaƟves of sec x
Evaluate

ˆ
sec x dx.

SÊ½çã®ÊÄ This example employs a wonderful trick: mulƟply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
“1” as

1 =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of leŌ field, but it works beauƟfully. Consider:
ˆ

sec x dx =
ˆ

sec x · sec x+ tan x
sec x+ tan x

dx

=

ˆ
sec2 x+ sec x tan x

sec x+ tan x
dx.

Now let u = sec x + tan x; this means du = (sec x tan x + sec2 x) dx, which is
our numerator. Thus:

=

ˆ
du
u

= ln |u|+ C
= ln |sec x+ tan x|+ C.

We can use similar techniques to those used in Examples 7 and 8 to find
anƟderivaƟves of cot x and csc x (which the reader can explore in the exercises.)
We summarize our results here.

Theorem 42 AnƟderivaƟves of Trigonometric FuncƟons

1.
ˆ

sin x dx = − cos x+ C

2.
ˆ

cos x dx = sin x+ C

3.
ˆ

tan x dx = ln |sec x|+ C

4.
ˆ

csc x dx = − ln |csc x+ cot x|+ C

5.
ˆ

sec x dx = ln |sec x+ tan x|+ C

6.
ˆ

cot x dx = ln |sin x|+ C

Notes:
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Simplifying the Integrand
It is common to be reluctant to manipulate the integrand of an integral; at first,
our grasp of integraƟon is tenuous and one may think that working with the in-
tegrand will improperly change the results. IntegraƟon by subsƟtuƟon works
using a different logic: as long as equality is maintained, the integrand can be
manipulated so that its form is easier to deal with. The next example demon-
strates a common way in which using algebra first makes the integraƟon easier
to perform.

Example 9 IntegraƟon by alternate methods

Evaluate
ˆ

x2 + 2x+ 3√
x

dx with, and without, subsƟtuƟon.

SÊ½çã®ÊÄ We already know how to integrate this parƟcular example.
Rewrite

√
x as x 1

2 and simplify the fracƟon:

x2 + 2x+ 3
x1/2

= x
3
2 + 2x

1
2 + 3x−

1
2 .

We can now integrate using the Power Rule:ˆ
x2 + 2x+ 3

x1/2
dx =

ˆ (
x

3
2 + 2x

1
2 + 3x−

1
2

)
dx

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using subsƟtuƟon as its implementaƟon is rather clever.

Let u =
√
x = x 1

2 ; therefore

du =
1
2
x−

1
2 dx =

1
2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
ˆ

x2 + 2x+ 3√
x

dx =

ˆ
(x2 + 2x + 3) · 2 du. What are we to

do with the other x terms? Since u = x 1
2 , we have u2 = x and u4 = x2. We can

then replace x2 and x with appropriate powers of u. We thus haveˆ
x2 + 2x+ 3√

x
dx =

ˆ
(x2 + 2x+ 3) · 2 du

=

ˆ
2(u4 + 2u2 + 3) du

=
2
5
u5 +

4
3
u3 + 6u+ C

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C,

Notes:
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which is obviously the same answer we obtained before. In this situaƟon, sub-
sƟtuƟon is arguably more work than our other method. The fantasƟc thing is
that it works. It demonstrates how flexible integraƟon is.

SubsƟtuƟon and Definite IntegraƟon
So far this secƟon has focused on learning a new technique for finding anƟderiv-
aƟves. In pracƟce, we will frequently be interested in finding definite integrals.
We can use this anƟderivaƟve to evaluate the definite integral, but there is a
more efficient method.

At its heart, (using the notaƟon of Theorem 41) subsƟtuƟon converts inte-
grals of the form

´
F ′(g(x))g ′(x) dx into an integral of the form

´
F ′(u) du with

the subsƟtuƟon of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the subsƟtuƟon is performed.

Theorem 43 SubsƟtuƟon with Definite Integrals
Let F and g be differenƟable funcƟons, where the range of g is an inter-
val I that is contained in the domain of F. Then

ˆ b

a
F ′
(
g(x)

)
g ′(x) dx =

ˆ g(b)

g(a)
F ′(u) du.

In effect, Theorem 43 states that once you convert to integraƟng with re-
spect to u, you do not need to switch back to evaluaƟng with respect to x. A few
examples will help one understand.

Example 10 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
ˆ 2

0
cos(3x− 1) dx using Theorem 43.

SÊ½çã®ÊÄ Observing the composiƟon of funcƟons, let u = 3x − 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the laƩer
equaƟon by 3 to get du/3 = dx.

By seƫngu = 3x−1, weare implicitly staƟng thatg(x) = 3x−1. Theorem43
states that the new lower bound is g(0) = −1; the new upper bound is g(2) =
5. We now evaluate the definite integral:
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y = cos(3x − 1)

−1 1 2 3 4 5

−1

−0.5

0.5

1

x

y

(a)

y = 1
3 cos(u)

−1 1 2 3 4 5

−1

−0.5

0.5

1

u

y

(b)

Figure 5.24: Graphing the areas defined
by the definite integrals of Example 10.

ˆ 2

1
cos(3x− 1) dx =

ˆ 5

−1
cos u

du
3

=
1
3
sin u

∣∣∣∣5
−1

=
1
3
(
sin 5− sin(−1)

)
.

NoƟce how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 5.24 tell more of the story. In (a) the area defined by
the original integrand is shaded, whereas in (b) the area defined by the new
integrand is shaded. In this parƟcular situaƟon, the areas look very similar; the
new region is “shorter” but “wider,” giving the same area.

y = sin x cos x

1

−0.5

0.5

1

π
2

x

y

(a)

y = u

1

−0.5

0.5

1

π
2

u

y

(b)

Figure 5.25: Graphing the areas defined
by the definite integrals of Example 11.

Example 11 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
ˆ π/2

0
sin x cos x dx using Theorem 43.

SÊ½çã®ÊÄ We saw the corresponding indefinite integral in Example 4.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the laƩer here.

Let u = g(x) = cos x, giving du = − sin x dx and hence sin x dx = −du. The
new upper bound is g(π/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have

ˆ π/2

0
sin x cos x dx =

ˆ 0

1
−u du (switch bounds & change sign)

=

ˆ 1

0
u du

=
1
2
u2
∣∣∣∣1
0
=

1
2
.

In Figure 5.25 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 43 guarantees that they have the same area.
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Example 12 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
ˆ 2

0
xex

2+1 dx using Theorem 43.

SÊ½çã®ÊÄ We note the composiƟon of funcƟons and let u = x2 + 1,
hence du = 2x dx. We divide the differenƟal by 2 to get du

2 = x dx.
Seƫng g(x) = u = x2 + 1, we find that the new lower bound is g(0) = 1;

the new upper bound is g(2) = 5. We now evaluate:
ˆ 2

0
xex

2+1 dx =
ˆ 5

1
eu

du
2

=
1
2
eu
∣∣∣∣5
1

=
1
2
(e5 − e1)

=
e
2
(e4 − 1).
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Exercises 5.5
Terms and Concepts
1. SubsƟtuƟon “undoes” what derivaƟve rule?

2. T/F: One can someƟmes use algebra to rewrite the inte-
grand of an integral to make it easier to evaluate.

Problems
In Exercises 3–51, evaluate the indefinite integral.

3.
ˆ

3x2
(
x3 − 5

)7 dx

4.
ˆ

(2x− 5)
(
x2 − 5x+ 7

)3 dx

5.
ˆ

x
(
x2 + 1

)8 dx

6.
ˆ

(12x+ 14)
(
3x2 + 7x− 1

)5 dx

7.
ˆ

1
2x+ 7

dx

8.
ˆ

1√
2x+ 3

dx

9.
ˆ

x√
x+ 3

dx

10.
ˆ

x3 − x√
x

dx

11.
ˆ

e
√

x
√
x
dx

12.
ˆ

x4√
x5 + 1

dx

13.
ˆ 1

x + 1
x2

dx

14.
ˆ

ln(x)
x

dx

15.
ˆ

sin2(x) cos(x) dx

16.
ˆ

cos(3− 6x) dx

17.
ˆ

sec2(4− x) dx

18.
ˆ

sec(2x) dx

19.
ˆ

tan2(x) sec2(x) dx

20.
ˆ

x cos
(
x2
)
dx

21.
ˆ

cot x dx. Do not just refer to Theorem 42 for the answer;
jusƟfy it through SubsƟtuƟon.

22.
ˆ

csc x dx. Do not just refer to Theorem 42 for the answer;
jusƟfy it through SubsƟtuƟon.

23.
ˆ

e3x−1 dx

24.
ˆ

ex
3
x2 dx

25.
ˆ

ex
2−2x+1(x− 1) dx

26.
ˆ

ex + 1
ex

dx

27.
ˆ

ex − e−x

e2x
dx

28.
ˆ

ln x
x

dx

29.
ˆ (

ln x
)2

x
dx

30.
ˆ ln

(
x3
)

x
dx

31.
ˆ

1
x ln (x2)

dx

32.
ˆ

x2

(x3 + 3)2
dx

33.
ˆ (

3x2 + 2x
) (

5x3 + 5x2 + 2
)8 dx

34.
ˆ

x√
1− x2

dx

35.
ˆ

x2 csc2
(
x3 + 1

)
dx

36.
ˆ

sin(x)
√

cos(x) dx

37.
ˆ

1
x− 5

dx

38.
ˆ

7
3x+ 2

dx

39.
ˆ

2x+ 7
x2 + 7x+ 3

dx

40.
ˆ

9(2x+ 3)
3x2 + 9x+ 7

dx

41.
ˆ

3x− 3√
x2 − 2x− 6

dx

42.
ˆ

x− 3√
x2 − 6x+ 8

dx

43.
ˆ

cos
√
x√

x
dx

44.
ˆ

sec2 θ tan θ dθ

45.
ˆ

x
√
2x+ 3 dx

46.
ˆ

x3

(x2 + 1)3
dx

47.
ˆ

2x5

x2 + 1
dx

48.
ˆ

3x8(x3 + 2)8 dx
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49.
ˆ

sin
( x
3
)
dx

50.
ˆ

sin5
( x
4
)
cos
( x
4
)
dx

51.
ˆ

x1/2 cos(x3/2 + 1) dx

In Exercises 52–62, evaluate the definite integral.

52.
ˆ 3

1

1
x− 5

dx

53.
ˆ 6

2
x
√
x− 2dx

54.
ˆ π/2

−π/2
sin2 x cos x dx

55.
ˆ 1

0
2x(1− x2)4 dx

56.
ˆ −1

−2
(x+ 1)ex

2+2x+1 dx

57.
ˆ π/4

0
etan x sec2 x dx

58.
ˆ 1

−1

x
1+ x2

dx

59.
ˆ ln 3

1

ex

1+ ex
dx

60.
ˆ 1

0

2x2 + 1
(2x3 + 3x+ 2)3

dx

61.
ˆ 2

−1

x√
x+ 2

dx

62.
ˆ π

4

0
cos5(2x) sin(2x) dx
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6: AÖÖ½®��ã®ÊÄÝ Ê¥ IÄã�¦Ù�ã®ÊÄ
We begin this chapter with a reminder of a few key concepts from Chapter 5.
Let f be a conƟnuous funcƟon on [a, b]which is parƟƟoned into n equally spaced
subintervals as

a = x0 < x1 < · · · < xn−1 < xn = b.

Let ∆x = (b − a)/n denote the length of the subintervals, and let ci be any
x-value in the i th subinterval. DefiniƟon 24 states that the sum

n∑
i=1

f(ci)∆x

is a Riemann Sum. Riemann Sums are oŌen used to approximate some quan-
Ɵty (area, volume, work, pressure, etc.). The approximaƟon becomes exact by
taking the limit

lim
n→∞

n∑
i=1

f(ci)∆x.

Theorem 36 connects limits of Riemann Sums to definite integrals:

lim
n→∞

n∑
i=1

f(ci)∆x =
ˆ b

a
f(x) dx.

Finally, the Fundamental Theorem of Calculus states how definite integrals can
be evaluated using anƟderivaƟves.

This chapter employs the following technique to a variety of applicaƟons.
Suppose the value Q of a quanƟty is to be calculated. We first approximate the
value ofQ using a Riemann Sum, then find the exact value via a definite integral.
We spell out this technique in the following Key Idea.
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Key Idea 11 ApplicaƟon of Definite Integrals Strategy
Let a quanƟty be given whose value Q is to be computed.

1. Divide the quanƟty into n smaller “subquanƟƟes” of value Qi.

2. IdenƟfy a variable x and funcƟon f(x) such that each subquanƟty
can be approximated with the product f(ci)∆x, where∆x repre-
sents a small change in x. Thus Qi ≈ f(ci)∆x.

3. Recognize that Q ≈
n∑

i=1

Qi =

n∑
i=1

f(ci)∆x, which is a Riemann

Sum.

4. Taking the appropriate limit gives Q =

ˆ b

a
f(x) dx

This Key Idea will make more sense aŌer we have had a chance to use it
several Ɵmes. We begin with Area Between Curves.

6.1 Area Between Curves
We are oŌen interested in knowing the area of a region. Forget momentarily
that we addressed this already in SecƟon 5.4 and approach it instead using the
technique described in Key Idea 11.

f(x)

g(x)

a b
x

y

(a)

f(x)

g(x)

a b
x

y

(b)

f(x)

g(x)

a b
x

y

(c)

Figure 6.1: Subdividing a region into ver-
Ɵcal slices and approximaƟng the areas
with rectangles.

LetQ be the area of a region bounded by conƟnuous funcƟons f and g. If we
break the region into many subregions, we have an obvious equaƟon:

Total Area = sum of the areas of the subregions.

The issue to address next is how to systemaƟcally break a region into subregions.
A graph will help. Consider Figure 6.1 (a) where a region between two curves
is shaded. While there are many ways to break this into subregions, one par-
Ɵcularly efficient way is to “slice” it verƟcally, as shown in Figure 6.1 (b), into n
equally spaced slices.

We now approximate the area of a slice. Again, we have many opƟons, but
using a rectangle seems simplest. Picking any x-value ci in the i th slice, we set the
height of the rectangle to be f(ci) − g(ci), the difference of the corresponding
y-values. The width of the rectangle is a small difference in x-values, which we
represent with∆x. Figure 6.1 (c) shows sample points ci chosen in each subin-
terval and appropriate rectangles drawn. Each slice has an area approximately
equal to

(
f(ci) − g(ci)

)
∆x; hence, the total area is approximately the Riemann

Notes:
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6.1 Area Between Curves

Sum

Q ≈
n∑

i=1

(
f(ci)− g(ci)

)
∆x.

Taking the limit as n→∞ gives the exact area as
´ b
a

(
f(x)− g(x)

)
dx.

Theorem 44 Area Between Curves
Let f(x) and g(x) be conƟnuous funcƟons defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is

ˆ b

a

(
f(x)− g(x)

)
dx.

OŌen, we do not know which funcƟon is greater (or they switch within the
domain of integraƟon). In that case, we can say that the area is

´ b
a |f(x)− g(x)| dx,

which may involve dividing the domain of integraƟon into pieces.

Watch the video:
Finding Areas Between Curves at
https://youtu.be/DRFyNHdVgUA

Example 1 Finding area enclosed by curves
Find the area of the region bounded by f(x) = sin x+ 2, g(x) = 1

2 cos(2x)− 1,
x = 0 and x = 4π, as shown in Figure 6.2.

SÊ½çã®ÊÄ The graph verifies that the upper boundary of the region is

f(x)

g(x)

5 10

−2

2

4π
x

y

Figure 6.2: Graphing an enclosed region
in Example 1.

given by f and the lower bound is given by g. Therefore the area of the region is
the value of the integral

ˆ 4π

0

(
f(x)− g(x)

)
dx =

ˆ 4π

0

(
sin x+ 2−

(1
2
cos(2x)− 1

))
dx

= − cos x− 1
4
sin(2x) + 3x

∣∣∣4π
0

= 12π units2.

Notes:
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Example 2 Finding area between curves
Find the area of the region enclosed by y = x2 + x− 5 and y = 3x− 2.

SÊ½çã®ÊÄ It will help to sketch these two funcƟons, as done in Fig-
ure 6.3. The region whose area we seek is completely bounded by these two

y = x2 + x − 5

y = 3x − 2

−2 −1 1 2 3 4

5

10

15

x

y

Figure 6.3: Sketching the region enclosed
by y = x2 + x − 5 and y = 3x − 2 in
Example 2.

funcƟons; they seem to intersect at x = −1 and x = 3. To check, set x2+x−5 =
3x− 2 and solve for x:

x2 + x− 5 = 3x− 2
(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0
(x− 3)(x+ 1) = 0

x = −1, 3.

Following Theorem 44, the area is

ˆ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

ˆ 3

−1
(−x2 + 2x+ 3) dx

=

(
−1
3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1
3
(27) + 9+ 9−

(
1
3
+ 1− 3

)
= 10

2
3
= 10.6

1 2 3 4

−4

−2

2

x

y

Figure 6.4: Graphing a region enclosed by
two funcƟons in Example 3.

Example 3 Finding total area enclosed by curves
Find the total area of the region enclosed by the funcƟons f(x) = −2x+ 5 and
g(x) = x3 − 7x2 + 12x− 3 as shown in Figure 6.4.

SÊ½çã®ÊÄ A quick calculaƟon shows that f = g at x = 1, 2 and 4. One

can proceed thoughtlessly by compuƟng
ˆ 4

1

(
f(x) − g(x)

)
dx, but this ignores

the fact that on [1, 2], g(x) > f(x). (In fact, the thoughtless integraƟon returns
−9/4, hardly the expected value of an area.) Thus we compute the total area by
breaking the interval [1, 4] into two subintervals, [1, 2] and [2, 4] and using the

Notes:
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6.1 Area Between Curves

proper integrand in each.

Total Area =

ˆ 2

1

(
g(x)− f(x)

)
dx+

ˆ 4

2

(
f(x)− g(x)

)
dx

=

ˆ 2

1

(
x3 − 7x2 + 14x− 8

)
dx+

ˆ 4

2

(
− x3 + 7x2 − 14x+ 8

)
dx

=
5
12

+
8
3

=
37
12

units2.

The previous example makes note that we are expecƟng area to be posiƟve.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negaƟve area.” That doesn’t apply here; area is
to be posiƟve.

The previous example also demonstrates that we oŌen have to break a given
region into subregions before applying Theorem 44. The following example
shows another situaƟon where this is applicable, along with an alternate view
of applying the Theorem.

Example 4 Finding area: integraƟng with respect to y
Find the area of the region enclosed by the funcƟons y =

√
x + 2, y = −(x −

1)2 + 3 and y = 2, as shown in Figure 6.5.

SÊ½çã®ÊÄ We give two approaches to this problem. In the first ap-
proach, we noƟce that the region’s “top” is defined by two different curves.
On [0, 1], the top funcƟon is y =

√
x + 2; on [1, 2], the top funcƟon is y =

−(x− 1)2 + 3. Thus we compute the area as the sum of two integrals:

y =
√
x + 2 y = −(x − 1)2 + 3

1 2

1

2

3

x

y

Figure 6.5: Graphing a region for Exam-
ple 4.

Total Area =

ˆ 1

0

((√
x+ 2

)
− 2
)
dx+

ˆ 2

1

((
− (x− 1)2 + 3

)
− 2
)
dx

= 2/3+ 2/3
= 4/3.

The second approach is clever and very useful in certain situaƟons. We are
used to viewing curves as funcƟons of x; we input an x-value and a y-value is re-
turned. Some curves can also be described as funcƟons of y: input a y-value and
an x-value is returned. We can rewrite the equaƟons describing the boundary
by solving for x:

y =
√
x+ 2 ⇒ x = (y− 2)2

y = −(x− 1)2 + 3 ⇒ x =
√
3− y+ 1.

Notes:
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Figure 6.6 shows the regionwith the boundaries relabeled. A horizontal rect-
angle is also pictured. The width of the rectangle is a small change in y: ∆y. The
height of the rectangle is a difference in x-values. The “top” x-value is the largest
value, i.e., the rightmost. The “boƩom” x-value is the smaller, i.e., the leŌmost.
Therefore the height of the rectangle is

x = (y − 2)2 x =
√
3 − y + 1

1 2

1

2

3

x

y

Figure 6.6: The region used in Example 4
with boundaries relabeled as funcƟons of
y.

(√
3− y+ 1

)
− (y− 2)2.

The area is found by integraƟng the above funcƟon with respect to y with
the appropriate bounds. We determine these by considering the y-values the
region occupies. It is bounded below by y = 2, and bounded above by y = 3.
That is, both the “top” and “boƩom” funcƟons exist on the y interval [2, 3]. Thus

Total Area =

ˆ 3

2

(√
3− y+ 1− (y− 2)2

)
dy

=
(
− 2

3
(3− y)3/2 + y− 1

3
(y− 2)3

)∣∣∣3
2

= 4/3.

The important thing to noƟce is that by integraƟng with respect to y instead of
x, we only had to do one integral and did not need to find the point at which to
switch from one integraƟon to another.

This calculus–based technique of finding area can be useful evenwith shapes
that we normally think of as “easy.” Example 5 computes the area of a triangle.
While the formula “ 12 ×base×height” is well known, in arbitrary triangles it can
be nontrivial to compute the height. Calculus makes the problem simple.

Example 5 Finding the area of a triangle
Compute the area of the regions bounded by the lines y = 3− x, y = x+ 1 and

y = 3− x

y = x+ 1

y = 5x− 15

2 4 6

2

4

x

y

Figure 6.7: Graphing a triangular region in
Example 5.

y = 5x− 15, as shown in Figure 6.7.

SÊ½çã®ÊÄ Recognize that there are two “boƩom” funcƟons to this re-
gion, causing us to use two definite integrals.

Total Area =

ˆ 3

1

(
(x+ 1)− (3− x)

)
dx+

ˆ 4

3

(
(x+ 1)− (5x− 15)

)
dx

= 4+ 2
= 6.

We can also approach this by converƟng each funcƟon into a funcƟon of y. This
also requires 2 integrals, so there isn’t really any advantage to doing so. We do
it here for demonstraƟon purposes.

Notes:
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6.1 Area Between Curves

The “top” funcƟon is always x = y
5 + 3 while there are two “boƩom” func-

Ɵons: x = 3− y and x = y− 1. Being mindful of the proper integraƟon bounds,
we have

Total Area =

ˆ 2

0

(( y
5
+ 3
)
− (3− y)

)
dy+

ˆ 5

2

(( y
5
+ 3
)
− (y− 1)

)
dy

=
12
5

+
18
5

= 6.

Of course, the final answer is the same (and we see that integraƟng with respect
to x was probably easier, since it avoided fracƟons).

In the next secƟon we apply Key Idea 11 to finding the volumes of certain
solids.

Notes:
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Exercises 6.1
Terms and Concepts
1. T/F: The area between curves is always posiƟve.
2. T/F: Calculus can be used to find the area of basic geomet-

ric shapes.
3. In your own words, describe how to find the total area en-

closed by y = f(x) and y = g(x).

Problems
In Exercises 4–9, find the area of the shaded region in the given
graph.

4.

y = 1
2 cos x + 1

y = 1
2 x + 3

2

4

6

π 2π
x

y

5.

y = x2 + x − 1

y = −3x3 + 3x + 2

−1 1

−1

1

2

3

x

y

6. y = 1

y = 2

1

2

ππ/2
x

y

7.

y = sin x

y = sin x + 1

1

2

ππ/2
x

y

8.

y = sin(4x)

y = sec2 x

1

2

π/4π/8
x

y

9.

y = sin x

y = cos x

−1

−0.5

0.5

1

π/4 π/2 3π/4 π 5π/4
x

y

In Exercises 10–19, find the area of the region bounded by the
given curves.

10. f(x) = 2x2 + 5x− 3, g(x) = x2 + 4x− 1
11. f(x) = x2 − 3x+ 2, g(x) = −3x+ 3
12. f(x) = sin x, g(x) = 2x/π
13. f(x) = x3 − 4x2 + x− 1, g(x) = −x2 + 2x− 4
14. f(x) = x, g(x) =

√
x

15. f(x) = −x3 + 5x2 + 2x+ 1, g(x) = 3x2 + x+ 3
16. x = 2y2, x+ y = 1
17. x = y2 − 1, x = 1− y2

18. 4x+ y2 = 12, x = y
19. x = y2 − 4y, x = 2y− y2

20. The funcƟons f(x) = cos(2x) and g(x) = sin x intersect
infinitely many Ɵmes, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

In Exercises 21–25, find the area of the enclosed region in two
ways:

1. by treaƟng the boundaries as funcƟons of x, and
2. by treaƟng the boundaries as funcƟons of y.

21.

1 2 3

1

2

y = x2 + 1
y = 1

4 (x − 3)2 + 1

y = 1

x

y
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22.

y =
√
x

y = −2x + 3

y = − 1
2 x

1 2

−1

−0.5

0.5

1

x

y

23.
y = x2

y = x + 2

−1 1 2

2

4

x

y

24.

x = 1
2 y

2

x = − 1
2 y + 1

1 2

−2

−1

1

x

y

25.

y = x1/3

y =
√

x − 1/2

0.5 1

0.5

1

x

y

In Exercises 26–29, find the area triangle formed by the given
three points.

26. (1, 1), (2, 3), and (3, 3)

27. (−1, 1), (1, 3), and (2,−1)

28. (1, 1), (3, 3), and (3, 3)

29. (0, 0), (2, 5), and (5, 2)
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6.2 VolumebyCross-SecƟonal Area; Disk andWasher
Methods

The volume of a general right cylinder, as shown in Figure 6.8, is

Area of the base× height.

Figure 6.8: The volume of a general right
cylinder

We can use this fact as the building block in finding volumes of a variety of
shapes.

Given an arbitrary solid, we can approximate its volume by cuƫng it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
secƟonal area× thickness.

By orienƟng a solid along the x-axis, we can let A(xi) represent the cross-
secƟonal area of the i th slice, and let∆x represent the thickness of the slices (the
thickness is a small change in x). The total volume of the solid is approximately:

Volume ≈
n∑

i=1

[
Area × thickness

]
=

n∑
i=1

A(xi)∆x.

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

Volume = lim
n→∞

n∑
i=1

A(xi)∆x

with∆x = b−a
n and xi = a+ i∆x. We recognize this as a definite integral.

Theorem 45 Volume By Cross-SecƟonal Area
The volume V of a solid, oriented along the x-axis with cross-secƟonal
area A(x) from x = a to x = b, is

V =

ˆ b

a
A(x) dx.

Example 1 Finding the volume of a solid
Find the volume of a pyramidwith a square base of side length 10 in and a height
of 5 in.

Notes:
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();




6.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods

SÊ½çã®ÊÄ There are many ways to “orient” the pyramid along the x-
axis; Figure 6.9(a) gives one such way, with the pointed top of the pyramid at
the origin and the x-axis going through the center of the base.

(a)

(b)

Figure 6.9: OrienƟng a pyramid along the
x-axis (top) and cuƫng a slice in the pyra-
mid (boƩom) in Example 1.

Each cross secƟon of the pyramid is a square. To determine its area A(x), we
need to determine the side lengths of the square.

When x = 5, the square has side length 10; when x = 0, the square has side
length 0. Since the edges of the pyramid are lines, it is easy to figure that each
cross-secƟonal square has side length 2x, giving A(x) = (2x)2 = 4x2.

If one were to cut a slice out of the pyramid at x = 3, as shown in Fig-
ure 6.9(b), one would have a shape with square boƩom and top with sloped
sides. If the slice were thin, both the boƩom and top squares would have sides
lengths of about 6, and thus the cross–secƟonal area of the boƩom and top
would be about 36in2. Leƫng ∆x represent the thickness of the slice, the vol-
ume of this slice would then be about 36∆xin3.

Cuƫng the pyramid into n slices divides the total volume into n equally–
spaced smaller pieces, each with volume (2xi)2∆x, where xi is the approximate
locaƟon of the slice along the x-axis and ∆x represents the thickness of each
slice. One can approximate total volume of the pyramid by summing up the
volumes of these slices:

Volume ≈
n∑

i=1

(2xi)2∆x.

Taking the limit as n → ∞ gives the actual volume of the pyramid; recognizing
this sum as a Riemann Sum allows us to find the exact answer using a definite
integral, matching the definite integral given by Theorem 45.

We have

V = lim
n→∞

n∑
i=1

(2xi)2∆x

=

ˆ 5

0
4x2 dx

=
4
3
x3
∣∣∣5
0

=
500
3

in3.

We can check our work by consulƟng the general equaƟon for the volume of a
pyramid (see the back cover under “Volume of A General Cone”):

1
3 × area of base× height.

Certainly, using this formula from geometry is faster than our new method, but
the calculus–based method can be applied to much more than just cones.

Notes:
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Chapter 6 ApplicaƟons of IntegraƟon

An important special case of Theorem 45 is when the solid is a solid of rev-
oluƟon, that is, when the solid is formed by rotaƟng a shape around an axis.

Startwith a funcƟon y = f(x) from x = a to x = b. Revolving this curve about
a horizontal axis encloses a three-dimensional solid whose cross secƟons are
disks (thin circles), perpendicular to the axis of rotaƟon. Let R(x) represent the
radius of the cross-secƟonal disk at x; the area of this disk is π[R(x)]2. Applying
Theorem 45 gives the Disk Method.

Key Idea 12 The Disk Method
Let a solid be enclosed by revolving the curve y = f(x) from x = a to
x = b around a horizontal axis, and let R(x) be the radius of the cross-
secƟonal disk at x. The volume of the solid is

V = π

ˆ b

a
[R(x)]2 dx.

Watch the video:
Longer Version — Volumes using Disks/Washers at
https://youtu.be/nZqOKc067Z8

Notes:
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6.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods
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(a)

(b)

(c)

Figure 6.10: Sketching a solid in Exam-
ple 2.

Example 2 Finding volume using the Disk Method
Find the volume of the solid formed by revolving about the x-axis the region
bounded by the curves y = 1/x, x = 1, x = 2 and the x-axis.

SÊ½çã®ÊÄ A sketch canhelp us understand this problem. In Figure 6.10(a)
we have sketched the region wewill be rotaƟng. In Figure 6.10(b), the curve y =
1/x is sketched along with the sample slice, a disk, at x with radius R(x) = 1/x.
In Figure 6.10(c) the whole solid is pictured, along with the sample slice.

The volume of the sample slice shown in part (b) of the figure is approxi-
mately πR(xi)2∆x, where R(xi) is the radius of the disk shown and ∆x is the
thickness of that slice. The radius R(xi) is the distance from the x-axis to the
curve, hence R(xi) = 1/xi.

Slicing the solid into n equally–spaced slices, we can approximate the total
volume by adding up the approximate volume of each slice:

Approximate volume =

n∑
i=1

π

(
1
xi

)2

∆x.

Taking the limit of the above sum as n→∞ gives the actual volume; recog-
nizing this sum as a Riemann sum allows us to evaluate the limit with a definite
integral, which matches the formula given in Key Idea 12:

V = lim
n→∞

n∑
i=1

π

(
1
xi

)2

∆x

= π

ˆ 2

1

(
1
x

)2

dx

= π

ˆ 2

1

1
x2

dx

= π

[
−1
x

] ∣∣∣2
1

= π

[
−1
2
− (−1)

]
=

π

2
units3.

Notes:
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Chapter 6 ApplicaƟons of IntegraƟon

While Key Idea 12 is given in terms of funcƟons of x, the principle involved
can be applied to funcƟons of y when the axis of rotaƟon is verƟcal, not hori-
zontal. We demonstrate this in the next example.

R(y)

1 2

0.5

1

x

y

(a)

(b)

(c)

Figure 6.11: Sketching a solid in Exam-
ple 3.

Example 3 Finding volume using the Disk Method
Find the volume of the solid formed by revolving about the y-axis the region
bounded by the curves y = 1/x, y = 1, y = 0.5, and the y-axis.

SÊ½çã®ÊÄ Since the axis of rotaƟon is verƟcal, our perpendicular cross
secƟons have thickness∆y and radius x = R(y). We need to convert the func-
Ɵon into a funcƟon of y. Since y = 1/x defines the curve, we rewrite it as
x = 1/y.

Thus we are rotaƟng about the y-axis the region bounded by the curves x =
1/y, y = 1/2, y = 1, and the y-axis to form a solid. The region of revoluƟon
is sketched in Figure 6.11(a), the curve and sample sample disk are sketched in
Figure 6.11(b), and a full sketch of the solid is in Figure 6.11(b). We integrate to
find the volume:

V = π

ˆ 1

1/2

1
y2

dy

= −π

y

∣∣∣1
1/2

= π units3.

We can also compute the volume of solids of revoluƟon that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespecƟve of the hole, then subtract the volume of the hole. If the outside
radius of the solid is R(x) and the inside radius (defining the hole) is r(x), then
the volume is

V = π

ˆ b

a
[R(x)]2 dx− π

ˆ b

a
[r(x)]2 dx = π

ˆ b

a

(
[R(x)]2 − [r(x)]2

)
dx.

One can generate a solid of revoluƟon with a hole in the middle by revolving
a region about an axis. Consider Figure 6.12(a), where a region is sketched along
with a dashed, horizontal axis of rotaƟon. By rotaƟng the region about the axis,
a solid is formed. Each cross secƟon of this solid will be a washer (a disk with a
hole in the center) as sketched in Figure 6.12(b). The outside of the washer has
radius R(x), whereas the inside has radius r(x). The enƟre solid is sketched in
Figure 6.12(c). This leads us to the Washer Method.

Notes:
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6.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods

R(x) r(x)

1 2 3

−2

2

x

y

(a) (b) (c)

Figure 6.12: Establishing the Washer Method.

Key Idea 13 The Washer Method
Let a region bounded by y = f(x), y = g(x), x = a and x = b be rotated
about a horizontal axis that does not intersect the region, forming a
solid. Each cross secƟon at x will be a washer with outside radius R(x)
and inside radius r(x). The volume of the solid is

V = π

ˆ b

a

(
[R(x)]2 − [r(x)]2

)
dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

R(x)

r(x)

1 2 3

2

4

x

y

(a)

(b)

(c)

Figure 6.13: Sketching the region, a sam-
ple slice, and solid in Example 4.

Example 4 Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the region bounded by y =
x2 − 2x+ 2 and y = 2x− 1 about the x-axis.

SÊ½çã®ÊÄ A sketch of the region will help, as given in Figure 6.13(a).
RotaƟng about the x-axis will produce cross secƟons in the shape of washers,
as shown in Figure 6.13(b); the complete solid is shown in part (c). The outside
radius of this washer is R(x) = 2x+ 1; the inside radius is r(x) = x2− 2x+ 2. As
the region is bounded from x = 1 to x = 3, we integrate as follows to compute

Notes:
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the volume.

V = π

ˆ 3

1

(
(2x− 1)2 − (x2 − 2x+ 2)2

)
dx

= π

ˆ 3

1

(
− x4 + 4x3 − 4x2 + 4x− 3

)
dx

= π
[
− 1

5
x5 + x4 − 4

3
x3 + 2x2 − 3x

]∣∣∣3
1

=
104
15

π units3.

When rotaƟng about a verƟcal axis, the outside and inside radius funcƟons
must be funcƟons of y.

R(x)

r(x)

1

1
x

y

(a)

(b)

(c)

Figure 6.14: Sketching the region, a sam-
ple slice, and the solid in Example 5.

Example 5 Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the region bounded by y = x2
and x = y2 about the y-axis.

SÊ½çã®ÊÄ In Figure 6.14 we have a sketch of the region (a), a sample
slice (b), and the solid (c). RotaƟng about the y-axis will produce cross secƟons
in the shape of washers, as shown in Figure (not yet created); the complete solid
is shown in part (c). Since the axis of rotaƟon is verƟcal, each radius is a funcƟon
of y. The outside radius of this washer is R(y) =

√y and the inside radius is
r(y) = y2. As the region is bounded from y = 0 to y = 1, we integrate as
follows to compute the volume.

V = π

ˆ 1

0

(
(
√
y)2 − (y2)2

)
dy

= π

ˆ 1

0
y− y4 dy

= π

[
1
2
y2 − 1

5
y5
]∣∣∣∣1

0

=
3π
10

units3.
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(c)

Figure 6.15: Sketching the region, a sam-
ple slice, and the solid in Example 6.

Example 6 Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the triangular region with ver-
Ɵces at (1, 1), (2, 1) and (2, 3) about the y-axis.

SÊ½çã®ÊÄ The triangular region is sketched in Figure 6.15(a); the sam-
ple slice is sketched in (b) and the full solid is drawn in (c). They help us establish
the outside and inside radii. Since the axis of rotaƟon is verƟcal, each radius is
a funcƟon of y.

The outside radius R(y) is formed by the line connecƟng (2, 1) and (2, 3); it
is a constant funcƟon, as regardless of the y-value the distance from the line to
the axis of rotaƟon is 2. Thus R(y) = 2.

The inside radius is formedby the line connecƟng (1, 1) and (2, 3). The equa-
Ɵon of this line is y = 2x−1, but we need to refer to it as a funcƟon of y. Solving
for x gives r(y) = 1

2 (y+ 1).
We integrate over the y-bounds of y = 1 to y = 3. Thus the volume is

V = π

ˆ 3

1

(
22 −

(1
2
(y+ 1)

)2) dy

= π

ˆ 3

1

(
− 1

4
y2 − 1

2
y+

15
4

)
dy

= π
[
− 1

12
y3 − 1

4
y2 +

15
4
y
]∣∣∣3

1

=
10
3
π units3.

In the previous examples, the axis of rotaƟon has either been the x or y axis.
We will now consider a problem where the axis of rotaƟon is some other hori-
zontal line.

Notes:
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r(x)
R(x)
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Figure 6.16: Sketching the solid in Exam-
ple 7.

Example 7 Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the region bounded by y =

√
x

and y = x about y = 2.

SÊ½çã®ÊÄ Figure 6.16 shows the region we are rotaƟng (a), a sample
slice (b) and the full solid (c). The axis of rotaƟon is horizontal so the radii must
be funcƟons of x. The radii is the distance from the axis of rotaƟon to the curve
so the outside radius of this washer is R(x) = 2 − x and the inside radius is
r(x) = 2−

√
x. The region is bounded from x = 0 to x = 1, thus the volume is

V = π

ˆ 1

0

(
(2− x)2 − (2−

√
x)2
)
dx

= π

ˆ 1

0
(4− 4x+ x2)− (4− 4

√
x+ x) dx

= π

ˆ 1

0
x2 − 5x+ 4

√
x dx

= π

[
1
3
x3 − 5

2
x2 +

8
3
x3/2

]∣∣∣∣1
0

=
π

2
units3.

This secƟon introduced a new applicaƟon of the definite integral. Our de-
fault view of the definite integral is that it gives “the area under the curve.” How-
ever, we can establish definite integrals that represent other quanƟƟes; in this
secƟon, we computed volume.

The ulƟmate goal of this secƟon is not to compute volumes of solids. That
can be useful, but what ismore useful is the understanding of this basic principle
of integral calculus, outlined in Key Idea 11: to find the exact value of some
quanƟty,

• we start with an approximaƟon (in this secƟon, slice the solid and approx-
imate the volume of each slice),

• then make the approximaƟon beƩer by refining our original approxima-
Ɵon (i.e., use more slices),

• then use limits to establish a definite integral which gives the exact value.

We pracƟce this principle in the next secƟon where we find volumes by slic-
ing solids in a different way.

Notes:
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Exercises 6.2
Terms and Concepts

1. T/F: A solid of revoluƟon is formed by revolving a shape
around an axis.

2. In your ownwords, explain how theDisk andWasherMeth-
ods are related.

3. Explain the how the units of volume are found in the in-
tegral of Theorem 45: if A(x) has units of in2, how does´
A(x) dx have units of in3?

Problems

In Exercises 4–7, a region of the Cartesian plane is shaded. Use
the Disk/WasherMethod to find the volume of the solid of rev-
oluƟon formed by revolving the region about the x-axis.

4.

y = 3 − x2

−2 −1 1 2

1

2

3

x

y

5.

y = 5x

0.5 1 1.5 2

5

10

x

y

6.

y =
√
x

y = x

0.5 1

0.5

1

x

y

7.
y = x3

1 2

2

4

6

8

x

y

In Exercises 8–11, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by revolving the region about the y-axis.

8.

y = 3 − x2

−2 −1 1 2

1

2

3

x

y

9.

y = 5x

0.5 1 1.5 2

5

10

x

y

10.

y =
√
x

y = x

0.5 1

0.5

1

x

y

307



11.
y = x3

1 2

2

4

6

8

x

y

In Exercises 12–17, a region of the Cartesian plane is described.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by rotaƟng the region about each of the
given axes.
12. Region bounded by: y =

√
x, y = 0 and x = 1.

Rotate about:

(a) the x-axis

(b) y = 1

(c) the y-axis

(d) x = 1
13. Region bounded by: y = 4− x2 and y = 0.

Rotate about:

(a) the x-axis

(b) y = 4

(c) y = −1

(d) x = 2
14. The triangle with verƟces (1, 1), (1, 2) and (2, 1).

Rotate about:

(a) the x-axis

(b) y = 2

(c) the y-axis

(d) x = 1
15. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.

Rotate about:

(a) the x-axis

(b) y = 1

(c) y = 5

16. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the x-axis

(b) y = 4

(c) the y-axis

(d) x = 2
17. Region bounded by y = cos x, x = 0, x = π

4
and the x-axis.

Rotate about:

(a) the x-axis

(b) y = 1

(c) y = −1

In Exercises 18–21, a solid is described. Orient the solid along
the x-axis such that a cross-secƟonal area funcƟon A(x) can
be obtained, then apply Theorem 45 to find the volume of the
solid.

18. A right circular cone with height of 10 and base radius of 5.

5

10

19. A skew right circular conewith height of 10 and base radius
of 5. (Hint: all cross-secƟons are circles.)

5

10

20. A right triangular cone with height of 10 and whose base is
a right, isosceles triangle with side length 4.

4 4

10

21. A solid with length 10 with a rectangular base and triangu-
lar top, wherein one end is a square with side length 5 and
the other end is a triangle with base and height of 5.

10

5
5

5
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6.3 The Shell Method

6.3 The Shell Method
OŌen a given problem can be solved in more than one way. A parƟcular method
may be chosen out of convenience, personal preference, or perhaps necessity.
UlƟmately, it is good to have opƟons.

The previous secƟon introduced the Disk and Washer Methods, which com-
puted the volume of solids of revoluƟon by integraƟng the cross–secƟonal area
of the solid. This secƟon develops another method of compuƟng volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotaƟon
creaƟng cross-secƟons, we now slice it parallel to the axis of rotaƟon, creaƟng
“shells.” y = 1

1+x2

0.5 1

0.5

1

x

y

(a)

(b)

(c)

Figure 6.17: Introducing the Shell
Method.

Consider Figure 6.17, where the region shown in (a) is rotated around the
y-axis forming the solid shown in (c). A small slice of the region is drawn in (a),
parallel to the axis of rotaƟon. When the region is rotated, this thin slice forms
a cylindrical shell, as pictured in part (b) of the figure. The previous secƟon
approximated a solid with lots of thin disks (or washers); we now approximate
a solid with many thin cylindrical shells.

To compute the volume of one shell, first consider the paper label on a soup
can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 2πr. Thus the area is A = 2πrh; see Figure 6.18(a).

Do a similar process with a cylindrical shell, with height h, thickness∆x, and
approximate radius r. Cuƫng the shell and laying it flat forms a rectangular solid
with length 2πr, height h and depth ∆x. Thus the volume is V ≈ 2πrh∆x; see
Figure 6.18(b). (We say “approximately” since our radiuswas an approximaƟon.)

By breaking the solid into n cylindrical shells, we can approximate the volume
of the solid as

V ≈
n∑

i=1

2πrihi∆x,

where ri, hi and∆x are the radius, height and thickness of the i th shell, respec-
Ɵvely.

This is a Riemann Sum. Taking a limit as the thickness of the shells ap-
proaches 0 leads to a definite integral.

V = lim
n→∞

n∑
i=1

2πrihi∆x

= 2π
ˆ b

a
r(x)h(x) dx

Notes:
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h
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V ≈ 2πrh∆x

(a) (b)

Figure 6.18: Determining the volume of a thin cylindrical shell.

Key Idea 14 The Shell Method
Let a solid be formed by revolving a region R, bounded by x = a and x =
b, around a verƟcal axis. Let r(x) represent the distance from the axis
of rotaƟon to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of
the solid is

V = 2π
ˆ b

a
r(x)h(x) dx.

Special Cases:

1. When the region R is bounded above by y = f(x) and below by y = g(x),
then h(x) = f(x)− g(x).

2. When the axis of rotaƟon is the y-axis (i.e., x = 0) then r(x) = x.

Watch the video:
Volumes of RevoluƟon — Cylindrical Shells at
https://youtu.be/V6nTsxumjgU

Let’s pracƟce using the Shell Method.

Example 1 Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region bounded by y = 0,
y = 1/(1+ x2), x = 0 and x = 1 about the y-axis.

Notes:
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SÊ½çã®ÊÄ This is the region used to introduce the Shell Method in Fig-
ure 6.17, but is sketched again in Figure 6.19 for closer reference. A line is drawn

h(x)


︸ ︷︷ ︸

r(x)

y =
1

1 + x2

1

1

x
x

y

Figure 6.19: Graphing a region in Exam-
ple 1.

in the region parallel to the axis of rotaƟon represenƟng a shell that will be
carved out as the region is rotated about the y-axis.

The distance this line is from the axis of rotaƟon determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this line
determines h(x); the top of the line is at y = 1/(1 + x2), whereas the boƩom
of the line is at y = 0. Thus h(x) = 1/(1+ x2)− 0 = 1/(1+ x2). The region is
bounded from x = 0 to x = 1, so the volume is

V = 2π
ˆ 1

0

x
1+ x2

dx.

This requires subsƟtuƟon. Let u = 1 + x2, so du = 2x dx. We also change the
bounds: u(0) = 1 and u(1) = 2. Thus we have:

= π

ˆ 2

1

1
u
du

= π ln u
∣∣∣2
1

= π ln 2 units3.

Note: in order to find this volume using the Disk Method, two integrals would
be needed to account for the regions above and below y = 1/2.

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

y =
2x

+
1

 h(x).︸ ︷︷ ︸
r(x)

1 2 3

1

2

3

x
x

y

(a)

(b)

(c)

Figure 6.20: Graphing a region in Exam-
ple 2.

Example 2 Finding volume using the Shell Method
Find the volumeof the solid formed by rotaƟng the triangular region determined
by the points (0, 1), (1, 1) and (1, 3) about the line x = 3.

SÊ½çã®ÊÄ The region is sketched in Figure 6.20(a) along with a line
within the region parallel to the axis of rotaƟon. In part (b) of the figure, we
see a sample shell, and in part (c) the whole solid is shown.

The height of the sample shell is the distance from y = 1 to y = 2x+ 1, the
line that connects the points (0, 1) and (1, 3). Thus h(x) = 2x+1−1 = 2x. The
radius of the sample shell is the distance from x to x = 3; that is, it is r(x) = 3−x.

Notes:
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The x-bounds of the region are x = 0 to x = 1, giving

V = 2π
ˆ 1

0
(3− x)(2x) dx

= 2π
ˆ 1

0

(
6x− 2x2) dx

= 2π
(
3x2 − 2

3
x3
)∣∣∣∣1

0

=
14
3
π units3.

When revolving a region around a horizontal axis, we must consider the ra-
dius and height funcƟons in terms of y, not x.

x =
1
2
y−

1
2

︸ ︷︷ ︸
h(y)


r(y)

1

1

2

3

y

x

y

(a)

(b)

(c)

Figure 6.21: Graphing a region in Exam-
ple 3.

Example 3 Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region given in Example 2
about the x-axis.

SÊ½çã®ÊÄ The region is sketched in Figure 6.21(a). In part (b) of the
figure the sample shell is drawn, and the solid is sketched in (c). (Note that the
triangular region looks “short and wide” here, whereas in the previous example
the same region looked “tall and narrow.” This is because the bounds on the
graphs are different.)

The height of the sample shell is an x-distance, between x = 1
2y −

1
2 and

x = 1. Thus h(y) = 1 − ( 12y −
1
2 ) = −

1
2y +

3
2 . The radius is the distance from

y to the x-axis, so r(y) = y. The y bounds of the region are y = 1 and y = 3,
leading to the integral

V = 2π
ˆ 3

1

[
y
(
−1
2
y+

3
2

)]
dy

= 2π
ˆ 3

1

[
−1
2
y2 +

3
2
y
]
dy

= 2π
[
−1
6
y3 +

3
4
y2
]∣∣∣∣3

1

= 2π
[
9
4
− 7

12

]
=

10
3
π units3.

Notes:
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The following example shows how there are Ɵmes when it does not maƩer
whichmethod you choose to evaluate the volumeof a solid. In Example 6.2.7we
found the volume of the solid formed by rotaƟng the region bounded by y =

√
x

and y = x about y = 2. We will now demonstrate how to find the volume with
the shell method. Note that your answer should be the samewhichevermethod
you choose.

Example 4 Using the shell method instead of the washer method
Find the volume of the solid formed by rotaƟng the region bounded by y =

√
x

and y = x about y = 2 using the Shell Method.

SÊ½çã®ÊÄ Since our shells are parallel to the axis of rotaƟon, we must
consider the radius and height funcƟons in terms of y. The radius of a sample
shell will be r(y) = 2− y and the height of a sample shell will be h(y) = y = y2.
The y bounds for the region will be y = 0 to y = 1 resulƟng in the integral

V = 2π
ˆ 1

0
(2− y)(y− y2) dy

= 2π
ˆ 1

0
y3 − 3y2 + 2y dy

=
π

2
units3.

At the beginning of this secƟon it was stated that “it is good to have opƟons.”
The next example finds the volume of a solid rather easily with the ShellMethod,
but using the Washer Method would be quite a chore.

 h(x)

︸ ︷︷ ︸
r(x)

1

2

1 2 3
x

y

(a)

(b)

(c)

Figure 6.22: Graphing a region in Exam-
ple 5.

Example 5 Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region bounded by y =
3x− x2 and y = x about the y-axis.

SÊ½çã®ÊÄ The region, a sample shell, and the resulƟng solid are shown
in Figure 6.22. The radius of a sample shell is r(x) = x; the height of a sample
shell is h(x) = (3x − x2) − x = 2x − x2. The x bounds on the region are x = 0

Notes:
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to x = 2 leading to the integral

V = 2π
ˆ 2

0
x(2x− x2) dx

= 2π
ˆ 2

0
2x2 − x3 dx

= 2π
[
2
3
x3 − 1

4
x4
]∣∣∣∣2

0

=
4π
3

Note that in order to use the Washer Method, we would need to solve y =
3x − x2 for x, requiring us to complete the square. We must evaluate two in-
tegrals as we have two different sample slices. The volume can be computed
as

V = 2π
ˆ 2

0

(
y−

(
3
2
−
√

9
4
− y

))2

dy

+ 2π
ˆ 9/4

2

((
3
2
+

√
9
4
− y

)
−

(
3
2
−
√

9
4
− y

))2

dy

= 2π
ˆ 2

0

(
y− 3

2
+

√
9
4
− y

)2

dy+ 2π
ˆ 9/4

2

(
2
√

9
4
− y

)2

dy

While this integral is not impossible to solve, using the Shell Method gave us a
significantly easier way to compute the volume.

As in the previous secƟon, the real goal of this secƟon is not to be able to
compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approximaƟng, then using limits to refine the approximaƟon to give the
exact value. In this secƟon, we approximate the volume of a solid by cuƫng it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approximaƟon of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summaƟon can be evaluated as a definite integral,
giving the exact value.

Notes:
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Exercises 6.3
Terms and Concepts

1. T/F: A solid of revoluƟon is formed by revolving a shape
around an axis.

2. T/F: The Shell Method can only be used when the Washer
Method fails.

3. T/F: The Shell Methodworks by integraƟng cross–secƟonal
areas of a solid.

4. T/F: When finding the volume of a solid of revoluƟon that
was revolved around a verƟcal axis, the Shell Method inte-
grates with respect to x.

Problems

In Exercises 5–8, a region of the Cartesian plane is shaded. Use
the Shell Method to find the volume of the solid of revoluƟon
formed by revolving the region about the y-axis.

5.

y = 3 − x2

−2 −1 1 2

1

2

3

x

y

6.

y = 5x

0.5 1 1.5 2

5

10

x

y

7.
y = x3

1 2

2

4

6

8

x

y

8.

y =
√
x

y = x

0.5 1

0.5

1

x

y

In Exercises 9–12, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by revolving the region about the x-axis.

9.

y = 3 − x2

−2 −1 1 2

1

2

3

x

y

10.

y = 5x

0.5 1 1.5 2

5

10

x

y

11.
y = x3

1 2

2

4

6

8

x

y
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12.

y =
√
x

y = x

0.5 1

0.5

1

x

y

In Exercises 13–17, a region of the Cartesian plane is described.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by rotaƟng the region about each of the given
axes.

13. Region bounded by: y =
√
x, y = 0 and x = 1.

Rotate about:

(a) the y-axis

(b) x = 1

(c) the x-axis

(d) y = 1

14. Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) x = 2

(b) x = −2

(c) the x-axis

(d) y = 4

15. The triangle with verƟces (1, 1), (1, 2) and (2, 1).
Rotate about:

(a) the y-axis

(b) x = 1

(c) the x-axis

(d) y = 2
16. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.

Rotate about:

(a) the y-axis

(b) x = 1

(c) x = −1

17. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the y-axis

(b) x = 2

(c) the x-axis

(d) y = 4
In Exercises 18–20, use your choice of the Washer or Shell
Method to find the indicated volume.

18. Region bounded by y = x4, y = 0, and x = 1.
Rotate about:

(a) the y-axis (b) the x-axis
19. Region bounded by y = x3 + 1, x = 0, and y = 2.

Rotate about:
(a) the y-axis (b) y = 2

20. Region bounded by y = 4x2 and 4x+ y = 8.
Rotate about

(a) the x-axis

(b) x = 1

(c) y = 16
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6.4 Work

6.4 Work

Work is the scienƟfic term used to describe the acƟon of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performed isW = F · d.

The SI unit of force is the Newton, (kg·m/s2), and the SI unit of distance is
a meter (m). The fundamental unit of work is one Newton–meter, or a Joule
(J). That is, applying a force of one Newton for one meter performs one Joule
of work. In Imperial units (as used in the United States), force is measured in
pounds (lb) and distance is measured in feet (Ō), hence work is measured in
Ō–lb.

Note: Mass and weight are closely
related, yet different, concepts. The
mass m of an object is a quanƟtaƟve
measure of that object’s resistance
to acceleraƟon. The weight w of
an object is a measurement of the
force applied to the object by the
acceleraƟon of gravity g.

Since the twomeasurements are pro-
porƟonal, w = m · g, they are of-
ten used interchangeably in every-
day conversaƟon. When compuƟng
work, one must be careful to note
which is being referred to. When
mass is given, it must be mulƟplied
by the acceleraƟon of gravity to ref-
erence the related force.

When force is constant, the measurement of work is straighƞorward. For
instance, liŌing a 200 lb object 5 Ō performs 200 · 5 = 1000 Ō–lb of work.

What if the force applied is variable? For instance, imagine a climber pulling
a 200 Ō rope up a verƟcal face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

In general, let F(x) be a force funcƟon on an interval [a, b]. We want to mea-
sure the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by parƟƟoning [a, b] into subin-
tervals a = x0 < x1 < · · · < xn = b and assuming that F is constant on each
subinterval. Let ci be a value in the i th subinterval [xi, xi+1]. Then the work done
on this interval is approximatelyWi ≈ F(ci) · (xi+1 − xi) = F(ci)∆xi, a constant
force× the distance over which it is applied. The total work is

W =

n∑
i=1

Wi ≈
n∑

i=1

F(ci)∆xi.

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero give an exact value of work which can be evaluated through a definite
integral.

Key Idea 15 Work
Let F(x) be a conƟnuous funcƟon on [a, b] describing the amount of
force being applied to an object in the direcƟon of travel from distance
x = a to distance x = b. The total workW done on [a, b] is

W =

ˆ b

a
F(x) dx.

Notes:
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Watch the video:
FindingWork using Calculus—The Cable/Rope Prob-
lem at
https://youtu.be/2pbInn9PkHQ

Example 1 CompuƟng work performed: applying variable force
A 60 m climbing rope is hanging over the side of a tall cliff. How much work is
performed in pulling the rope up to the top, where the rope has a mass of 66
g/m?

SÊ½çã®ÊÄ Weneed to create a force funcƟon F(x)on the interval [0, 60].
To do so, we must first decide what x is measuring: it is the length of the rope
sƟll hanging or is it the amount of rope pulled in? As long as we are consistent,
either approach is fine. We adopt for this example the convenƟon that x is the
amount of rope pulled in. This seems to match intuiƟon beƩer; pulling up the
first 10 meters of rope involves x = 0 to x = 10 instead of x = 60 to x = 50.

As x is the amount of rope pulled in, the amount of rope sƟll hanging is 60−x.
This length of rope has a mass of 66 g/m, or 0.066 kg/m. The the mass of the
rope sƟll hanging is 0.066(60− x) kg; mulƟplying this mass by the acceleraƟon
of gravity, 9.8 m/s2, gives our variable force funcƟon

F(x) = (9.8)(0.066)(60− x) = 0.6468(60− x).

Thus the total work performed in pulling up the rope is

W =

ˆ 60

0
0.6468(60− x) dx = 1, 164.24 J.

By comparison, consider the work done in liŌing the enƟre rope 60 meters.
The ropeweights 60×0.066×9.8 = 38.808N, so thework applying this force for
60 meters is 60×38.808 = 2, 328.48 J. This is exactly twice the work calculated
before (and we leave it to the reader to understand why.)

Example 2 CompuƟng work performed: applying variable force
Consider again pulling a 60 m rope up a cliff face, where the rope has a mass of
66 g/m. At what point is exactly half the work performed?

Notes:
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SÊ½çã®ÊÄ FromExample 1weknow the totalwork performed is 1, 164.24
J. Wewant to find a height h such that the work in pulling the rope from a height
of x = 0 to a height of x = h is 582.12, half the total work. Thus we want to
solve for h in the equaƟonˆ h

0
0.6468(60− x) dx = 582.12.

We see thatˆ h

0
0.6468(60− x) dx = 582.12

(
38.808x− 0.3234x2

) ∣∣∣h
0
= 582.12

38.808h− 0.3234h2 = 582.12
−0.3234h2 + 38.808h− 582.12 = 0 (Apply the QuadraƟc Formula)

h ≈ 17.57 and 102.43

As the rope is only 60m long, the only sensible answer is h = 17.57. Thus about
Note: In Example 2, we find that half
of the work performed in pulling up
a 60 m rope is done in the last 42.43
m. Why is it not coincidental that
60/
√
2 = 42.43?

half the work is done pulling up the first 17.57m the other half of the work is
done pulling up the remaining 42.43m.

Example 3 CompuƟng work performed: applying variable force
A box of 100 lb of sand is being pulled up at a uniform rate a distance of 50 Ō
over 1 minute. The sand is leaking from the box at a rate of 1 lb/s. The box itself
weighs 5 lb and is pulled by a rope weighing .2 lb/Ō.

1. How much work is done liŌing just the rope?

2. How much work is done liŌing just the box and sand?

3. What is the total amount of work performed?

SÊ½çã®ÊÄ

1. We start by forming the force funcƟon Fr(x) for the rope (where the sub-
script denotes we are considering the rope). As in the previous example,
let x denote the amount of rope, in feet, pulled in. (This is the same as
saying x denotes the height of the box.) The weight of the rope with x
feet pulled in is Fr(x) = 0.2(50 − x) = 10 − 0.2x. (Note that we do not
have to include the acceleraƟon of gravity here, for theweight of the rope
per foot is given, not its mass per meter as before.) The work performed
liŌing the rope is

Wr =

ˆ 50

0
(10− 0.2x) dx = 250 Ō–lb.

Notes:
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2. The sand is leaving the box at a rate of 1 lb/s. As the verƟcal trip is to take
oneminute, we know that 60 lbwill have leŌwhen the box reaches its final
height of 50 Ō. Again leƫng x represent the height of the box, we have
two points on the line that describes the weight of the sand: when x = 0,
the sand weight is 100 lb, producing the point (0, 100); when x = 50, the
sand in the box weighs 40 lb, producing the point (50, 40). The slope of
this line is 100−40

0−50 = −1.2, giving the equaƟon of the weight of the sand
at height x as w(x) = −1.2x+ 100. The box itself weighs a constant 5 lb,
so the total force funcƟon is Fb(x) = −1.2x+105. IntegraƟng from x = 0
to x = 50 gives the work performed in liŌing box and sand:

Wb =

ˆ 50

0
(−1.2x+ 105) dx = 3750 Ō–lb.

3. The total work is the sum of Wr and Wb: 250 + 3750 = 4000 Ō–lb. We
can also arrive at this via integraƟon:

W =

ˆ 50

0
(Fr(x) + Fb(x)) dx

=

ˆ 50

0
(10− 0.2x− 1.2x+ 105) dx

=

ˆ 50

0
(−1.4x+ 115) dx

= 4000 Ō–lb.

Hooke’s Law and Springs
Hooke’s Law states that the force required to compress or stretch a spring x units
from its natural length is proporƟonal to x; that is, this force is F(x) = kx for some
constant k. For example, if a force of 1 N stretches a given spring 2 cm, then a
force of 5 Nwill stretch the spring 10 cm. ConverƟng the distances tometers, we
have that stretching this spring 0.02m requires a force of F(0.02) = k(0.02) = 1
N, hence k = 1/0.02 = 50 N/m.

Example 4 CompuƟng work performed: stretching a spring
A force of 20 lb stretches a spring from a natural length of 7 inches to a length
of 12 inches. How much work was performed in stretching the spring to this
length?

Notes:
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SÊ½çã®ÊÄ In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do not care
that 20 lb of force stretches the spring to a length of 12 inches, but rather that
a force of 20 lb stretches the spring by 5 in. This is illustrated in Figure 6.23;
we only measure the change in the spring’s length, not the overall length of the
spring.

F

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Figure 6.23: IllustraƟng the important aspects of stretching a spring in compuƟng work
in Example 4.

ConverƟng the units of length to feet, we have

F(5/12) = (5/12)k = 20 lb.

Thus k = 48 lb/Ō and F(x) = 48x.
We compute the total work performed by integraƟng F(x) from x = 0 to

x = 5/12:

W =

ˆ 5/12

0
48x dx

= 24x2
∣∣∣5/12
0

= 25/6 Ō–lb.

Pumping Fluids
Fluid lb/Ō3 kg/m3

Gasoline 45.93 737.22
Methanol 49.3 791.3
Fuel Oil 55.46 890.13
Water 62.4 1000
Milk, whole 63.6 1020
Milk, nonfat 65.4 1050
Concrete 150 2400
Iodine 307 4927
Mercury 844 13546

Figure 6.24: Weight and Mass densiƟes

Another useful example of the applicaƟonof integraƟon to computework comes
in the pumping of fluids, oŌen illustrated in the context of emptying a storage
tank by pumping the fluid out the top. This situaƟon is different than our previ-
ous examples for the forces involved are constant. AŌer all, the force required
to move one cubic foot of water (about 62.4 lb) is the same regardless of its lo-
caƟon in the tank. What is variable is the distance that cubic foot of water has

Notes:
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to travel; water closer to the top travels less distance than water at the boƩom,
producing less work.

We demonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Example 5 CompuƟng work performed: pumping fluids
A cylindrical storage tank with a radius of 10 Ō and a height of 30 Ō is filled with
water, which weighs approximately 62.4 lb/Ō3. Compute the amount of work
performed by pumping the water up to a point 5 feet above the top of the tank.

SÊ½çã®ÊÄ Wewill refer oŌen to Figure 6.25which illustrates the salient
aspects of this problem.

y

0

30

35

35
−

y i

10

yi

yi+1}
∆yi

Figure 6.25: IllustraƟng a water tank in
order to compute the work required to
empty it in Example 5.

We start aswe oŌen do: we parƟƟon an interval into subintervals. We orient
our tank verƟcally since this makes intuiƟve sense with the base of the tank at
y = 0. Hence the top of the water is at y = 30, meaning we are interested in
subdividing the y-interval [0, 30] into n subintervals as

0 = y0 < y1 < · · · < yn = 30.

Consider the workWi of pumping only the water residing in the i th subinterval,
illustrated in Figure 6.25. The force required to move this water is equal to its
weight which we calculate as volume × density. The volume of water in this
subinterval is Vi = 102π∆yi; its density is 62.4 lb/Ō3. Thus the required force is
6240π∆yi lb.

We approximate the distance the force is applied by using any y-value con-
tained in the i th subinterval; for simplicity, we arbitrarily use yi for now (it will
not maƩer later on). The water will be pumped to a point 5 feet above the top
of the tank, that is, to the height of y = 35 Ō. Thus the distance the water at
height yi travels is 35− yi Ō.

In all, the approximate work Wi peformed in moving the water in the i th
subinterval to a point 5 feet above the tank is

Wi ≈ 6240π∆yi(35− yi).

To approximate the total work performed in pumping out all the water from the
tank, we sum all the workWi performed in pumping the water from each of the
n subintervals of [0, 30]:

W ≈
n∑

i=1

Wi =

n∑
i=1

6240π∆yi(35− yi).

Notes:
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6.4 Work

This is a Riemann sum. Taking the limit as the subinterval length goes to 0 gives

W =

ˆ 30

0
6240π(35− y) dy

= 6240π
(
35y− y2

2

) ∣∣∣30
0

= 11, 762, 123 Ō–lb
≈ 1.176× 107 Ō–lb.

y

0

30

35

y

35
−

y

10

V(y) = 100πdy

Figure 6.26: A simplified illustraƟon for
compuƟng work.

We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure 6.26 shows the tank from
Example 5 without the i th subinterval idenƟfied. Instead, we just draw a sample
slice. This helps establish the height a small amount of water must travel along
with the force required to move it (where the force is volume× density).

We demonstrate the concepts again in the next examples.

Example 6 CompuƟng work performed: pumping fluids
A conicalwater tank has its top at ground level and its base 10 feet belowground.
The radius of the cone at ground level is 2 Ō. It is filled with water weighing 62.4
lb/Ō3 and is to be empƟed by pumping thewater to a spigot 3 feet above ground
level. Find the total amount of work performed in emptying the tank.

SÊ½çã®ÊÄ The conical tank is sketched in Figure 6.27. We can orient
the tank in a variety of ways; we could let y = 0 represent the base of the tank
and y = 10 represent the top of the tank, but we choose to keep the convenƟon
of the wording given in the problem and let y = 0 represent ground level and
hence y = −10 represents the boƩom of the tank. The actual “height” of the
water does not maƩer; rather, we are concerned with the distance the water
travels.

y

−10

0

3

y

3
−

y

2

V(y) = π( y
5 + 2)2dy

Figure 6.27: A graph of the conical water
tank in Example 6.

The figure also sketches a cross–secƟonal circle. The radius of this circle is
variable, depending on y. When y = −10, the circle has radius 0; when y = 0,
the circle has radius 2. These two points, (−10, 0) and (0, 2), allow us to find the
equaƟon of the line that gives the radius of the cross–secƟonal circle, which is
r(y) = y/5+2. Hence the volumeofwater at this height isV(y) = π(y/5+2)2dy,
where dy represents a very small height of the slice. The force required to move
the water at height y is F(y) = 62.4× V(y).

The distance the water at height y travels is given by h(y) = 3− y. Thus the

Notes:
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Chapter 6 ApplicaƟons of IntegraƟon

total work done in pumping the water from the tank is

W =

ˆ 0

−10
62.4π(y/5+ 2)2(3− y) dy

= 62.4π
ˆ 0

−10

(
− 1
25

y3 − 17
25

y2 − 8
5
y+ 12

)
dy

= 62.2π · 220
3

Ō–lb.

Example 7 CompuƟng work performed: pumping fluids
A rectangular swimming pool is 20 Ō wide and has a 3 Ō “shallow end” and a 6 Ō
“deep end.” It is to have its water pumped out to a point 2 Ō above the current
top of the water. The cross–secƟonal dimensions of the water in the pool are
given in Figure 6.28(a). (Note that the “20 Ō wide” is into the picture; the pool
is 25 Ō long.) Compute the amount of work performed in draining the pool.

SÊ½çã®ÊÄ For the purposes of this problem we choose to set y = 0
to represent the boƩom of the pool, meaning the top of the water is at y =
6. Figure 6.28(b) shows the pool oriented with this y-axis, along with 2 sample

10 Ō. (a)

10 Ō.

3 Ō.

25 Ō

6 Ō.

y

0
y
3

6
8

(b)

(10, 0)

(15, 3)

x
0 10 15

Figure 6.28: The cross–secƟon of a swim-
ming pool filled with water in Example 7
and two sample slices.

slices as the pool must be split into two different regions.
The top region lies in the y-interval of [3, 6], where the length of the sample

slice is 25 Ō as shown. As the pool is 20 Ō wide, this sample slice of water has a
volume of V(y) = 20 ·25 ·dy. The water is to be pumped to a height of y = 8, so
the height funcƟon is h(y) = 8 − y. The work done in pumping this top region
of water is

Wt = 62.4
ˆ 6

3
500(8− y) dy = 327, 600 Ō–lb.

The boƩom region lies in the y-interval of [0, 3]; we need to compute the
length of the sample slice in this interval.

One end of the sample slice is at x = 0 and the other is along the line seg-
ment joining the points (10, 0) and (15, 3). The equaƟon of this line is y =
3(x−10)/5; as we will be integraƟng with respect to y, we rewrite this equaƟon
as x = 5y/3 + 10. So the length of the sample slice is a difference of x-values:
x = 0 and x = 5y/3+ 10, giving a length of x = 5y/3+ 10.

Again, as the pool is 20 Ō wide, this slice of water has a volume of V(y) =
20 · (5y/3+ 10) · dy; the height funcƟon is the same as before at h(y) = 8− y.
The work performed in emptying this part of the pool is

Wb = 62.4
ˆ 3

0
20(5y/3+ 10)(8− y) dy = 299, 520 Ō–lb.

Notes:
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6.4 Work

The total work in emptying the pool is

W = Wb +Wt = 327, 600+ 299, 520 = 627, 120 Ō–lb.

NoƟce how the emptying of the boƩom of the pool performs almost as much
work as emptying the top. The top porƟon travels a shorter distance but has
more water. In the end, this extra water produces more work.

The next secƟon introduces one final applicaƟon of the definite integral, the
calculaƟon of fluid force on a plate.

Notes:
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Exercises 6.4
Terms and Concepts
1. What are the typical units of work?
2. If a man has a mass of 80 kg on Earth, will his mass on the

moon be bigger, smaller, or the same?
3. If a woman weighs 130 lb on Earth, will her weight on the

moon be bigger, smaller, or the same?

Problems
4. A 100 Ō rope, weighing 0.1 lb/Ō, hangs over the edge of a

tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much rope is pulled in when half of the total
work is done?

5. A 50 m rope, with a mass of 0.2 kg/m, hangs over the edge
of a tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much work is done pulling in the first 20 m?

6. A rope of length ℓ Ō hangs over the edge of tall cliff. (As-
sume the cliff is taller than the length of the rope.) The
rope weighs d lb/Ō.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the cliff?

(b) What percentage of the total work is done pulling in
the first half of the rope?

(c) How much rope is pulled in when half of the total
work is done?

7. A 20m ropewith amass of 0.5 kg/mhangs over the edge of
a 10 m building. How much work is done pulling the rope
to the top?

8. A crane liŌs a 2,000 lb load verƟcally 30 Ō with a 1” cable
weighing 1.68 lb/Ō.

(a) How much work is done liŌing the cable alone?

(b) How much work is done liŌing the load alone?

(c) Could one conclude that thework done liŌing the ca-
ble is negligible compared to the work done liŌing
the load?

9. A 100 lb bag of sand is liŌed uniformly 120 Ō in oneminute.
Sand leaks from the bag at a rate of 1/4 lb/s. What is the
total work done in liŌing the bag?

10. A boxweighing 2 lb liŌs 10 lb of sand verƟcally 50Ō. A crack
in the box allows the sand to leak out such that 9 lb of sand
is in the box at the end of the trip. Assume the sand leaked
out at a uniform rate. What is the total work done in liŌing
the box and sand?

11. A force of 1000 lb compresses a spring 3 in. How much
work is performed in compressing the spring?

12. A force of 2 N stretches a spring 5 cm. How much work is
performed in stretching the spring?

13. A force of 50 lb compresses a spring from a natural length
of 18 in to 12 in. How much work is performed in com-
pressing the spring?

14. A force of 20 lb stretches a spring from a natural length of
6 in to 8 in. Howmuch work is performed in stretching the
spring?

15. A force of 7 N stretches a spring from a natural length of 11
cm to 21 cm. How much work is performed in stretching
the spring from a length of 16 cm to 21 cm?

16. A force of fN stretches a spring dm from its natural length.
How much work is performed in stretching the spring?

17. A 20 lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 Ō to 6 in.
How much work is done in liŌing the box 1.5 Ō (i.e, the
spring will be stretched 1 Ō beyond its natural length)?

18. A 20 lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 Ō to 6 in.
How much work is done in liŌing the box 6 in (i.e, bringing
the spring back to its natural length)?

19. A 5 m tall cylindrical tank with radius of 2 m is filled with 3
m of gasoline, with a mass of 737.22 kg/m3. Compute the
total work performed in pumping all the gasoline to the top
of the tank.

20. A 6 Ō cylindrical tank with a radius of 3 Ō is filled with wa-
ter, which weighs 62.4 lb/Ō3. The water is to be pumped
to a point 2 Ō above the top of the tank.

(a) Howmuch work is performed in pumping all the wa-
ter from the tank?

(b) Howmuch work is performed in pumping 3 Ō of wa-
ter from the tank?

(c) At what point is 1/2 of the total work done?

21. A gasoline tanker is filled with gasoline which weighs 45.93
lb/Ō3. The dispensing valve at the base is jammed shut,
forcing the operator to empty the tank via pumping the gas
to a point 1 Ō above the top of the tank. Assume the tank is
a perfect cylinder, 20 Ō long with a diameter of 7.5 Ō. How
much work is performed in pumping all the gasoline from
the tank?
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22. A fuel oil storage tank is 10 Ō deepwith trapezoidal sides, 5
Ō at the top and 2 Ō at the boƩom, and is 15 Ōwide (see di-
agram below). Given that fuel oil weighs 55.46 lb/Ō3, find
the work performed in pumping all the oil from the tank to
a point 3 Ō above the top of the tank.

10

2

15

5

23. A conical water tank is 5 m deep with a top radius of 3 m.
(This is similar to Example 6.) The tank is filled with pure
water, with a mass of 1000 kg/m3.

(a) Find the work performed in pumping all the water to
the top of the tank.

(b) Find the work performed in pumping the top 2.5 m
of water to the top of the tank.

(c) Find the work performed in pumping the top half of
the water, by volume, to the top of the tank.

24. A water tank has the shape of a truncated cone, with
dimensions given below, and is filled with water which
weighs 62.4 lb/Ō3. Find the work performed in pumping
all water to a point 1 Ō above the top of the tank.

2 Ō

5 Ō
10 Ō

25. Awater tank has the shape of an inverted pyramid, with di-
mensions given below, and is filled with water with a mass
of 1000 kg/m3. Find the work performed in pumping all
water to a point 5 m above the top of the tank.

2 m

2 m

7 m

26. A water tank has the shape of an truncated, inverted pyra-
mid, with dimensions given below, and is filled with water
with a mass of 1000 kg/m3. Find the work performed in
pumping all water to a point 1m above the top of the tank.

5 m

5 m

2 m

2 m

9 m
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6.5 Fluid Forces
In the unfortunate situaƟon of a car driving into a body of water, the conven-
Ɵonal wisdom is that the water pressure on the doors will quickly be so great
that they will be effecƟvely unopenable. (Survival techniques suggest immedi-
ately opening the door, rolling down or breaking the window, or waiƟng unƟl
the water fills up the interior at which point the pressure is equalized and the
door will open. See Mythbusters episode #72 to watch Adam Savage test these
opƟons.)

How can this be true? How much force does it take to open the door of
a submerged car? In this secƟon we will find the answer to this quesƟon by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equaƟons:

Pressure =
Force
Area

⇔ Force = Pressure× Area.

In the context of fluids, we have the following definiƟon.

DefiniƟon 26 Fluid Pressure
Let w be the weight–density of a fluid. The pressure p exerted on an
object at depth d in the fluid is p = w · d.

We use this definiƟon to find the force exerted on a horizontal sheet by con-
sidering the sheet’s area.

Watch the video:
Fluid Force on a VerƟcal Plane at
http://www.ltcconline.net/greenl/
courses/106/videos/fluidSemiCircle/
fluidSemiCircle1.htm

2 Ō

10
Ō

Figure 6.29: A cylindrical tank in Exam-
ple 1.

Example 1 CompuƟng fluid force

1. A cylindrical storage tank has a radius of 2 Ō and holds 10 Ō of a fluid with
a weight–density of 50 lb/Ō3. (See Figure 6.29.) What is the force exerted
on the base of the cylinder by the fluid?

Notes:
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6.5 Fluid Forces

2. A rectangular tank whose base is a 5 Ō square has a circular hatch at the
boƩom with a radius of 2 Ō. The tank holds 10 Ō of a fluid with a weight–
density of 50 lb/Ō3. (See Figure 6.30.) What is the force exerted on the
hatch by the fluid?

5 Ō
5 Ō

2 Ō

10
Ō

Figure 6.30: A rectangular tank in Exam-
ple 1.

SÊ½çã®ÊÄ

1. Using DefiniƟon 26, we calculate that the pressure exerted on the cylin-
der’s base isw · d = 50 lb/Ō3× 10 Ō = 500 lb/Ō2. The area of the base is
π · 22 = 4π Ō2. So the force exerted by the fluid is

F = 500× 4π = 6283 lb.

Note that we effecƟvely just computed theweight of the fluid in the tank.

2. The dimensions of the tank in this problem are irrelevant. All we are con-
cerned with are the dimensions of the hatch and the depth of the fluid.
Since the dimensions of the hatch are the same as the base of the tank
in the previous part of this example, as is the depth, we see that the fluid
force is the same. That is, F = 6283 lb.
A key concept to understand here is that we are effecƟvely measuring the
weight of a 10 Ō column of water above the hatch. The size of the tank
holding the fluid does not maƩer.

The previous example demonstrates that compuƟng the force exerted on a
horizontally oriented plate is relaƟvely easy to compute. What about a verƟcally
oriented plate? For instance, supposewe have a circular porthole located on the
side of a submarine. How do we compute the fluid force exerted on it?

Pascal’s Principle states that the pressure exerted by a fluid at a depth is
equal in all direcƟons. Thus the pressure on any porƟon of a plate that is 1 Ō
below the surface of water is the same no maƩer how the plate is oriented.
(Thus a hollow cube submerged at a great depth will not simply be “crushed”
from above, but the sides will also crumple in. The fluid will exert force on all
sides of the cube.)

}
∆yi

ℓ(ci)

di

Figure 6.31: A thin, verƟcally oriented
plate submerged in a fluid with weight–
density w.

So consider a verƟcally oriented plate as shown in Figure 6.31 submerged in
a fluid with weight–densityw. What is the total fluid force exerted on this plate?
We find this force by first approximaƟng the force on small horizontal strips.

Let the top of the plate be at depth b and let the boƩom be at depth a. (For
now we assume that surface of the fluid is at depth 0, so if the boƩom of the
plate is 3 Ō under the surface, we have a = −3. Wewill come back to this later.)
We parƟƟon the interval [a, b] into n subintervals

a = y0 < y1 < . . . < yn = b,

Notes:
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Chapter 6 ApplicaƟons of IntegraƟon

with the i th subinterval having length ∆yi. The force Fi exerted on the plate in
the i th subinterval is Fi = Pressure× Area.

The pressure is depth ×w. We approximate the depth of this thin strip by
choosing any value di in [yi, yi+1]; the depth is approximately−di. (Our conven-
Ɵon has di being a negaƟve number, so−di is posiƟve.) For convenience, we let
di be an endpoint of the subinterval; we let di = yi.

The area of the thin strip is approximately length×width. The width is∆yi.
The length is a funcƟon of some y-value ci in the i th subinterval. We state the
length is ℓ(ci). Thus

Fi = Pressure× Area
= −yi · w× ℓ(ci) ·∆yi.

To approximate the total force, we add up the approximate forces on each of
the n thin strips:

F =
n∑

i=1

Fi ≈
n∑

i=1

−w · yi · ℓ(ci) ·∆yi.

This is, of course, another Riemann Sum. We can find the exact force by taking
a limit as the subinterval lengths go to 0; we evaluate this limit with a definite
integral.

Key Idea 16 Fluid Force on a VerƟcally Oriented Plate
Let a verƟcally oriented plate be submerged in a fluid with weight–
density w where the top of the plate is at y = b and the boƩom is
at y = a. Let ℓ(y) be the length of the plate at y.

1. If y = 0 corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

F =
ˆ b

a
w · (−y) · ℓ(y) dy.

2. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate
by the fluid is

F =
ˆ b

a
w · d(y) · ℓ(y) dy.

Notes:
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6.5 Fluid Forces

Example 2 Finding fluid force
Consider a thin plate in the shape of an isosceles triangle as shown in Figure 6.32
submerged in water with a weight–density of 62.4 lb/Ō3. If the boƩom of the

4 Ō

4
Ō

Figure 6.32: A thin plate in the shape of
an isosceles triangle in Example 2.

plate is 10 Ō below the surface of the water, what is the total fluid force exerted
on this plate?

SÊ½çã®ÊÄ We approach this problem in two different ways to illustrate
the different ways Key Idea 16 can be implemented. First we will let y = 0 rep-
resent the surface of the water, then we will consider an alternate convenƟon.

1. We let y = 0 represent the surface of the water; therefore the boƩom of
the plate is at y = −10. We center the triangle on the y-axis as shown in
Figure 6.33. The depth of the plate at y is−y as indicated by the Key Idea.
We now consider the length of the plate at y.

(2,−6)(−2,−6)

y

water line

d
(y)

=
10

−
y

−2 −1 1 2

−10

−8

−4

−2

x

y

Figure 6.33: Sketching the triangular
plate in Example 2 with the convenƟon
that the water level is at y = 0.

Weneed to find equaƟons of the leŌ and right edges of the plate. The right
hand side is a line that connects the points (0,−10) and (2,−6): that line
has equaƟon x = 1

2 (y+10). (Find the equaƟon in the familiar y = mx+b
format and solve for x.) Likewise, the leŌ hand side is described by the
line x = − 1

2 (y+ 10). The total length is the distance between these two
lines: ℓ(y) = 1

2 (y+ 10)− (− 1
2 (y+ 10)) = y+ 10.

The total fluid force is then:

F =
ˆ −6

−10
62.4(−y)(y+ 10) dy

= 62.4 · 176
3
≈ 3660.8 lb.

2. SomeƟmes it seems easier to orient the thin plate nearer the origin. For
instance, consider the convenƟon that the boƩom of the triangular plate
is at (0, 0), as shown in Figure 6.34. The equaƟons of the leŌ and right
hand sides are easy to find. They are y = 2x and y = −2x, respecƟvely,
which we rewrite as x = y/2 and x = −y/2. Thus the length funcƟon is
ℓ(y) = y/2− (−y/2) = y.

(2, 4)(−2, 4)

y

water line

d
(y)

=
10

−
y

−2 −1 1 2

2

6

8

10

x

y

Figure 6.34: Sketching the triangular
plate in Example 2 with the convenƟon
that the base of the triangle is at (0, 0).

As the surface of the water is 10 Ō above the base of the plate, we have
that the surface of the water is at y = 10. Thus the depth funcƟon is the
distance between y = 10 and y; d(y) = 10 − y. We compute the total
fluid force as:

F =
ˆ 4

0
62.4(10− y)(y) dy

≈ 3660.8 lb.

The correct answer is, of course, independent of the placement of the plate in
the coordinate plane as long as we are consistent.

Notes:
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Example 3 Finding fluid force
Find the total fluid force on a car door submerged up to the boƩomof its window
in water, where the car door is a rectangle 40” long and 27” high (based on the
dimensions of a 2005 Fiat Grande Punto.)

SÊ½çã®ÊÄ The car door, as a rectangle, is drawn in Figure 6.35. Its
length is 10/3 Ō and its height is 2.25 Ō. We adopt the convenƟon that the
top of the door is at the surface of the water, both of which are at y = 0. Using
the weight–density of water of 62.4 lb/Ō3, we have the total force as

(3.3, 0)

(3.3,−2.25)(0,−2.25)

(0, 0)

y

y

x

Figure 6.35: Sketching a submerged car
door in Example 3.

F =
ˆ 0

−2.25
62.4(−y)10/3 dy

=

ˆ 0

−2.25
−208y dy

= −104y2
∣∣∣0
−2.25

= 526.5 lb.

Most adults would find it very difficult to apply over 500 lb of force to a car
door while seated inside, making the door effecƟvely impossible to open. This is
counter–intuiƟve asmost assume that the doorwould be relaƟvely easy to open.
The truth is that it is not, hence the survival Ɵps menƟoned at the beginning of
this secƟon.

y

y

x
−2 −1 1 2

−2

−1

1

2

50

water line

not to scale

d
(y)

=
50

−
y

Figure 6.36: Measuring the fluid force on
an underwater porthole in Example 4.

Example 4 Finding fluid force
An underwater observaƟon tower is being built with circular viewing portholes
enabling visitors to see underwater life. Each verƟcally oriented porthole is to
have a 3 Ō diameter whose center is to be located 50 Ō underwater. Find the
total fluid force exerted on each porthole. Also, compute the fluid force on a
horizontally oriented porthole that is under 50 Ō of water.

SÊ½çã®ÊÄ We place the center of the porthole at the origin, meaning
the surface of thewater is at y = 50 and the depth funcƟonwill be d(y) = 50−y;
see Figure 6.36

The equaƟon of a circle with a radius of 1.5 is x2 + y2 = 2.25; solving for
x we have x = ±

√
2.25− y2, where the posiƟve square root corresponds to

the right side of the circle and the negaƟve square root corresponds to the leŌ
side of the circle. Thus the length funcƟon at depth y is ℓ(y) = 2

√
2.25− y2.

Notes:
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6.5 Fluid Forces

IntegraƟng on [−1.5, 1.5] we have:

F = 62.4
ˆ 1.5

−1.5
2(50− y)

√
2.25− y2 dy

= 62.4
ˆ 1.5

−1.5

(
100
√
2.25− y2 − 2y

√
2.25− y2

)
dy

= 6240
ˆ 1.5

−1.5

(√
2.25− y2

)
dy− 62.4

ˆ 1.5

−1.5

(
2y
√
2.25− y2

)
dy.

The second integral above can be evaluated using SubsƟtuƟon. Let u = 2.25−y2
with du = −2y dy. The new bounds are: u(−1.5) = 0 and u(1.5) = 0; the new
integral will integrate from u = 0 to u = 0, hence the integral is 0.

The first integral above finds the area of half a circle of radius 1.5, thus the
first integral evaluates to 6240 · π · 1.52/2 = 22, 054. Thus the total fluid force
on a verƟcally oriented porthole is 22, 054 lb.

Finding the force on a horizontally oriented porthole ismore straighƞorward:

F = Pressure× Area = 62.4 · 50× π · 1.52 = 22, 054 lb.

That these two forces are equal is not coincidental; it turns out that the fluid
force applied to a verƟcally oriented circle whose center is at depth d is the same
as force applied to a horizontally oriented circle at depth d.

We end this chapter with a reminder of the true skills meant to be developed
here. We are not truly concerned with an ability to find fluid forces or the vol-
umes of solids of revoluƟon. Work done by a variable force is important, though
measuring the work done in pulling a rope up a cliff is probably not.

What we are actually concerned with is the ability to solve certain problems
by first approximaƟng the soluƟon, then refining the approximaƟon, then recog-
nizing if/when this refining process results in a definite integral through a limit.
Knowing the formulas found inside the special boxes within this chapter is ben-
eficial as it helps solve problems found in the exercises, and other mathemaƟcal
skills are strengthened by properly applying these formulas. However, more im-
portantly, understand how each of these formulas was constructed. Each is the
result of a summaƟon of approximaƟons; each summaƟon was a Riemann sum,
allowing us to take a limit and find the exact answer through a definite integral.

Notes:
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Exercises 6.5
Terms and Concepts

1. State in your own words Pascal’s Principle.

2. State in your own words how pressure is different from
force.

Problems

In Exercises 3–12, find the fluid force exerted on the given
plate, submerged in water with a weight density of 62.4 lb/Ō3.

3.

2 Ō

2 Ō

1 Ō

4.

1 Ō

2 Ō

1 Ō

5.

4 Ō

5 Ō

6 Ō

6.
4 Ō

5 Ō

6 Ō

7.

2 Ō

5 Ō

8. 4 Ō

5 Ō

9.

4 Ō

2 Ō

5 Ō

10.

4 Ō

2 Ō

5 Ō

11.

2 Ō

2 Ō

1 Ō

12.

2 Ō

2 Ō

1 Ō

In Exercises 13–18, the side of a container is pictured. Find the
fluid force exerted on this plate when the container is full of:

1. water, with a weight density of 62.4 lb/Ō3, and

2. concrete, with a weight density of 150 lb/Ō3.
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13.

3 Ō

5 Ō

14.

4 Ō

y = x2

4 Ō

15.

4 Ō

y = 4 − x2

4 Ō

16.

2 Ō

y = −
√
1 − x2

17.

2 Ō

y =
√
1 − x2

18.

6 Ō

y = −
√
9 − x2

19. How deep must the center of a verƟcally oriented circu-
lar plate with a radius of 1 Ō be submerged in water, with a
weight density of 62.4 lb/Ō3, for the fluid force on the plate
to reach 1,000 lb?

20. How deep must the center of a verƟcally oriented square
plate with a side length of 2 Ō be submerged in water, with
a weight density of 62.4 lb/Ō3, for the fluid force on the
plate to reach 1,000 lb?
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7: IÄò�ÙÝ� FçÄ�ã®ÊÄÝ �Ä�
L’HÍÖ®ã�½’Ý Rç½�
This chapter completes our differenƟaƟon toolkit. The first and most important
tool will be how to differenƟate inverse funcƟons. We’ll be able to use this to
differenƟate exponenƟal and logarithmic funcƟons, which we stated in Theo-
rem 14 but did not prove.

7.1 Inverse FuncƟons
We say that two funcƟons f and g are inverses if g(f(x)) = x for all x in the
domain of f and f(g(x)) = x for all x in the domain of g. A funcƟon can only
have an inverse if it is one-to-one, i.e. if we never have f(x1) = f(x2) for different
elements x1 and x2 of the domain. This is equivalent to saying that the graph of
the funcƟonpasses the horizontal line test. The inverse of f is denoted f−1, which
should not be confused with the funcƟon 1/f(x).

Key Idea 17 Inverse FuncƟons
For a one-to–one funcƟon f,

• The domain of f−1 is the range of f; the range of f−1 is the domain
of f.

• f−1(f(x)) = x for all x in the domain of f.

• f(f−1(x)) = x for all x in the domain of f−1.

• The graph of y = f−1(x) is the reflecƟon across y = x of the graph
of y = f(x).

• y = f−1(x) if and only if f(y) = x and y is in the domain of f.

Watch the video:
Finding the Inverse of a FuncƟon or Showing One
Does not Exist, Ex 3 at
https://youtu.be/BmjbDINGZGg

https://youtu.be/BmjbDINGZGg
https://youtu.be/BmjbDINGZGg
https://youtu.be/BmjbDINGZGg


Chapter 7 Inverse FuncƟons and L’Hôpital’s Rule

To determine whether or not f and g are inverses for each other, we check
to see whether or not g(f(x)) = x for all x in the domain of f,and f(g(x)) = x for
all x in the domain of g.

−1 1 2

−1

1

(−0.5, 0.375)

(0.375,−0.5)

(1, 1.5)

(1.5, 1)

x

y

Figure 7.1: A funcƟon f along with its in-
verse f−1. (Note how it does not maƩer
which funcƟon we refer to as f; the other
is f−1.)

Example 1 Verifying Inverses
Determine whether or not the following pairs of funcƟons are inverses:

1. f(x) = 3x+ 1; g(x) =
x− 1
3

2. f(x) = x3 + 1; g(x) = x1/3 − 1

SÊ½çã®ÊÄ

1. To check the composiƟon we plug f(x) in for x in the definiƟon of g as
follows:

g(f(x)) =
f(x)− 1

3
=

(3x+ 1)− 1
3

=
3x
3

= x

So g(f(x)) = x for all x in the domain of f. Likewise, you can check that
f(g(x)) = x for all x in the domain of g, so f and g are inverses.

2. If we try to proceed as before, we find that:

g(f(x)) = (f(x))1/3 − 1 = (x3 + 1)1/3 − 1

This doesn’t seem to be the same as the idenƟty funcƟon x. To verify
this, we find a number a in the domain of f and show that g(f(a)) ̸= a
for that value. Let’s try x = 1. Since f(1) = 13 + 1 = 2, we find that
g(f(1)) = g(2) = 21/3−1 ≈ 0.26. Since g(f(1)) ̸= 1, these funcƟons are
not inverses.

FuncƟons that are not one-to-one.

−2 2

2

4
(−2, 4) (2, 4)

x

y

Figure 7.2: The funcƟon f(x) = x2 is not
one-to-one.

Unfortunately, not every funcƟon we would like to find an inverse for is one-to-
one. For example, the funcƟon f(x) = x2 is not one-to-one because f(−2) =
f(2) = 4. If f−1 is an inverse for f, then f−1(f(−2)) = −2 implies that f−1(4) =
−2. On the other hand, f−1(f(2)) = 2, so f−1(4) = 2. We cannot have it
both ways if f−1 is a funcƟon, so no such inverse exists. We can find a parƟal
soluƟon to this dilemma by restricƟng the domain of f. There are many possi-
ble choices, but tradiƟonally we restrict the domain to the interval [0,∞). The
funcƟon f−1(x) =

√
x is now an inverse for this restricted version of f.

Notes:
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7.1 Inverse FuncƟons

The inverse sine funcƟon

We consider the funcƟon f(x) = sin x, which is not one-to-one. A piece of the
graph of f is in Figure 7.3(a). In order to find an appropriate restricƟon of the
domain of f, we look for consecuƟve criƟcal points where f takes on its minimum
and maximum values. In this case, we use the interval [−π/2, π/2]. We define
the inverse of f on this restricted range by y = sin−1 x if and only if sin y = x
and−π/2 ≤ y ≤ π/2. The graph is a reflecƟon of the graph of g across the line
y = x, as seen in Figure 7.3(b).

−π − π
2

π
2

π

−1

1

x

y

− π
2 −1 1 π

2

− π
2

−1

1

π
2

sin x

sin−1 x

x

y

(a) (b)

Figure 7.3: (a) A porƟon of y = sin x. (b) A one–to–one porƟon of y = sin x along with
y = sin−1 x.

The inverse tangent funcƟon

Nextwe consider the funcƟon f(x) = tan x, which is also not one-to-one. A piece
of the graph of f is given in Figure 7.4(a). In order to find an interval onwhich the
funcƟon is one-to-one and onwhich the funcƟon takes on all values in the range,
we use an interval between consecuƟve verƟcal asymptotes. TradiƟonally, the
interval (−π/2, π/2) is chosen. Note that we choose the open interval in this
case because the funcƟon f is not defined at the endpoints. So we define y =
tan−1 x if and only if tan y = x and−π/2 < y < π/2. The graph of y = tan−1 x
is shown in Figure 7.4(b). Also note that the verƟcal asymptotes of the original
funcƟon are reflected to become horizontal asymptotes of the inverse funcƟon.

Notes:
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− 3π
2

−π − π
2

π
2

π 3π
2

−2

2

x

y

− π
2

π
2

− π
2

π
2

tan x

tan−1 x x

y

(a) (b)

Figure 7.4: (a) A porƟon of y = tan x. (b) A one–to–one porƟon of y = tan x along with
y = tan−1.

The other inverse trigonometric funcƟons are defined in a similar fashion.
The resulƟng domains and ranges are summarized in Figure 7.5.

FuncƟon
Restricted
Domain Range

Inverse
FuncƟon Domain Range

sin x [−π/2, π/2] [−1, 1] sin−1 x [−1, 1] [−π/2, π/2]
cos x [0, π] [−1, 1] cos−1 x [−1, 1] [0, π]
tan x (−π/2, π/2) (−∞,∞) tan−1 x (−∞,∞) (−π/2, π/2)
csc x [−π/2, 0) ∪ (0, π/2] (−∞,−1] ∪ [1,∞) csc−1 x (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]
sec x [0, π/2) ∪ (π/2, π] (−∞,−1] ∪ [1,∞) sec−1 x (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]
cot x (0, π) (−∞,∞) cot−1 x (−∞,∞) (0, π)

Figure 7.5: Domains and ranges of the trigonometric and inverse trigonometric funcƟons.

Example 2 EvaluaƟng Inverse Trigonometric FuncƟons
Find exact values for the following:SomeƟmes, arcsin is used instead of

sin−1. Similar “arc” funcƟons are
used for the other inverse trigono-
metric funcƟons as well.

1. tan−1(1)

2. cos(sin−1(
√
3/2))

3. sin−1(sin(7π/6))

4. tan(cos−1(11/15))

SÊ½çã®ÊÄ

1. tan−1(1) = π/4

2. cos(sin−1(
√
3/2)) = cos(π/3) = 1/2

3. Since 7π/6 is not in the range of the inverse sine funcƟon, we should be
careful with this one.

sin−1(sin(7π/6)) = sin−1(−1/2) = −π/6.

4. Since we don’t know the value of cos−1(11/15), we let θ stand for this
value. We know that θ is an angle between 0 and π and that cos(θ) =

Notes:
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7.1 Inverse FuncƟons

11/15. In Figure 7.6, we use this informaƟon to construct a right triangle
with angle θ, where the adjacent side over the hypotenuse must equal
11/15. Applying the Pythagorean Theorem we find that

θ

11

y15

Figure 7.6: A right triangle for the situa-
Ɵon in Example 2 (4).

y =
√
152 − 112 =

√
104 = 2

√
26.

Finally, we have:

tan(cos−1(11/15)) = tan(θ) =
2
√
26

11
.

Notes:
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Exercises 7.1
Terms and Concepts
1. T/F: Every funcƟon has an inverse.
2. In your own words explain what it means for a funcƟon to

be “one to one.”
3. If (1, 10) lies on the graph of y = f(x), what can be said

about the graph of y = f−1(x)?

Problems
In Exercises 4–8, verify that the given funcƟons are inverses.

4. f(x) = 2x+ 6 and g(x) = 1
2 x− 3

5. f(x) = x2 + 6x+ 11, x ≥ 3 and g(x) =
√
x− 2− 3, x ≥ 2

6. f(x) = x2 + 6x + 11, x ≤ 3 and g(x) = −
√
x− 2 − 3,

x ≥ 2.

7. f(x) = 3
x− 5

, x ̸= 5 and g(x) = 3+ 5x
x

, x ̸= 0

8. f(x) = x+ 1
x− 1

, x ̸= 1 and g(x) = f(x)

In Exercises 9–12, find a restricƟon of the domain of the given
funcƟon on which the funcƟon will have an inverse.

9. f(x) =
√
16− x2

10. g(x) =
√
x2 − 16

11. r(t) = t2 − 6t+ 9

12. f(x) = 1−
√
x

1+
√
x

In Exercises 13–19, find the exact value.

13. tan−1(0)

14. tan−1(tan(π/7))

15. cos(cos−1(−1/5))

16. sin−1(sin(8π/3))

17. sin(tan−1(1))

18. cos(tan−1(3/7))

19. sec(sin−1(−3/5))
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7.2 DerivaƟves of Inverse FuncƟons

7.2 DerivaƟves of Inverse FuncƟons
In this secƟon we will figure out how to differenƟate the inverse of a funcƟon.
To do so, we recall that if f and g are inverses, then f(g(x)) = x for all x in the
domain of f. DifferenƟaƟng and simplifying yields:

f(g(x)) = x
f ′(g(x))g ′(x) = 1

g ′(x) =
1

f ′(g(x))
assuming f ′(x) is nonzero

Note that the derivaƟon above assumes that the funcƟon g is differenƟable. It
is possible to prove that gmust be differenƟable if f ′ is nonzero, but the proof is
beyond the scope of this text. However, assuming this fact we have shown the
following:

Theorem 46 DerivaƟves of Inverse FuncƟons
Let f be differenƟable and one-to-one on an open interval I, where
f ′(x) ̸= 0 for all x in I, let J be the range of f on I, let g be the inverse
funcƟon of f, and let f(a) = b for some a in I. Then g is a differenƟable
funcƟon on J, and in parƟcular,(

f−1)′ (b) = g ′(b) =
1

f ′(a)(
f−1)′ (x) = g ′(x) =

1
f ′(g(x))

The results of Theorem 46 are not trivial; the notaƟon may seem confusing
at first. Careful consideraƟon, along with examples, should earn understanding.

Watch the video:
DerivaƟve of an Inverse FuncƟon, Ex 2 at
https://youtu.be/RKfGMX0pn2k

In the next example we apply Theorem 46 to the arcsine funcƟon.

Example 1 Finding the derivaƟve of an inverse trigonometric funcƟon
Let y = sin−1 x. Find y ′ using Theorem 46.

Notes:
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Chapter 7 Inverse FuncƟons and L’Hôpital’s Rule

SÊ½çã®ÊÄ AdopƟng our previously defined notaƟon, let g(x) = sin−1 x
and f(x) = sin x. Thus f ′(x) = cos x. Applying Theorem 46, we have

g ′(x) =
1

f ′(g(x))

=
1

cos(sin−1 x)
.

y
√
1 − x2

x
1

Figure 7.7: A right triangle defined by y =
sin−1(x/1)with the length of the third leg
found using the Pythagorean Theorem.

This last expression is not immediately illuminaƟng. Drawing a figure will
help, as shown in Figure 7.7. Recall that the sine funcƟon can be viewed as taking
in an angle and returning a raƟo of sides of a right triangle, specifically, the raƟo
“opposite over hypotenuse.” This means that the arcsine funcƟon takes as input
a raƟo of sides and returns an angle. The equaƟon y = sin−1 x can be rewriƩen
as y = sin−1(x/1); that is, consider a right triangle where the hypotenuse has
length 1 and the side opposite of the angle with measure y has length x. This
means the final side has length

√
1− x2, using the Pythagorean Theorem.

Therefore cos(sin−1 x) = cos y =
√
1− x2/1 =

√
1− x2, resulƟng in

d
dx
(
sin−1 x

)
= g ′(x) =

1√
1− x2

.

Remember that the input x of the arcsine funcƟon is a raƟo of a side of a
right triangle to its hypotenuse; the absolute value of this raƟo will be less than
1. Therefore 1− x2 will be posiƟve.

− π
2 − π

4
π
4

π
2

−1

1

y = sin x

( π
3 ,

√
3

2 )

x

y

−2 −1 1 2

− π
2

− π
4

π
4

π
2

y = sin−1 x

(
√

3
2 , π

3 )

Figure 7.8: Graphs of y = sin x and y =
sin−1 x along with corresponding tangent
lines.

In order tomake y = sin x one-to-one, we restrict its domain to [−π/2, π/2];
on this domain, the range is [−1, 1]. Therefore the domain of y = sin−1 x is
[−1, 1] and the range is [−π/2, π/2]. When x = ±1, note how the derivaƟve of
the arcsine funcƟon is undefined; this corresponds to the fact that as x → ±1,
the tangent lines to arcsine approach verƟcal lines with undefined slopes.

In Figure 7.8 we see f(x) = sin x and f−1(x) = sin−1 x graphed on their re-
specƟve domains. The line tangent to sin x at the point (π/3,

√
3/2) has slope

cos π/3 = 1/2. The slope of the corresponding point on sin−1 x, the point
(
√
3/2, π/3), is

1√
1− (

√
3/2)2

=
1√

1− 3/4
=

1√
1/4

=
1
1/2

= 2,

verifying Theorem 46 yet again: at corresponding points, a funcƟon and its in-
verse have reciprocal slopes.

Using similar techniques, we can find the derivaƟves of all the inverse trig-
onometric funcƟons aŌer first restricƟng their domains according to Figure 7.5
to allow them to be inverƟble.

Notes:
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7.2 DerivaƟves of Inverse FuncƟons

Theorem 47 DerivaƟves of Inverse Trigonometric FuncƟons
The inverse trigonometric funcƟons are differenƟable on all open sets
contained in their domains (as listed in Figure 7.5) and their derivaƟves
are as follows:

1. d
dx
(
sin−1 x

)
=

1√
1− x2

2. d
dx
(
sec−1 x

)
=

1
|x|

√
x2 − 1

3. d
dx
(
tan−1 x

)
=

1
1+ x2

4. d
dx
(
cos−1 x

)
= − 1√

1− x2

5. d
dx
(
csc−1 x

)
= − 1

|x|
√
x2 − 1

6. d
dx
(
cot−1 x

)
= − 1

1+ x2

Note how the last three derivaƟves are merely the negaƟves of the first
three, respecƟvely. Because of this, the first three are used almost exclusively
throughout this text.

Example 2 Finding derivaƟves of inverse funcƟons
Find the derivaƟves of the following funcƟons:

1. f(x) = cos−1(x2) 2. g(x) =
sin−1 x√
1− x2

3. f(x) = sin−1(cos x)

SÊ½çã®ÊÄ

1. We use Theorem 47 and the Chain Rule to find:

f ′(x) = − 1√
1− (x2)2

(2x) = − 2x√
1− x4

2. We use Theorem 47 and the QuoƟent Rule to compute:

g ′(x) =

(
1√
1−x2

)√
1− x2 − (sin−1 x)

(
1

2
√
1−x2 (−2x)

)
(√

1− x2
)2

=

√
1− x2 + x sin−1 x(√

1− x2
)3

Notes:
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Chapter 7 Inverse FuncƟons and L’Hôpital’s Rule

3. We apply Theorem 47 and the Chain Rule again to compute:

f ′(x) =
1√

1− cos2 x
(− sin x)

=
− sin x√
sin2 x

=
− sin x
sin x

= −1.

Theorem 47 allows us to integrate some funcƟons that we could not inte-
grate before. For example,

ˆ
dx√
1− x2

= sin−1 x+ C.

Combining these formulas with u-subsƟtuƟon yields the following:

Theorem 48 Integrals Involving Inverse Trigonometric FuncƟons
Let a > 0.

1.
ˆ

1
a2 + x2

dx =
1
a
tan−1

( x
a

)
+ C

2.
ˆ

1√
a2 − x2

dx = sin−1
( x
a

)
+ C

3.
ˆ

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

We will look at the second part of this theorem. The other parts are similar
and are leŌ as exercises.

First we note that the integrand involves the number a2, but does not ex-
plicitly involve a. We make the assumpƟon that a > 0 in order to simplify what
follows. We can rewrite the integral as follows:

ˆ
dx√

a2 − x2
=

ˆ
dx√

a2(1− (x/a)2)
=

ˆ
dx

a
√
1− (x/a)2

Notes:
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We next use the subsƟtuƟon u = x/a and du = dx/a to find:
ˆ

dx
a
√
1− (x/a)2

=

ˆ
a

a
√
1− u2

du

=

ˆ
du√
1− u2

= sin−1 u+ C
= sin−1(x/a) + C

We conclude this secƟon with several examples.

Example 3 Finding anƟderivaƟves involving inverse funcƟons
Find the following integrals.

1.
ˆ

dx
100+ x2

2.
ˆ

sin−1 x√
1− x2

dx 3.
ˆ

dx
x2 + 2x+ 5

SÊ½çã®ÊÄ

1.
ˆ

dx
100+ x2

=

ˆ
dx

102 + x2
=

1
10

tan−1(x/10) + C

2. We use the subsƟtuƟon u = sin−1 x and du = dx√
1−x2 to find:

ˆ
sin−1 x√
1− x2

=

ˆ
u du =

1
2
u2 + C =

1
2
(
sin−1 x

)2
+ C

3. This does not immediately look like one of the forms in Theorem 48, but
we can complete the square in the denominator to see that

ˆ
dx

x2 + 2x+ 5
=

ˆ
dx

(x2 + 2x+ 1) + 4
=

ˆ
dx

4+ (x+ 1)2

We now use the subsƟtuƟon u = x+ 1 and du = dx to find:
ˆ

dx
4+ (x+ 1)2

=

ˆ
du

4+ u2
=

1
2
tan−1(u/2)+C =

1
2
tan−1

(
x+ 1
2

)
+C.

Notes:
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Exercises 7.2
Terms and Concepts
1. If (1, 10) lies on the graph of y = f(x) and f ′(1) = 5, what

can be said about y = f−1(x)?

Problems
In Exercises 2–6, an inverƟble funcƟon f(x) is given along with
a point that lies on its graph. Using Theorem 46, evaluate(
f−1)′ (x) at the indicated value.
2. f(x) = 5x+ 10

Point= (2, 20)
Evaluate

(
f−1)′ (20)

3. f(x) = x2 − 2x+ 4, x ≥ 1
Point= (3, 7)
Evaluate

(
f−1)′ (7)

4. f(x) = sin 2x,−π/4 ≤ x ≤ π/4
Point= (π/6,

√
3/2)

Evaluate
(
f−1)′ (√3/2)

5. f(x) = x3 − 6x2 + 15x− 2
Point= (1, 8)
Evaluate

(
f−1)′ (8)

6. f(x) = 1
1+ x2

, x ≥ 0
Point= (1, 1/2)
Evaluate

(
f−1)′ (1/2)

In Exercises 7–15, compute the derivaƟve of the given func-
Ɵon.

7. h(t) = sin−1(2t)

8. f(t) = sec−1(2t)

9. g(x) = tan−1(2x)

10. f(x) = x sin−1 x

11. g(t) = sin t cos−1 t

12. h(x) = sin−1 x
cos−1 x

13. g(x) = tan−1(
√
x)

14. f(x) = sec−1(1/x)

15. f(x) = sin(sin−1 x)

In Exercises 16–18, compute the derivaƟve of the given func-
Ɵon in two ways:

(a) By simplifying first, then taking the derivaƟve, and

(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.

16. f(x) = sin(sin−1 x)

17. f(x) = tan−1(tan x)

18. f(x) = sin(cos−1 x)

In Exercises 19–20, find the equaƟon of the line tangent to the
graph of f at the indicated x value.

19. f(x) = sin−1 x at x =
√
2
2

20. f(x) = cos−1(2x) at x =
√
3
4

21. A regulaƟon hockey goal is 6 feet wide. If a player is skat-
ing towards the end line on a line perpendicular to the end
line and 10 feet from the imaginary line joining the center
of one goal to the center of the other, the angle between
the player and the goal first increases and then begins to
decrease. In order tomaximize this angle, how far from the
end line should the player be when they shoot the puck?

θ

6 Ō

10 Ō

In Exercises 22–28, compute the indicated integral.

22.
ˆ 1/2

1/
√
2

2√
1− x2

dx

23.
ˆ √

3

0

4
9+ x2

dx

24.
ˆ

sin−1 r√
1− r2

dr

25.
ˆ

x3

4+ x8
dx

26.
ˆ

et√
10− e2t

dt

27.
ˆ

1√
3− x2 + 2x

dx

28.
ˆ

1√
x(1+ x)

dx
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7.3 ExponenƟal and Logarithmic FuncƟons

7.3 ExponenƟal and Logarithmic FuncƟons

In this secƟon we will define general exponenƟal and logarithmic funcƟons and
find their derivaƟves.

General exponenƟal funcƟons

1

1

2

x

y

Figure 7.9: The funcƟon 2x for raƟonal
values of x.

Consider first the funcƟon f(x) = 2x. If x is raƟonal, then we know how to
compute 2x. What do we mean by 2π though? We compute this by first looking
at 2r for raƟonal numbers r that are very close to π, then finding a limit. In our
case we might compute 23, 23.1, 23.14, etc. We then define 2π to be the limit of
these numbers. Note that this is actually a different kind of limit than we have
dealt with before since we only consider raƟonal number close to π, not all real
numbers close to π. Wewill see oneway tomake this more precise in Chapter 9.
Graphically, we can plot the values of 2x for x raƟonal and get something like
the doƩed curve in Figure 7.9. In order to define the remaining values, we are
“connecƟng the dots” in a way that makes the funcƟon conƟnuous.

It follows from conƟnuity and the properƟes of limits that exponenƟal func-
Ɵons will saƟsfy the familiar properƟes of exponents (see SecƟon 2.0). This im-
plies that

−1 1

0.5
1

2

x

y

Figure 7.10: The funcƟons 2x and 2−x.

(
1
2

)x

= (2−1)x = 2−x,

so the graph of g(x) = (1/2)x is the reflecƟon of f across the y-axis, as in Fig-
ure 7.10.

We can go through the same process as above for any base a > 0, though
we are not usually interested in the constant funcƟon 1x.

Key Idea 18 ProperƟes of ExponenƟal FuncƟons
For a > 0 and a ̸= 1 the exponenƟal funcƟon f(x) = ax saƟsfies:

1. a0 = 1

2. lim
x→∞

ax =

{
∞ a > 1
0 a < 1

3. ax > 0 for all x

4. lim
x→−∞

ax =

{
0 a > 1
∞ a < 1

Notes:
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Chapter 7 Inverse FuncƟons and L’Hôpital’s Rule

DerivaƟves of exponenƟal funcƟons

Suppose f(x) = ax for some a > 0. We can use the rules of exponents to find
the derivaƟve of f:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

ax+h − ax

h

= lim
h→0

axah − ax

h

= lim
h→0

ax(ah − 1)
h

= ax lim
h→0

ah − 1
h

(since ax does not depend on h)

So we know that f ′(x) = ax lim
h→0

ah − 1
h

, but can we say anything about that
remaining limit? First we note that

f ′(0) = lim
h→0

a0+h − a0

h
= lim

h→0

ah − 1
h

,

so we have f ′(x) = axf ′(0). The actual value of the limit lim
h→0

ah − 1
h

depends
on the base a, but it can be proved that it does exist. Wewill figure out just what
this limit is later, but for now we note that the easiest differenƟaƟon formulas

come from using a base a that makes lim
h→0

ah − 1
h

= 1. This base is the number
e ≈ 2.71828 and the exponenƟal funcƟon ex is called the natural exponenƟal
funcƟon. This leads to the following result.

Theorem 49 DerivaƟve of ExponenƟal FuncƟons
For any base a > 0, the exponenƟal funcƟon f(x) = ax has deriva-
Ɵve f ′(x) = axf ′(0). The natural exponenƟal funcƟon g(x) = ex has
derivaƟve g ′(x) = ex.

Notes:
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7.3 ExponenƟal and Logarithmic FuncƟons

Watch the video:
DerivaƟves of ExponenƟal FuncƟons at
https://youtu.be/U3PyUcEd7IU

General logarithmic funcƟons

Before reviewing general logarithmic funcƟons, we’ll first remind ourselves of
the laws of logarithms.

Key Idea 19 ProperƟes of Logarithms
For a, x, y > 0 and a ̸= 1, we have

1. loga(xy) = loga x+ loga y

3. logx y =
loga y
loga x

, when x ̸= 1

5. loga 1 = 0

2. loga
x
y
= loga x− loga y

4. loga xy = y loga x

6. loga a = 1

1 e

1

e

x

y

Figure 7.11: The funcƟons y = ax and y =
loga x for a > 1.

Let us consider the funcƟon f(x) = ax where a ̸= 1. We know that f ′(x) =
f ′(0)ax, where f ′(0) is a constant that depends on the base a. Since ax > 0 for all
x, this implies that f ′(x) is either always posiƟve or always negaƟve, depending
on the sign of f ′(0). This in turn implies that f is strictly monotonic, so f is one-
to-one. We can now say that f has an inverse. We call this inverse the logarithm
with base a, denoted f−1(x) = loga x. When a = e, this is the natural logarithm
funcƟon ln x. So we can say that y = loga x if and only if ay = x. Since the range
of the exponenƟal funcƟon is the set of posiƟve real numbers, the domain of
the logarithm funcƟon is also the set of posiƟve real numbers. ReflecƟng the
graph of y = ax across the line y = x we find that (for a > 1) the graph of the
logarithm looks like Figure 7.11.

Notes:
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Chapter 7 Inverse FuncƟons and L’Hôpital’s Rule

Key Idea 20 ProperƟes of Logarithmic FuncƟons
For a > 0 and a ̸= 1 the logarithmic funcƟon f(x) = loga x saƟsfies:

1. The domain of f(x) = logax is (0,∞) and the range is (−∞,∞).

2. y = loga x if and only if ay = x.

3. lim
x→∞

loga x =

{
∞ if a > 1
−∞ if a < 1

4. lim
x→0+

loga x =

{
−∞ if a > 1
∞ if a < 1

Using the inverse of the natural exponenƟal funcƟon, we can determine
what the value of f ′(0) is in the formula (ax)′ = f ′(0)ax. To do so, we note
that a = eln a since the exponenƟal and logarithm funcƟons are inverses. Hence
we can write:

ax =
(
eln a
)x

= ex ln a

Now since ln a is a constant, we can use the Chain Rule to see that:

d
dx

ax =
d
dx

ex ln a = ex ln a(ln a) = ax ln a

Comparing this to our previous result, we can restate our theorem:

Theorem 50 DerivaƟve of ExponenƟal FuncƟons
For any base a > 0, the exponenƟal funcƟon f(x) = ax has derivaƟve
f ′(x) = ax ln a. The natural exponenƟal funcƟon g(x) = ex has deriva-
Ɵve g ′(x) = ex.

Change of base

In the previous computaƟon, we found it convenient to rewrite the general ex-
ponenƟal funcƟon in terms of the natural exponenƟal funcƟon. A related for-
mula allows us to rewrite the general logarithmic funcƟon in terms of the natural

Notes:
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7.3 ExponenƟal and Logarithmic FuncƟons

logarithm. To see how this works, suppose that y = loga x, then we have:

ay = x
ln(ay) = ln x
y ln a = ln x

y =
ln x
ln a

loga x =
ln x
ln a

.

This change of base formula allows us to use facts about the natural logarithm
to derive facts about the general logarithm.

DerivaƟves of logarithmic funcƟons
Since the natural logarithm funcƟon is the inverse of the natural exponenƟal
funcƟon, we can use the formula (f−1(x))′ =

1
f ′(f−1(x))

to find the derivaƟve

of y = ln x. We know that
d
dx

ex = ex, so we get:

d
dx

ln x =
1
ey

=
1

eln x
=

1
x
.

Nowwe can apply the change of base formula to find the derivaƟve of a general
logarithmic funcƟon:

d
dx

loga x =
d
dx

(
ln x
ln a

)
=

1
ln a

(
d
dx

ln x
)

=
1

x ln a
.

Example 1 Finding DerivaƟves of Logs and ExponenƟals
Find derivaƟves of the following funcƟons.

1. f(x) = x34x−7 2. g(x) = 2x
2

3. h(x) =
x

log5 x

SÊ½çã®ÊÄ

1. We apply both the Product and Chain Rules:

f ′(x) = 34x−7 + x
(
34x−7 ln 3

)
(4) = (1+ 4x ln 3)34x−7

2. We apply the Chain Rule:

g ′(x) = 2x
2
ln 2(2x) = 2x

2+1x ln 2.

3. Applying the QuoƟent Rule:

h ′(x) =
log5 x− x

( 1
x ln 5
)

(log5 x)2
=

(log5 x)(ln 5)− 1
(log5 x)2 ln 5

Notes:
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Chapter 7 Inverse FuncƟons and L’Hôpital’s Rule

Example 2 The DerivaƟve of the Natural Log
Find the derivaƟve of the funcƟon y = ln |x|.

SÊ½çã®ÊÄ We can rewrite our funcƟon as

y =

{
ln x if x > 0
ln(−x) if x < 0

Applying the Chain Rule, we see that dy
dx = 1

x for x > 0, and dy
dx = −1

−x = 1
x for

x < 0. Hence we have

d
dx

ln |x| = 1
x

for x ̸= 0.

AnƟderivaƟves
Combining these new results, we arrive at the following theorem:

Theorem 51 DerivaƟves and AnƟderivaƟves of ExponenƟals and
Logarithms
Given a base a > 0 and a ̸= 1, the following hold:

1.
d
dx

ex = ex

2.
d
dx

ax = ax ln a

3.
d
dx

ln x =
1
x

4.
d
dx

loga x =
1

x ln a

5.
ˆ

ex dx = ex + C

6.
ˆ

ax dx =
ax

ln a
+ C

7.
ˆ

dx
x

= ln |x|+ C

Example 3 Finding AnƟderivaƟves
Find the following anƟderivaƟves.

1.
ˆ

3x dx 2.
ˆ

x2ex
3
dx 3.

ˆ
x dx

x2 + 1

Notes:
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7.3 ExponenƟal and Logarithmic FuncƟons

SÊ½çã®ÊÄ

1. Applying our theorem,
ˆ

3x dx =
3x

ln 3
+ C

2. We use the subsƟtuƟon u = x3, du = 3x2 dx:
ˆ

x2ex
3
dx =

1
3

ˆ
eu du

=
1
3
eu + C

=
1
3
ex

3
+ C

3. Using the subsƟtuƟon u = x2 + 1, du = 2x dx:
ˆ

x dx
x2 + 1

=
1
2

ˆ
du
u

=
1
2
ln |u|+ C

=
1
2
ln
∣∣x2 + 1

∣∣+ C

=
1
2
ln(x2 + 1) + C

Note that we do not yet have an anƟderivaƟve for the funcƟon f(x) = ln x.
We remedy this in SecƟon 8.1 with Example 8.1.5.

Logarithmic DifferenƟaƟon

1 2

1

2

3

4

x

y

Figure 7.12: A plot of y = xx.

Consider the funcƟon y = xx; it is graphed in Figure 7.12. It is well–defined
for x > 0 and we might be interested in finding equaƟons of lines tangent and
normal to its graph. How do we take its derivaƟve?

The funcƟon is not a power funcƟon: it has a “power” of x, not a constant.
It is not an exponenƟal funcƟon: it has a “base” of x, not a constant.

A differenƟaƟon technique known as logarithmic differenƟaƟon becomes
useful here. The basic principle is this: take the natural log of both sides of an
equaƟon y = f(x), then use implicit differenƟaƟon to find y ′. We demonstrate
this in the following example.

Notes:
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Example 4 Using Logarithmic DifferenƟaƟon
Given y = xx, use logarithmic differenƟaƟon to find y ′.

SÊ½çã®ÊÄ As suggested above, we start by taking the natural log of
both sides then applying implicit differenƟaƟon.

y = xx

ln(y) = ln(xx) (apply logarithm rule)

ln(y) = x ln x (now use implicit differenƟaƟon)
d
dx

(
ln(y)

)
=

d
dx

(
x ln x

)
y ′

y
= ln x+ x · 1

x
y ′

y
= ln x+ 1

y ′ = y
(
ln x+ 1

)
(subsƟtute y = xx)

y ′ = xx
(
ln x+ 1

)
.

1 2

1

2

3

4

x

y

Figure 7.13: A graph of y = xx and its tan-
gent line at x = 1.5.

To “test” our answer, let’s use it to find the equaƟonof the tangent line at x =
1.5. The point on the graph our tangent linemust pass through is (1.5, 1.51.5) ≈
(1.5, 1.837). Using the equaƟon for y ′, we find the slope as

y ′ = 1.51.5
(
ln 1.5+ 1

)
≈ 1.837(1.405) ≈ 2.582.

Thus the equaƟon of the tangent line is y = 1.6833(x−1.5)+1.837. Figure 7.13
graphs y = xx along with this tangent line.

Notes:
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Exercises 7.3
Problems
In Exercises 1–4, find the domain of the funcƟon.

1. f(x) = ex
2+1

2. f(t) = ln(1− x2)

3. g(x) = ln(x2)

4. f(x) = 2
log3(x2 + 1)

In Exercises 5–13, find the derivaƟve of the funcƟon.

5. f(t) = et
3−1

6. g(r) = x2 log2 x

7. f(x) = log5 x
5x

8. f(x) = 4x
5

9. f(x) = 7log7 x

10. g(x) = ex
2
sin(x− ln x)

11. h(r) = tan−1(3r)

12. h(x) = log10
(
x2 + 1
x4

)
13. f(t) = ln tet

14. Find the two values of n so that the funcƟon y = enx saƟs-
fies the differenƟal equaƟon y ′′ + y ′ − 6y = 0.

In Exercises 15–23, evaluate the integral.

15.
ˆ 2

0
5x dx

16.
ˆ 3

1

log3 x
x

dx

17.
ˆ

x3x
2−1 dx

18.
ˆ

cos(ln x)
x

dx

19.
ˆ

ex sin(ex) cos(ex) dx

20.
ˆ 8

1
log2 x dx

21.
ˆ 5

0

3x

3x + 2
dx

22.
ˆ

1− t
1+ t2

dt

23.
ˆ

1
(1+ x2) tan−1 x

dx

24. Let f(x) = x2 and g(x) = 2x.

(a) Since f(2) = 22 = 4 and g(2) = 22 = 4,
f(2) = g(2). Find a posiƟve number c > 2 so that
f(c) = g(c).

(b) Explain how you can be sure that there is at least one
negaƟve number a so that f(a) = g(a).

(c) Use the BisecƟon Method to esƟmate the number a
accurate to within .05.

(d) Assume youwere to graph f(x) and g(x) on the same
graph with unit length equal to 1 inch along both co-
ordinate axes. Approximately how high is the graph
of f when x = 18? The graph of g?

In Exercises 25–32, use logarithmic differenƟaƟon to find dy
dx

,
then find the equaƟon of the tangent line at the indicated x–
value.

25. y = (1+ x)1/x, x = 1

26. y = (2x)x
2
, x = 1

27. y = xx

x+ 1
, x = 1

28. y = xsin(x)+2, x = π/2

29. y = x+ 1
x+ 2

, x = 1

30. y = (x+ 1)(x+ 2)
(x+ 3)(x+ 4)

, x = 0

31. y = xe
x
, x = 1

32. y = (cot x)cos x, x = π
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Chapter 7 Inverse FuncƟons and L’Hôpital’s Rule

7.4 Hyperbolic FuncƟons

The hyperbolic funcƟons are funcƟons that have many applicaƟons to mathe-
maƟcs, physics, and engineering. Amongmany other applicaƟons, they are used
to describe the formaƟon of satellite rings around planets, to describe the shape
of a rope hanging from two points, and have applicaƟon to the theory of special
relaƟvity. This secƟon defines the hyperbolic funcƟons and describes many of
their properƟes, especially their usefulness to calculus.

(cos θ,sin θ)

A =
θ

2x2 + y2 = 1

−1 1

−1

1

x

y

(cosh θ,sinh θ)

A =
θ

2

x2 − y2 = 1

−2 2

−2

2

x

y

Figure 7.14: Using trigonometric func-
Ɵons to define points on a circle and hy-
perbolic funcƟons to define points on a
hyperbola.

These funcƟons are someƟmes referred to as the “hyperbolic trigonomet-
ric funcƟons” as there are many connecƟons between them and the standard
trigonometric funcƟons. Figure 7.14 demonstrates one such connecƟon. Just as
cosine and sine are used to define points on the circle defined by x2 + y2 = 1,
the funcƟons hyperbolic cosine and hyperbolic sine are used to define points
on the hyperbola x2 − y2 = 1.

We begin with their definiƟons.

DefiniƟon 27 Hyperbolic FuncƟons

1. cosh x =
ex + e−x

2

2. sinh x =
ex − e−x

2

3. tanh x =
sinh x
cosh x

4. sech x =
1

cosh x

5. csch x =
1

sinh x

6. coth x =
cosh x
sinh x

The hyperbolic funcƟons are graphed in Figure 7.15. In the graphs of cosh x
and sinh x, graphs of ex/2 and e−x/2 are included with dashed lines. As x gets
“large,” cosh x and sinh x each act like ex/2; when x is a large negaƟve number,
cosh x acts like e−x/2 whereas sinh x acts like−e−x/2.

PronunciaƟon Note:
“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch,”

NoƟce the domains of tanh x and sech x are (−∞,∞), whereas both coth x
and csch x have verƟcal asymptotes at x = 0. Also note the ranges of these
funcƟons, especially tanh x: as x→∞, both sinh x and cosh x approach e−x/2,
hence tanh x approaches 1.

Notes:
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f(x) = cosh x

−2 2

−10

−5

5

10

x

y

f(x) = sinh x

−2 2

−10

−5

5

10

x

y

f(x) = tanh x

f(x) = coth x

−2 2

−2

2

x

y

f(x) = sech x
f(x) = csch x

−2 2

−3

−2

−1

1

2

3

x

y

Figure 7.15: Graphs of the hyperbolic funcƟons.

Watch the video:
Hyperbolic FuncƟons — The Basics at
https://youtu.be/G1C1Z5aTZSQ

The following example explores some of the properƟes of these funcƟons
that bear remarkable resemblance to the properƟes of their trigonometric coun-
terparts.

Example 1 Exploring properƟes of hyperbolic funcƟons
Use DefiniƟon 27 to rewrite the following expressions.

Notes:
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1. cosh2 x− sinh2 x

2. tanh2 x+ sech2 x

3. 2 cosh x sinh x

4. d
dx

(
cosh x

)
5. d

dx

(
sinh x

)
6. d

dx

(
tanh x

)
SÊ½çã®ÊÄ

1. cosh2 x− sinh2 x =
(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
e2x + 2exe−x + e−2x

4
− e2x − 2exe−x + e−2x

4

=
4
4
= 1.

So cosh2 x− sinh2 x = 1.

2. tanh2 x+ sech2 x =
sinh2 x
cosh2 x

+
1

cosh2 x

=
sinh2 x+ 1
cosh2 x

Now use idenƟty from #1.

=
cosh2 x
cosh2 x

= 1.

So tanh2 x+ sech2 x = 1.

3. 2 cosh x sinh x = 2
(
ex + e−x

2

)(
ex − e−x

2

)
= 2 · e

2x − e−2x

4

=
e2x − e−2x

2
= sinh(2x).

Thus 2 cosh x sinh x = sinh(2x).

4. d
dx
(
cosh x

)
=

d
dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinh x.

So d
dx

(
cosh x

)
= sinh x.

Notes:
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5. d
dx
(
sinh x

)
=

d
dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh x.

So d
dx

(
sinh x

)
= cosh x.

6. d
dx
(
tanh x

)
=

d
dx

(
sinh x
cosh x

)
=

cosh x cosh x− sinh x sinh x
cosh2 x

=
1

cosh2 x
= sech2 x.

So d
dx

(
tanh x

)
= sech2 x.

The following Key Idea summarizes many of the important idenƟƟes relaƟng
to hyperbolic funcƟons. Each can be verified by referring back to DefiniƟon 27.

Key Idea 21 Useful Hyperbolic FuncƟon ProperƟes
Basic IdenƟƟes

1. cosh2 x− sinh2 x = 1

2. tanh2 x+ sech2 x = 1

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. sinh 2x = 2 sinh x cosh x

6. cosh2 x =
cosh 2x+ 1

2

7. sinh2 x =
cosh 2x− 1

2

DerivaƟves

1. d
dx

(
cosh x

)
= sinh x

2. d
dx

(
sinh x

)
= cosh x

3. d
dx

(
tanh x

)
= sech2 x

4. d
dx

(
sech x

)
= − sech x tanh x

5. d
dx

(
csch x

)
= − csch x coth x

6. d
dx

(
coth x

)
= − csch2 x

Integrals

1.
ˆ

cosh x dx = sinh x+ C

2.
ˆ

sinh x dx = cosh x+ C

3.
ˆ

tanh x dx = ln(cosh x) + C

4.
ˆ

coth x dx = ln |sinh x|+ C

We pracƟce using Key Idea 21.
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Example 2 DerivaƟves and integrals of hyperbolic funcƟons
Evaluate the following derivaƟves and integrals.

1.
d
dx
(
cosh 2x

)
2.
ˆ

sech2(7t− 3) dt

3.
ˆ ln 2

0
cosh x dx

SÊ½çã®ÊÄ

1. Using the Chain Rule directly, we have d
dx

(
cosh 2x

)
= 2 sinh 2x.

Just to demonstrate that it works, let’s also use the Basic IdenƟty found in
Key Idea 21: cosh 2x = cosh2 x+ sinh2 x.

d
dx
(
cosh 2x

)
=

d
dx
(
cosh2 x+ sinh2 x

)
= 2 cosh x sinh x+ 2 sinh x cosh x

= 4 cosh x sinh x.

Using another Basic IdenƟty, we can see that 4 cosh x sinh x = 2 sinh 2x.
We get the same answer either way.

2. We employ subsƟtuƟon, with u = 7t − 3 and du = 7dt. Applying Key
Idea 21 we have:ˆ

sech2(7t− 3) dt =
1
7
tanh(7t− 3) + C.

3. ˆ ln 2

0
cosh x dx = sinh x

∣∣∣ln 2
0

= sinh(ln 2)− sinh 0 = sinh(ln 2).

We can simplify this last expression as sinh x is based on exponenƟals:

sinh(ln 2) =
eln 2 − e− ln 2

2
=

2− 1/2
2

=
3
4
.

Inverse Hyperbolic FuncƟons
Just as the inverse trigonometric funcƟons are useful in certain integraƟons, the
inverse hyperbolic funcƟons are useful with others. Figure 7.16 shows the re-
stricƟons on the domains to make each funcƟon one-to-one and the resulƟng
domains and ranges of their inverse funcƟons. Their graphs are shown in Fig-
ure 7.17.
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Because the hyperbolic funcƟons are defined in terms of exponenƟal func-
Ɵons, their inverses can be expressed in terms of logarithms as shown in Key
Idea 22. It is oŌenmore convenient to refer to sinh−1 x than to ln

(
x+
√
x2 + 1

)
,

especially when one is working on theory and does not need to compute actual
values. On the other hand, when computaƟons are needed, technology is oŌen
helpful but many hand-held calculators lack a convenient sinh−1 x buƩon. (Of-
ten it can be accessed under a menu system, but not conveniently.) In such a
situaƟon, the logarithmic representaƟon is useful. The reader is not encouraged
tomemorize these, but rather know they exist and know how to use themwhen
needed.

FuncƟon Domain Range FuncƟon Domain Range

cosh x [0,∞) [1,∞) cosh−1 x [1,∞) [0,∞)
sinh x (−∞,∞) (−∞,∞) sinh−1 x (−∞,∞) (−∞,∞)
tanh x (−∞,∞) (−1, 1) tanh−1 x (−1, 1) (−∞,∞)
sech x [0,∞) (0, 1] sech−1 x (0, 1] [0,∞)
csch x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞) csch−1 x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth x (−∞, 0) ∪ (0,∞) (−∞,−1) ∪ (1,∞) coth−1 x (−∞,−1) ∪ (1,∞) (−∞, 0) ∪ (0,∞)

Figure 7.16: Domains and ranges of the hyperbolic and inverse hyperbolic funcƟons.
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Figure 7.17: Graphs of the hyperbolic funcƟons and their inverses.
Now let’s consider the inverses of the hyperbolic funcƟons. We begin with

the funcƟon f(x) = sinh x. Since f ′(x) = cosh x > 0 for all real x, f is increasing
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and must be one-to-one. We proceed as in SecƟon 7.1:

y =
ex − e−x

2
2y = ex − e−x (now mulƟply by ex)

2yex = e2x − 1 (a quadraƟc form )

(ex)2 − 2yex − 1 = 0 (use the quadraƟc formula)

ex =
2y±

√
4y2 − 4
2

ex = y±
√

y2 + 1 (use the fact that ex > 0)

ex = y+
√

y2 + 1

x = ln(y+
√

y2 + 1)

Finally, interchange the variable to find that

sinh−1 x = ln(x+
√

x2 + 1).

In a similar manner we find that the inverses of the other hyperbolic funcƟons
are given by:

Key Idea 22 Logarithmic definiƟons of Inverse Hyperbolic FuncƟons

1. cosh−1 x = ln
(
x+

√
x2 − 1

)
; x ≥ 1

2. tanh−1 x =
1
2
ln
(
1+ x
1− x

)
; |x| < 1

3. sech−1 x = ln

(
1+
√
1− x2

x

)
; 0 < x ≤ 1

4. sinh−1 x = ln
(
x+

√
x2 + 1

)
5. coth−1 x =

1
2
ln
(
x+ 1
x− 1

)
; |x| > 1

6. csch−1 x = ln

(
1
x
+

√
1+ x2

|x|

)
; x ̸= 0

The following Key Ideas give the derivaƟves and integrals relaƟng to the in-
verse hyperbolic funcƟons. In Key Idea 24, both the inverse hyperbolic and log-
arithmic funcƟon representaƟons of the anƟderivaƟve are given, based on Key
Idea 22. Again, these laƩer funcƟons are oŌen more useful than the former.
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Key Idea 23 DerivaƟves Involving Inverse Hyperbolic FuncƟons

1.
d
dx
(
cosh−1 x

)
=

1√
x2 − 1

; x > 1

2.
d
dx
(
sinh−1 x

)
=

1√
x2 + 1

3.
d
dx
(
tanh−1 x

)
=

1
1− x2

; |x| < 1

4.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

; 0 < x < 1

5.
d
dx
(
csch−1 x

)
=

−1
|x|
√
1+ x2

; x ̸= 0

6.
d
dx
(
coth−1 x

)
=

1
1− x2

; |x| > 1

Key Idea 24 Integrals Involving Inverse Hyperbolic FuncƟons

1.
ˆ

1√
x2 − a2

dx = cosh−1
( x
a

)
+ C; 0 < a < x = ln

∣∣∣x+√x2 − a2
∣∣∣+ C

2.
ˆ

1√
x2 + a2

dx = sinh−1
( x
a

)
+ C; a > 0 = ln

∣∣∣x+√x2 + a2
∣∣∣+ C

3.
ˆ

1
a2 − x2

dx =

{
1
a tanh

−1 ( x
a

)
+ C |x| < |a|

1
a coth

−1 ( x
a

)
+ C |a| < |x|

=
1
2a

ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

4.
ˆ

1
x
√
a2 − x2

dx = −1
a
sech−1

( x
a

)
+ C; 0 < x < a =

1
a
ln
(

x
a+
√
a2 − x2

)
+ C

5.
ˆ

1
x
√
x2 + a2

dx = −1
a
csch−1

∣∣∣ xa ∣∣∣+ C; x ̸= 0, a > 0 =
1
a
ln
∣∣∣∣ x
a+
√
a2 + x2

∣∣∣∣+ C

We pracƟce using the derivaƟve and integral formulas in the following ex-
ample.

Example 3 DerivaƟves and integrals involving inverse hyperbolic func-
Ɵons
Evaluate the following.
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1.
d
dx

[
cosh−1

(
3x− 2

5

)]
2.
ˆ

1
x2 − 1

dx

3.
ˆ

1√
9x2 + 10

dx

SÊ½çã®ÊÄ

1. Applying Key Idea 23 with the Chain Rule gives:

d
dx

[
cosh−1

(
3x− 2

5

)]
=

1√( 3x−2
5
)2 − 1

· 3
5
.

2. MulƟplying the numerator anddenominator by (−1) gives:
ˆ

1
x2 − 1

dx =ˆ
−1

1− x2
dx. The second integral can be solved with a direct applicaƟon

of item #3 from Key Idea 24, with a = 1. Thusˆ
1

x2 − 1
dx = −

ˆ
1

1− x2
dx

=

{
− tanh−1 (x) + C x2 < 1
− coth−1 (x) + C 1 < x2

= −1
2
ln
∣∣∣∣x+ 1
x− 1

∣∣∣∣+ C

=
1
2
ln
∣∣∣∣x− 1
x+ 1

∣∣∣∣+ C. (7.1)

3. This requires a subsƟtuƟon, then item #2 of Key Idea 24 can be applied.
Let u = 3x, hence du = 3dx. We haveˆ

1√
9x2 + 10

dx =
1
3

ˆ
1√

u2 + 10
du.

Note a2 = 10, hence a =
√
10. Now apply the integral rule.

=
1
3
sinh−1

(
3x√
10

)
+ C

=
1
3
ln
∣∣∣3x+√9x2 + 10

∣∣∣+ C.
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This secƟon covers a lot of ground. New funcƟons were introduced, along
with some of their fundamental idenƟƟes, their derivaƟves and anƟderivaƟves,
their inverses, and the derivaƟves and anƟderivaƟves of these inverses. Four
Key Ideas were presented, each including quite a bit of informaƟon.

Do not view this secƟon as containing a source of informaƟon to be memo-
rized, but rather as a reference for future problem solving. Key Idea 24 contains
perhaps themost useful informaƟon. Know the integraƟon forms it helps evalu-
ate and understand how to use the inverse hyperbolic answer and the logarith-
mic answer.

The next secƟon takes a brief break from demonstraƟng new integraƟon
techniques. It instead demonstrates a technique of evaluaƟng limits that re-
turn indeterminate forms. This technique will be useful in SecƟon 8.6, where
limits will arise in the evaluaƟon of certain definite integrals.

Notes:

369



Exercises 7.4
Terms and Concepts

1. In Key Idea 21, the equaƟon
ˆ

tanh x dx = ln(cosh x) + C

is given. Why is “ln |cosh x|” not used— i.e., why are abso-
lute values not necessary?

2. The hyperbolic funcƟons are used to define points on the
right hand porƟon of the hyperbola x2 − y2 = 1, as shown
in Figure 7.14. How can we use the hyperbolic funcƟons to
define points on the leŌ hand porƟon of the hyperbola?

Problems
In Exercises 3–10, verify the given idenƟty using DefiniƟon 27,
as done in Example 1.

3. coth2 x− csch2 x = 1
4. cosh 2x = cosh2 x+ sinh2 x

5. cosh2 x = cosh 2x+ 1
2

6. sinh2 x = cosh 2x− 1
2

7. d
dx

[sech x] = − sech x tanh x

8. d
dx

[coth x] = − csch2 x

9.
ˆ

tanh x dx = ln(cosh x) + C

10.
ˆ

coth x dx = ln |sinh x|+ C

In Exercises 11–21, find the derivaƟve of the given funcƟon.

11. f(x) = cosh 2x
12. f(x) = tanh(x2)
13. f(x) = ln(sinh x)
14. f(x) = sinh x cosh x
15. f(x) = x sinh x− cosh x
16. f(x) = sech−1(x2)

17. f(x) = sinh−1(3x)
18. f(x) = cosh−1(2x2)

19. f(x) = tanh−1(x+ 5)

20. f(x) = tanh−1(cos x)

21. f(x) = cosh−1(sec x)

In Exercises 22–26, find the equaƟon of the line tangent to the
funcƟon at the given x-value.

22. f(x) = sinh x at x = 0

23. f(x) = cosh x at x = ln 2

24. f(x) = sech2 x at x = ln 3

25. f(x) = sinh−1 x at x = 0

26. f(x) = cosh−1 x at x =
√
2

In Exercises 27–34, evaluate the given indefinite integral.

27.
ˆ

tanh(2x) dx

28.
ˆ

cosh(3x− 7) dx

29.
ˆ

sinh x cosh x dx

30.
ˆ

1
9− x2

dx

31.
ˆ

2x√
x4 − 4

dx

32.
ˆ √

x√
1+ x3

dx

33.
ˆ

ex

e2x + 1
dx

34.
ˆ

sech x dx (Hint: mulƟply by cosh x
cosh x ; set u = sinh x.)

In Exercises 35–36, evaluate the given definite integral.

35.
ˆ 1

−1
sinh x dx

36.
ˆ ln 2

− ln 2
cosh x dx
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7.5 L’Hôpital’s Rule

7.5 L’Hôpital’s Rule
This secƟon is concerned with a technique for evaluaƟng certain limits that will
be useful in later chapters.

Our treatment of limits exposedus to “0/0”, an indeterminate form. If lim
x→c

f(x) =
0 and lim

x→c
g(x) = 0, we do not conclude that lim

x→c
f(x)/g(x) is 0/0; rather, we use

0/0 as notaƟon to describe the fact that both the numerator and denominator
approach 0. The expression 0/0 has no numeric value; other workmust be done
to evaluate the limit.

Other indeterminate forms exist; they are:∞/∞, 0 ·∞,∞−∞, 00, 1∞ and
∞0. Just as “0/0” does not mean “divide 0 by 0,” the expression “∞/∞” does
not mean “divide infinity by infinity.” Instead, it means “a quanƟty is growing
without bound and is being divided by another quanƟty that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 ·∞” does not mean “mulƟply zero by infinity.” Instead,
it means “one quanƟty is shrinking to zero, and is being mulƟplied by a quanƟty
that is growing without bound.” We cannot determine from such a descripƟon
what the result of such a limit will be.

This secƟon introduces L’Hôpital’s Rule, a method of resolving limits that
produce the indeterminate forms 0/0 and∞/∞. We’ll also show how algebraic
manipulaƟon can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

Theorem 52 L’Hôpital’s Rule, Part 1
Let f and g be differenƟable funcƟons on an open interval I containing
a.

1. If lim
x→a

f(x) = 0, lim
x→a

g(x) = 0, and g ′(x) ̸= 0 except possibly at
x = a, then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g ′(x)

.

2. If lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g ′(x)

.

A similar statement holds if we just look at the one sided limits lim
x→a−

and
lim

x→a+
.
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Theorem 53 L’Hôpital’s Rule, Part 2
Let f and g be differenƟable funcƟons on the open interval (c,∞) for
some value c and g ′(x) ̸= 0 on (c,∞).

1. If lim
x→∞

f(x) = 0 and lim
x→∞

g(x) = 0, then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g ′(x)

.

2. If lim
x→∞

f(x) = ±∞ and lim
x→∞

g(x) = ±∞, then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g ′(x)

.

Similar statements can be made where x approaches−∞.

We demonstrate the use of L’Hôpital’s Rule in the following examples; we
will oŌen use “LHR” as an abbreviaƟon of “L’Hôpital’s Rule.”

Example 1 Using L’Hôpital’s Rule
Evaluate the following limits, using L’Hôpital’s Rule as needed.

1. lim
x→0

sin x
x

2. lim
x→1

√
x+ 3− 2
1− x

3. lim
x→0

x2

1− cos x

4. lim
x→−3

x3 + 27
x2 + 9

5. lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

6. lim
x→∞

ex

x3

SÊ½çã®ÊÄ

1. This has the indeterminate form 0/0. We proved this limit is 1 in Exam-
ple 1.3.4 using the Squeeze Theorem. Here we use L’Hôpital’s Rule to
show its power.

lim
x→0

sin x
x

by LHR
= lim

x→0

cos x
1

= 1.

While this seems easier than using the Squeeze Theorem to find this limit,
we note that applying L’Hôpital’s Rule here requires us to know the deriva-
Ɵve of sin x. We originally encountered this limit when we were trying to
find that derivaƟve.
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2. This has the indeterminate form 0/0.

lim
x→1

√
x+ 3− 2
1− x

by LHR
= lim

x→1

1
2 (x+ 3)−1/2

−1
= −1

4
.

3. This has the indeterminate form 0/0.

lim
x→0

x2

1− cos x
by LHR
= lim

x→0

2x
sin x

.

This laƩer limit also evaluates to the 0/0 indeterminate form. To evaluate
it, we apply L’Hôpital’s Rule again.

lim
x→0

2x
sin x

by LHR
=

2
cos x

= 2.

Thus lim
x→0

x2

1− cos x
= 2.

4. lim
x→−3

x3 + 27
x2 + 9

=
0
18

= 0

We cannot use L’Hôpital’s Rule in this case because the original limit does
not return an indeterminate form, so L’Hôpital’s Rule does not apply. In
fact, the inappropriate use of L’Hôpital’s Rule here would result in the in-
correct limit 3

2 .

5. We can evaluate this limit already using Key Idea 2; the answer is 3/4. We
apply L’Hôpital’s Rule to demonstrate its applicability.

lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

by LHR
= lim

x→∞

6x− 100
8x+ 5

by LHR
= lim

x→∞

6
8
=

3
4
.

6. lim
x→∞

ex

x3
by LHR
= lim

x→∞

ex

3x2
by LHR
= lim

x→∞

ex

6x
by LHR
= lim

x→∞

ex

6
=∞.

Recall that this means that the limit does not exist; as x approaches∞,
the expression ex/x3 grows without bound. We can infer from this that
ex grows “faster” than x3; as x gets large, ex is far larger than x3. (This
has important implicaƟons in compuƟng when considering efficiency of
algorithms.)
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Indeterminate Forms 0 · ∞ and∞−∞
L’Hôpital’s Rule can only be applied to raƟos of funcƟons. When faced with an
indeterminate form such as 0 · ∞ or∞−∞, we can someƟmes apply algebra
to rewrite the limit so that L’Hôpital’s Rule can be applied. We demonstrate the
general idea in the next example.

Watch the video:
L’Hop̂ital’s Rule — Indeterminate Powers at
https://youtu.be/kEnwac_9lyg

Example 2 Applying L’Hôpital’s Rule to other indeterminate forms
Evaluate the following limits.

1. lim
x→0+

x · e1/x

2. lim
x→0−

x · e1/x

3. lim
x→∞

(ln(x+ 1)− ln x)

4. lim
x→∞

(
x2 − ex

)
SÊ½çã®ÊÄ

1. As x → 0+, note that x → 0 and e1/x → ∞. Thus we have the indeter-

minate form 0 · ∞. We rewrite the expression x · e1/x as e1/x

1/x
; now, as

x → 0+, we get the indeterminate form∞/∞ to which L’Hôpital’s Rule
can be applied.

lim
x→0+

x · e1/x = lim
x→0+

e1/x

1/x
by LHR
= lim

x→0+

(−1/x2)e1/x

−1/x2
= lim

x→0+
e1/x =∞.

InterpretaƟon: e1/x grows “faster” than x shrinks to zero, meaning their
product grows without bound.

2. As x → 0−, note that x → 0 and e1/x → e−∞ → 0. The the limit
evaluates to 0 · 0 which is not an indeterminate form. We conclude then
that

lim
x→0−

x · e1/x = 0.

Notes:
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3. This limit iniƟally evaluates to the indeterminate form∞−∞. By applying
a logarithmic rule, we can rewrite the limit as

lim
x→∞

(ln(x+ 1)− ln x) = lim
x→∞

ln
(
x+ 1
x

)
.

As x → ∞, the argument of the natural logarithm approaches∞/∞, to
which we can apply L’Hôpital’s Rule.

lim
x→∞

x+ 1
x

by LHR
= lim

x→∞

1
1
= 1.

Since x→∞ implies
x+ 1
x
→ 1, it follows that

x→∞ implies ln
(
x+ 1
x

)
→ ln 1 = 0.

Thus

lim
x→∞

(ln(x+ 1)− ln x) = lim
x→∞

ln
(
x+ 1
x

)
= 0.

InterpretaƟon: since this limit evaluates to 0, it means that for large x,
there is essenƟally no difference between ln(x + 1) and ln x; their differ-
ence is essenƟally 0.

4. The limit lim
x→∞

(
x2 − ex

)
iniƟally returns the indeterminate form∞−∞.

We can rewrite the expression by factoring out x2; x2−ex = x2
(
1− ex

x2

)
.

We need to evaluate how ex/x2 behaves as x→∞:

lim
x→∞

ex

x2
by LHR
= lim

x→∞

ex

2x
by LHR
= lim

x→∞

ex

2
=∞.

Thus limx→∞ x2(1− ex/x2) evaluates to∞ · (−∞), which is not an inde-
terminate form; rather,∞ · (−∞) evaluates to −∞. We conclude that
lim
x→∞

(
x2 − ex

)
= −∞.

InterpretaƟon: as x gets large, the difference between x2 and ex grows
very large.

Notes:
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Chapter 7 Inverse FuncƟons and L’Hôpital’s Rule

Indeterminate Forms 00, 1∞ and∞0

When faced with a limit that returns one of the indeterminate forms 00, 1∞, or
∞0, it is oŌen useful to use the natural logarithm to convert to an indeterminate
form we already know how to find the limit of, then use the natural exponenƟal
funcƟon find the original limit. This is possible because the natural logarithm
and natural exponenƟal funcƟons are inverses and because they are both con-
Ɵnuous. The following Key Idea expresses the concept, which is followed by an
example that demonstrates its use.

Key Idea 25 EvaluaƟng Limits Involving Indeterminate Forms
00, 1∞ and∞0

If lim
x→c

ln
(
f(x)
)
= L, then lim

x→c
f(x) = lim

x→c
eln(f(x)) = e L.

Example 3 Using L’Hôpital’s Rule with indeterminate forms involving
exponents
Evaluate the following limits.

1. lim
x→∞

(
1+

1
x

)x

2. lim
x→0+

xx.

SÊ½çã®ÊÄ

1. This is equivalent to a special limit given in Theorem 6; these limits have
important applicaƟons in mathemaƟcs and finance. Note that the expo-
nent approaches∞ while the base approaches 1, leading to the indeter-
minate form 1∞. Let f(x) = (1 + 1/x)x; the problem asks to evaluate
lim
x→∞

f(x). Let’s first evaluate lim
x→∞

ln
(
f(x)
)
.

lim
x→∞

ln
(
f(x)
)
= lim

x→∞
ln
(
1+

1
x

)x

= lim
x→∞

x ln
(
1+

1
x

)
= lim

x→∞

ln
(
1+ 1

x

)
1/x

Notes:
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7.5 L’Hôpital’s Rule

This produces the indeterminate form 0/0, so we apply L’Hôpital’s Rule.

= lim
x→∞

1
1+1/x · (−1/x

2)

(−1/x2)

= lim
x→∞

1
1+ 1/x

= 1.

Thus lim
x→∞

ln
(
f(x)
)
= 1. We return to the original limit and apply Key

Idea 25.

lim
x→∞

(
1+

1
x

)x

= lim
x→∞

f(x) = lim
x→∞

eln(f(x)) = e1 = e.

This is another way to determine the value of the number e.

2. This limit leads to the indeterminate form 00. Let f(x) = xx and consider
first lim

x→0+
ln
(
f(x)
)
.

f(x) = xx

1 2

1

2

3

4

x

y

Figure 7.18: A graph of f(x) = xx support-
ing the fact that as x → 0+, f(x) → 1.

lim
x→0+

ln
(
f(x)
)
= lim

x→0+
ln (xx)

= lim
x→0+

x ln x

This produces the indeterminate form 0(−∞), so we rewrite it in order
to apply L’Hôpital’s Rule.

= lim
x→0+

ln x
1/x

.

This produces the indeterminate form −∞/∞ so we apply L’Hôpital’s
Rule.

= lim
x→0+

1/x
−1/x2

= lim
x→0+

−x

= 0.

Thus lim
x→0+

ln
(
f(x)
)
= 0. We return to the original limit and apply Key

Idea 25.
lim

x→0+
xx = lim

x→0+
f(x) = lim

x→0+
eln(f(x)) = e0 = 1.

This result is supported by the graph of f(x) = xx given in Figure 7.18.

Notes:
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Exercises 7.5
Terms and Concepts
1. List the different indeterminate forms described in this sec-

Ɵon.
2. T/F: l’Hôpital’s Rule provides a faster method of compuƟng

derivaƟves.

3. T/F: l’Hôpital’s Rule states that d
dx

[
f(x)
g(x)

]
=

f ′(x)
g′(x)

.

4. Explain what the indeterminate form “1∞” means.

5. Fill in the blanks: The QuoƟent Rule is applied to f(x)
g(x)

when taking ; l’Hôpital’s Rule is appliedwhen tak-
ing certain .

6. Create (but do not evaluate!) a limit that returns “∞0”.
7. Create a funcƟon f(x) such that lim

x→1
f(x) returns “00”.

Problems
In Exercises 8–52, evaluate the given limit.

8. lim
x→1

x2 + x− 2
x− 1

9. lim
x→2

x2 + x− 6
x2 − 7x+ 10

10. lim
x→π

sin x
x− π

11. lim
x→π/4

sin x− cos x
cos(2x)

12. lim
x→0

sin(5x)
x

13. lim
x→0

sin(2x)
x+ 2

14. lim
x→0

sin(2x)
sin(3x)

15. lim
x→0

sin(ax)
sin(bx)

16. lim
x→0+

ex − 1
x2

17. lim
x→0+

ex − x− 1
x2

18. lim
x→0+

x− sin x
x3 − x2

19. lim
x→∞

x4

ex

20. lim
x→∞

√
x

ex

21. lim
x→∞

ex√
x

22. lim
x→∞

ex

2x

23. lim
x→∞

ex

3x

24. lim
x→3

x3 − 5x2 + 3x+ 9
x3 − 7x2 + 15x− 9

25. lim
x→−2

x3 + 4x2 + 4x
x3 + 7x2 + 16x+ 12

26. lim
x→∞

ln x
x

27. lim
x→∞

ln(x2)
x

28. lim
x→∞

(
ln x
)2

x
29. lim

x→0+
x ln x

30. lim
x→0+

√
x ln x

31. lim
x→0+

xe1/x

32. lim
x→∞

(
x3 − x2

)
33. lim

x→∞

(√
x− ln x

)
34. lim

x→−∞
xex

35. lim
x→0+

1
x2
e−1/x

36. lim
x→0+

(1+ x)1/x

37. lim
x→0+

(2x)x

38. lim
x→0+

(2/x)x

39. lim
x→0+

(sin x)x

40. lim
x→1+

(1− x)1−x

41. lim
x→∞

(x)1/x

42. lim
x→∞

(1/x)x

43. lim
x→1+

(ln x)1−x

44. lim
x→∞

(1+ x)1/x

45. lim
x→∞

(1+ x2)1/x

46. lim
x→π/2

tan x cos x

47. lim
x→π/2

tan x sin(2x)

48. lim
x→1+

(
1
ln x

− 1
x− 1

)
49. lim

x→3+

(
5

x2 − 9
− x

x− 3

)
50. lim

x→∞
x tan(1/x)

51. lim
x→∞

(ln x)3

x

52. lim
x→1

x2 + x− 2
ln x
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8: T��«Ä®Øç�Ý Ê¥ IÄã�¦Ù�ã®ÊÄ
Chapter 5 introduced the anƟderivaƟve and connected it to signed areas under
a curve through the Fundamental Theorem of Calculus. The chapter aŌer ex-
plored more applicaƟons of definite integrals than just area. As evaluaƟng def-
inite integrals will become even important, we will want to find anƟderivaƟves
of a variety of funcƟons.

This chapter is devoted to exploring techniques of anƟdifferenƟaƟon. While
not every funcƟon has an anƟderivaƟve in terms of elementary funcƟons, we
can sƟll find anƟderivaƟves of a wide variety of funcƟons.

8.1 IntegraƟon by Parts
Here’s a simple integral that we can’t yet evaluate:ˆ

x cos x dx.

It’s a simple maƩer to take the derivaƟve of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this secƟon introduces
IntegraƟon by Parts, a method of integraƟon that is based on the Product Rule
for derivaƟves. It will enable us to evaluate this integral.

The Product Rule says that ifu and v are funcƟons of x, then (uv)′ = u ′v+uv ′.
For simplicity, we’ve wriƩen u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This givesˆ

(uv)′ dx =
ˆ
(u ′v+ uv ′) dx.

By the Fundamental Theoremof Calculus, the leŌ side integrates to uv. The right
side can be broken up into two integrals, and we have

uv =
ˆ

u ′v dx+
ˆ

uv ′ dx.

Solving for the second integral we haveˆ
uv ′ dx = uv−

ˆ
u ′v dx.

Using differenƟal notaƟon, we can write

u ′ =
du
dx

v ′ =
dv
dx

⇒
du = u ′dx
dv = v ′dx.



Chapter 8 Techniques of IntegraƟon

Thus, the equaƟon above can be wriƩen as follows:
ˆ

u dv = uv−
ˆ

v du.

This is the IntegraƟon by Parts formula. For reference purposes, we state this in
a theorem.

Theorem 54 IntegraƟon by Parts
Let u and v be differenƟable funcƟons of x on an interval I containing a
and b. Then ˆ

u dv = uv−
ˆ

v du,

and applying FTC part 2 we have
ˆ x=b

x=a
u dv = uv

∣∣∣b
a
−
ˆ x=b

x=a
v du.

Watch the video:
IntegraƟon by Parts — Definite Integral at
https://youtu.be/zGGI4PkHzhI

Let’s try an example to understand our new technique.

Example 1 IntegraƟng using IntegraƟon by Parts
Evaluate

ˆ
x cos x dx.

SÊ½çã®ÊÄ The key to IntegraƟon by Parts is to idenƟfy part of the in-
tegrand as “u” and part as “dv.” Regular pracƟce will help one make good iden-
ƟficaƟons, and later we will introduce some principles that help. For now, let
u = x and dv = cos x dx.

It is generally useful to make a small table of these values.

u = x dv = cos x dx
du = ? v = ?

⇒
u = x dv = cos x dx

du = dx v = sin x

Notes:
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8.1 IntegraƟon by Parts

Right now we only know u and dv as shown on the leŌ; on the right we fill in
the rest of what we need. If u = x, then du = dx. Since dv = cos x dx, v is an
anƟderivaƟve of cos x, so v = sin x.

Now subsƟtute all of this into the IntegraƟon by Parts formula, givingˆ
x cos x dx = x sin x−

ˆ
sin x dx.

We can then integrate sin x to get− cos x+ C and overall our answer isˆ
x cos x dx = x sin x+ cos x+ C.

We have two important notes here: (1) noƟce how the anƟderivaƟve contains
the product, x sin x. This product is what makes integraƟon by parts necessary.
And (2) anƟdifferenƟaƟng dv does result in v+ C. The intermediate+Cs are all
added together and represented by one+C in the final answer.

The example above demonstrates how IntegraƟon by Parts works in general.
We try to idenƟfy u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the IntegraƟon by Parts formula,

´
v du will be simpler to integrate

than the original integral
´
u dv.

In the example above, we chose u = x and dv = cos x dx. Then du = dxwas
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integraƟng x cos x dx, we could integrate sin x dx, which we knew how to do.

If we had chosen u = cos x and dv = x dx, so that du = − sin x dx and
v = 1

2x
2, then

ˆ
x cos x dx =

1
2
x2 cos x−

(
−1
2

)ˆ
x2 sin x dx.

We then need to integrate x2 sin x, which is more complicated than our original
integral, making this an unproducƟve choice.

We now consider another example.

Example 2 IntegraƟng using IntegraƟon by Parts
Evaluate

ˆ
xex dx.

SÊ½çã®ÊÄ NoƟce that x becomes simpler when differenƟated and ex
is unchanged by differenƟaƟon or integraƟon. This suggests that we should let
u = x and dv = ex dx:

u = x dv = ex dx
du = ? v = ?

⇒
u = x dv = ex dx

du = dx v = ex

Notes:
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Chapter 8 Techniques of IntegraƟon

The IntegraƟon by Parts formula gives
ˆ

xex dx = xex −
ˆ

ex dx.

The integral on the right is simple; our final answer is
ˆ

xex dx = xex − ex + C.

Note again how the anƟderivaƟves contain a product term.

Example 3 IntegraƟng using IntegraƟon by Parts
Evaluate

ˆ
x2 cos x dx.

SÊ½çã®ÊÄ Let u = x2 instead of the trigonometric funcƟon, hence
dv = cos x dx. Then du = 2x dx and v = sin x as shown below.

u = x2 dv = cos x dx
du = ? v = ?

⇒
u = x2 dv = cos x dx

du = 2x dx v = sin x

The IntegraƟon by Parts formula gives
ˆ

x2 cos x dx = x2 sin x−
ˆ

2x sin x dx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do IntegraƟon by Parts again. Here we
choose u = 2x and dv = sin x and fill in the rest below.

u = 2x dv = sin x dx
du = ? v = ?

⇒
u = 2x dv = sin x dx

du = 2 dx v = − cos x

This means that
ˆ

x2 cos x dx = x2 sin x−
(
−2x cos x−

ˆ
−2 cos x dx

)
.

The integral all the way on the right is now something we can evaluate. It eval-
uates to −2 sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is

ˆ
x2 cos x dx = x2 sin x+ 2x cos x− 2 sin x+ C.

Notes:
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8.1 IntegraƟon by Parts

Example 4 IntegraƟng using IntegraƟon by Parts
Evaluate

ˆ
ex cos x dx.

SÊ½çã®ÊÄ This is a classic problem. In this parƟcular example, one can
let u be either cos x or ex; we choose u = ex and hence dv = cos x dx. Then
du = ex dx and v = sin x as shown below.

u = ex dv = cos x dx
du = ? v = ?

⇒
u = ex dv = cos x dx

du = ex dx v = sin x

NoƟce that du is no simpler than u, going against our general rule (but bear
with us). The IntegraƟon by Parts formula yields

ˆ
ex cos x dx = ex sin x−

ˆ
ex sin x dx.

The integral on the right is not much different than the onewe started with, so it
seems likewe have goƩen nowhere. Let’s keepworking and apply IntegraƟon by
Parts to the new integral. So what should we use for u and dv this Ɵme? Wemay
feel like leƫng the trigonometric funcƟon be dv and the exponenƟal be uwas a
bad choice last Ɵme since we sƟll can’t integrate the new integral. However, if
we let u = sin x and dv = ex dx this Ɵme wewill reverse what we just did, taking
us back to the beginning. So, we let u = ex and dv = sin x dx. This leads us to
the following:

u = ex dv = sin x dx
du = ? v = ?

⇒
u = ex dv = sin x dx

du = ex dx v = − cos x

The IntegraƟon by Parts formula then gives:
ˆ

ex cos x dx = ex sin x−
(
−ex cos x−

ˆ
−ex cos x dx

)
= ex sin x+ ex cos x−

ˆ
ex cos x dx.

It seems we are back right where we started, as the right hand side contains´
ex cos x dx. But this is actually a good thing.

Add
ˆ

ex cos x dx to both sides. This gives

2
ˆ

ex cos x dx = ex sin x+ ex cos x

Notes:
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Chapter 8 Techniques of IntegraƟon

Now divide both sides by 2:

ˆ
ex cos x dx =

1
2
(
ex sin x+ ex cos x

)
.

Simplifying a liƩle and adding the constant of integraƟon, our answer is thus
ˆ

ex cos x dx =
1
2
ex (sin x+ cos x) + C.

Example 5 IntegraƟng using IntegraƟon by Parts: anƟderivaƟve of ln x
Evaluate

ˆ
ln x dx.

SÊ½çã®ÊÄ Onemay have noƟced that we have rules for integraƟng the
familiar trigonometric funcƟons and ex, but we have not yet given a rule for
integraƟng ln x. That is because ln x can’t easily be integrated with any of the
rules we have learned up to this point. But we can find its anƟderivaƟve by
a clever applicaƟon of IntegraƟon by Parts. Set u = ln x and dv = dx. This
is a good strategy to learn as it can help in other situaƟons. This determines
du = (1/x) dx and v = x as shown below.

u = ln x dv = dx
du = ? v = ?

⇒
u = ln x v = x

du = 1/x dx dv = dx

Puƫng this all together in the IntegraƟon by Parts formula, things work out very
nicely:

ˆ
ln x dx = x ln x−

ˆ
x
1
x
dx

= x ln x−
ˆ

1 dx

= x ln x− x+ C.

Example 6 Using IntegraƟon by Parts: anƟderivaƟve of tan−1 x

Evaluate
ˆ

tan−1 x dx.

Notes:
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8.1 IntegraƟon by Parts

SÊ½çã®ÊÄ The same strategyweused aboveworks here. Letu = tan−1 x
and dv = dx. Then du = 1/(1+ x2) dx and v = x. The IntegraƟon by Parts for-
mula gives ˆ

tan−1 x dx = x tan−1 x−
ˆ

x
1+ x2

dx.

The integral on the right can be solved by subsƟtuƟon. Taking t = 1 + x2, we
get dt = 2x dx. The integral then becomes

ˆ
tan−1 x dx = x tan−1 x− 1

2

ˆ
1
t
dt.

The integral on the right evaluates to ln |t|+ C, which becomes ln(1+ x2) + C.
Therefore, the answer isˆ

tan−1 x dx = x tan−1 x− ln(1+ x2) + C.

Since 1+ x2 > 0, we do not need to include the absolute value in the ln(1+ x2)
term.

SubsƟtuƟon Before IntegraƟon
When taking derivaƟves, it was common to employ mulƟple rules (such as using
both the QuoƟent and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integraƟon techniques. In
parƟcular, here we illustrate making an “unusual” subsƟtuƟon first before using
IntegraƟon by Parts.

Example 7 IntegraƟon by Parts aŌer subsƟtuƟon
Evaluate

ˆ
cos(ln x) dx.

SÊ½çã®ÊÄ The integrand contains a composiƟon of funcƟons, leading
us to think SubsƟtuƟon would be beneficial. Leƫng u = ln x, we have du =
1/x dx. This seems problemaƟc, as we do not have a 1/x in the integrand. But
consider:

du =
1
x
dx⇒ x · du = dx.

Since u = ln x, we can use inverse funcƟons to solve for x = eu. Therefore we
have that

dx = x · du
= eu du.

Notes:
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We can thus replace ln x with u and dx with eu du. Thus we rewrite our integral
as ˆ

cos(ln x) dx =
ˆ

eu cos u du.

We evaluated this integral in Example 4. Using the result there, we have:

ˆ
cos(ln x) dx =

ˆ
eu cos u du

=
1
2
eu
(
sin u+ cos u

)
+ C

=
1
2
eln x
(
sin(ln x) + cos(ln x)

)
+ C

=
1
2
x
(
sin(ln x) + cos(ln x)

)
+ C.

Definite Integrals and IntegraƟon By Parts

So far we have focused only on evaluaƟng indefinite integrals. Of course, we
can use IntegraƟon by Parts to evaluate definite integrals as well, as Theorem 54
states. We do so in the next example.

Example 8 Definite integraƟon using IntegraƟon by Parts

Evaluate
ˆ 2

1
x2 ln x dx.

SÊ½çã®ÊÄ To simplify the integral we let u = ln x and dv = x2 dx. We
then get du = (1/x) dx and v = x3/3 as shown below.

u = ln x dv = x2 dx
du = ? v = ?

⇒
u = ln x v = x3/3

du = 1/x dx dv = x2 dx

This may seem counterintuiƟve since the power on the algebraic factor has

Notes:

386



8.1 IntegraƟon by Parts

increased (v = x3/3), but as we see this is a wise choice:
ˆ 2

1
x2 ln x dx =

x3

3
ln x
∣∣∣∣2
1
−
ˆ 2

1

x3

3
1
x
dx

=
x3

3
ln x
∣∣∣∣2
1
−
ˆ 2

1

x2

3
dx

=
x3

3
ln x
∣∣∣∣2
1
− x3

9

∣∣∣∣2
1

=

(
x3

3
ln x− x3

9

) ∣∣∣∣2
1

=

(
8
3
ln 2− 8

9

)
−
(
1
3
ln 1− 1

9

)
=

8
3
ln 2− 7

9
.

In general, IntegraƟon by Parts is useful for integraƟng certain products of
funcƟons, like

ˆ
xex dx or

ˆ
x3 sin x dx. It is also useful for integrals involving

logarithms and inverse trigonometric funcƟons.
As stated before, integraƟon is generally more difficult than differenƟaƟon.

We are developing tools for handling a large array of integrals, and experience
will tell us when one tool is preferable/necessary over another. For instance,
consider the three similar–looking integrals

ˆ
xex dx,

ˆ
xex

2
dx and

ˆ
xex

3
dx.

While the first is calculated easilywith IntegraƟonby Parts, the second is best
approached with SubsƟtuƟon. Taking things one step further, the third integral
has no answer in terms of elementary funcƟons, so none of the methods we
learn in calculus will get us the exact answer. We will learn how to approximate
this integral in Chapter 9

IntegraƟon by Parts is a very useful method, second only to subsƟtuƟon. In
the following secƟons of this chapter, we conƟnue to learn other integraƟon
techniques. The next secƟon focuses on handling integrals containing trigono-
metric funcƟons.

Notes:
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Exercises 8.1
Terms and Concepts

1. T/F: IntegraƟon by Parts is useful in evaluaƟng integrands
that contain products of funcƟons.

2. T/F: IntegraƟon by Parts can be thought of as the “opposite
of the Chain Rule.”

Problems

In Exercises 3–36, evaluate the given indefinite integral.

3. ˆ
x sin x dx

4.
ˆ

xe−x dx

5.
ˆ

x2 sin x dx

6.
ˆ

x3 sin x dx

7.
ˆ

xex
2
dx

8.
ˆ

x3ex dx

9.
ˆ

xe−2x dx

10.
ˆ

ex sin x dx

11. ˆ
e2x cos x dx

12.
ˆ

e2x sin(3x) dx

13.
ˆ

e5x cos(5x) dx

14.
ˆ

sin x cos x dx

15.
ˆ

sin−1 x dx

16.
ˆ

tan−1(2x) dx

17.
ˆ

x tan−1 x dx

18.
ˆ

sin−1 x dx

19.
ˆ

x ln x dx

20.
ˆ

(x− 2) ln x dx

21.
ˆ

x ln(x− 1) dx

22.
ˆ

x ln(x2) dx

23.
ˆ

x2 ln x dx

24.
ˆ

(ln x)2 dx

25.
ˆ

(ln(x+ 1))2 dx

26.
ˆ

x sec2 x dx

27.
ˆ

x csc2 x dx

28.
ˆ

x
√
x− 2 dx

29.
ˆ

x
√
x2 − 2 dx

30.
ˆ

sec x tan x dx

31.
ˆ

x sec x tan x dx

32.
ˆ

x csc x cot x dx

33.
ˆ

x cosh x dx

34.
ˆ

x sinh x dx

35.
ˆ

sinh−1 x dx

36.
ˆ

tanh−1 x dx

In Exercises 37–42, evaluate the indefinite integral aŌer first
making a subsƟtuƟon.

37.
ˆ

sin(ln x) dx

38.
ˆ

sin(
√
x) dx

39.
ˆ

ln(
√
x) dx

40.
ˆ

e
√

x dx

41.
ˆ

eln x dx

42.
ˆ

x3ex
2
dx

In Exercises 43–51, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 3 – 11.

43.
ˆ π

0
x sin x dx

44.
ˆ 1

−1
xe−x dx

45.
ˆ π/4

−π/4
x2 sin x dx

46.
ˆ π/2

−π/2
x3 sin x dx

47.
ˆ √

ln 2

0
xex

2
dx
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48.
ˆ 1

0
x3ex dx

49.
ˆ 2

1
xe−2x dx

50.
ˆ π

0
ex sin x dx

51.
ˆ π/2

−π/2
e2x cos x dx
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Chapter 8 Techniques of IntegraƟon

8.2 Trigonometric Integrals

Trigonometric funcƟons are useful for describing periodic behavior. This secƟon
describes several techniques for finding anƟderivaƟves of certain combinaƟons
of trigonometric funcƟons.

Integrals of the form
ˆ

sinm x cosn x dx

In learning the technique of SubsƟtuƟon, we saw the integral
´
sin x cos x dx in

Example 5.5.4. The integraƟon was not difficult, and one could easily evaluate
the indefinite integral by leƫng u = sin x or by leƫng u = cos x. This integral is
easy since the power of both sine and cosine is 1.

Wegeneralize this integral and consider integrals of the form
´
sinm x cosn x dx,

where m, n are nonnegaƟve integers. Our strategy for evaluaƟng these inte-
grals is to use the idenƟty cos2 x + sin2 x = 1 to convert high powers of one
trigonometric funcƟon into the other, leaving a single sine or cosine term in the
integrand. We summarize the general technique in the following Key Idea.

Watch the video:
Trigonometric Integrals — Part 2 of 6 at
https://youtu.be/zyg9k1je7Fg

Notes:
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8.2 Trigonometric Integrals

Key Idea 26 Integrals Involving Powers of Sine and Cosine
Consider

ˆ
sinm x cosn x dx, wherem, n are nonnegaƟve integers.

1. Ifm is odd, thenm = 2k+ 1 for some integer k. Rewrite

sinm x = sin2k+1 x = sin2k x sin x = (sin2 x)k sin x = (1− cos2 x)k sin x.

Then ˆ
sinm x cosn x dx =

ˆ
(1− cos2 x)k sin x cosn x dx = −

ˆ
(1− u2)kun du,

where u = cos x and du = − sin x dx.

2. If n is odd, then using subsƟtuƟons similar to that outlined above we have
ˆ

sinm x cosn x dx =
ˆ

um(1− u2)k du,

where u = sin x and du = cos x dx.

3. If bothm and n are even, use the half–angle idenƟƟes

cos2 x = 1+ cos(2x)
2

and sin2 x = 1− cos(2x)
2

to reduce the degree of the integrand. Expand the result and apply the principles
of this Key Idea again.

We pracƟce applying Key Idea 26 in the next examples.

Example 1 IntegraƟng powers of sine and cosine
Evaluate

ˆ
sin5 x cos8 x dx.

SÊ½çã®ÊÄ The power of the sine factor is odd, so we rewrite sin5 x as

sin5 x = sin4 x sin x = (sin2 x)2 sin x = (1− cos2 x)2 sin x.

Our integral is now
ˆ
(1− cos2 x)2 cos8 x sin x dx. Let u = cos x, hence du =

Notes:

391



Chapter 8 Techniques of IntegraƟon

− sin x dx. Making the subsƟtuƟon and expanding the integrand givesˆ
(1− cos2 x)2 cos8 x sin x dx = −

ˆ
(1− u2)2u8 du

= −
ˆ (

1− 2u2 + u4
)
u8 du

= −
ˆ (

u8 − 2u10 + u12
)
du

= −1
9
u9 +

2
11

u11 − 1
13

u13 + C

= −1
9
cos9 x+

2
11

cos11 x− 1
13

cos13 x+ C.

Example 2 IntegraƟng powers of sine and cosine
Evaluate

ˆ
sin5 x cos9 x dx.

SÊ½çã®ÊÄ Thepowers of both the sine and cosine factors are odd, there-
fore we can apply the techniques of Key Idea 26 to either power. We choose to
work with the power of the sine factor since that has a smaller exponent.

We rewrite sin5 x as

sin5 x = sin4 x sin x
= (1− cos2 x)2 sin x
= (1− 2 cos2 x+ cos4 x) sin x.

This lets us rewrite the integral asˆ
sin5 x cos9 x dx =

ˆ (
1− 2 cos2 x+ cos4 x

)
sin x cos9 x dx.

SubsƟtuƟng and integraƟng with u = cos x and du = − sin x dx, we haveˆ (
1− 2 cos2 x+ cos4 x

)
sin x cos9 x dx

= −
ˆ (

1− 2u2 + u4)u9 du

= −
ˆ

u9 − 2u11 + u13 du

= − 1
10

u10 +
1
6
u12 − 1

14
u14 + C

= − 1
10

cos10 x+
1
6
cos12 x− 1

14
cos14 x+ C.
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8.2 Trigonometric Integrals

Instead, another approach would be to rewrite cos9 x as

cos9 x = cos8 x cos x
= (cos2 x)4 cos x
= (1− sin2 x)4 cos x
= (1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x) cos x.

We rewrite the integral as
ˆ

sin5 x cos9 x dx =
ˆ

sin5 x
(
1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cos x dx.

Now subsƟtute and integrate, using u = sin x and du = cos x dx.
ˆ

sin5 x
(
1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cos x dx

=

ˆ
u5(1− 4u2 + 6u4 − 4u6 + u8) du

=

ˆ (
u5 − 4u7 + 6u9 − 4u11 + u13

)
du

=
1
6
u6 − 1

2
u8 +

3
5
u10 − 1

3
u12 +

1
14

u14 + C

=
1
6
sin6 x− 1

2
sin8 x+

3
5
sin10 x− 1

3
sin12 x+

1
14

sin14 x+ C.

Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipulaƟon, etc.) are important.
Nowadays problems of this sort are oŌen solved using a computer algebra sys-
tem. The powerful programMathemaƟca® integrates

´
sin5 x cos9 x dx as

f(x) = −45 cos(2x)
16384

−5 cos(4x)
8192

+
19 cos(6x)
49152

+
cos(8x)
4096

− cos(10x)
81920

− cos(12x)
24576

− cos(14x)
114688

,

which clearly has a different form than our second answer in Example 2, which
is

g(x)

f(x)

1 2 3

−0.002

0.002

0.004

x

y

Figure 8.1: A plot of f(x) and g(x) from
Example 2 and the Technology Note.

g(x) =
1
6
sin6 x− 1

2
sin8 x+

3
5
sin10 x− 1

3
sin12 x+

1
14

sin14 x.

Figure 8.1 shows a graph of f and g; they are clearly not equal, but they differ
only by a constant: g(x) = f(x)+C for some constant C. Sowehave twodifferent
anƟderivaƟves of the same funcƟon, meaning both answers are correct.

Notes:
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Chapter 8 Techniques of IntegraƟon

Example 3 IntegraƟng powers of sine and cosine
Evaluate

ˆ
sin2 x dx.

SÊ½çã®ÊÄ The power of sine is even sowe employ a half-angle idenƟty,
algebra and a u- subsƟtuƟon as follows:

ˆ
sin2 x dx =

ˆ
1− cos(2x)

2
dx

=
1
2

ˆ
1− cos(2x) dx

=
1
2

(
x− 1

2
sin(2x)

)
+ C

=
1
2
x− 1

4
sin(2x) + C.

Example 4 IntegraƟng powers of sine and cosine
Evaluate

ˆ
cos4 x sin2 x dx.

SÊ½çã®ÊÄ The powers of sine and cosine are both even, so we employ
the half–angle formulas and algebra as follows.

ˆ
cos4 x sin2 x dx =

ˆ (
1+ cos(2x)

2

)2(1− cos(2x)
2

)
dx

=

ˆ
1+ 2 cos(2x) + cos2(2x)

4
· 1− cos(2x)

2
dx

=

ˆ
1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

The cos(2x) term is easy to integrate. The cos2(2x) term is another trigonomet-
ric integral with an even power, requiring the half–angle formula again. The
cos3(2x) term is a cosine funcƟon with an odd power, requiring a subsƟtuƟon
as done before. We integrate each in turn below.

ˆ
cos(2x) dx =

1
2
sin(2x) + C.

ˆ
cos2(2x) dx =

ˆ
1+ cos(4x)

2
dx =

1
2
(
x+

1
4
sin(4x)

)
+ C.
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8.2 Trigonometric Integrals

Finally, we rewrite cos3(2x) as

cos3(2x) = cos2(2x) cos(2x) =
(
1− sin2(2x)

)
cos(2x).

Leƫng u = sin(2x), we have du = 2 cos(2x) dx, hence
ˆ

cos3(2x) dx =
ˆ (

1− sin2(2x)
)
cos(2x) dx

=

ˆ
1
2
(1− u2) du

=
1
2

(
u− 1

3
u3
)
+ C

=
1
2

(
sin(2x)− 1

3
sin3(2x)

)
+ C

Puƫng all the pieces together, we have
ˆ

cos4 x sin2 x dx =
ˆ

1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

=
1
8

[
x+

1
2
sin(2x)− 1

2
(
x+

1
4
sin(4x)

)
− 1

2

(
sin(2x)− 1

3
sin3(2x)

)]
+ C

=
1
8

[1
2
x− 1

8
sin(4x) +

1
6
sin3(2x)

]
+ C.

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

Integrals of the form
ˆ

tanm x secn x dx.

When evaluaƟng integrals of the form
´
sinm x cosn x dx, the Pythagorean Theo-

rem allowed us to convert even powers of sine into even powers of cosine, and
vise–versa. If, for instance, the power of sine was odd, we pulled out one sin x
and converted the remaining even power of sin x into a funcƟon using powers
of cos x, leading to an easy subsƟtuƟon.

The same basic strategy applies to integrals of the form
´
tanm x secn x dx,

albeit a bit more nuanced. The following three facts will prove useful:

• d
dx (tan x) = sec2 x,

• d
dx (sec x) = sec x tan x , and

• 1+ tan2 x = sec2 x (the Pythagorean Theorem).

Notes:
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If the integrand can be manipulated to separate a sec2 x term with the re-
maining secant power even, or if a sec x tan x term can be separated with the
remaining tan x power even, the Pythagorean Theorem can be employed, lead-
ing to a simple subsƟtuƟon. This strategy is outlined in the following Key Idea.

Key Idea 27 Integrals Involving Powers of Tangent and Secant
Consider

ˆ
tanm x secn x dx, wherem, n are nonnegaƟve integers.

1. If n is even, then n = 2k for some integer k. Rewrite secn x as

secn x = sec2k x = sec2k−2 x sec2 x = (1+ tan2 x)k−1 sec2 x.

Then ˆ
tanm x secn x dx =

ˆ
tanm x(1+ tan2 x)k−1 sec2 x dx =

ˆ
um(1+ u2)k−1 du,

where u = tan x and du = sec2 x dx.

2. Ifm is odd, thenm = 2k+ 1 for some integer k. Rewrite tanm x secn x as

tanm x secn x = tan2k+1 x secn x = tan2k x secn−1 x sec x tan x = (sec2 x− 1)k secn−1 x sec x tan x.

Then ˆ
tanm x secn x dx =

ˆ
(sec2 x− 1)k secn−1 x sec x tan x dx =

ˆ
(u2 − 1)kun−1 du,

where u = sec x and du = sec x tan x dx.

3. If n is odd andm is even, thenm = 2k for some integer k. Convert tanm x to (sec2 x− 1)k. Expand
the new integrand and use IntegraƟon By Parts, with dv = sec2 x dx.

4. Ifm is even and n = 0, rewrite tanm x as

tanm x = tanm−2 x tan2 x = tanm−2 x(sec2 x− 1) = tanm−2 sec2 x− tanm−2 x.

So ˆ
tanm x dx =

ˆ
tanm−2 sec2 x dx︸ ︷︷ ︸
apply rule #1

−
ˆ

tanm−2 x dx︸ ︷︷ ︸
apply rule #4 again

.

The techniques described in items1 and2of Key Idea 27 are relaƟvely straight-
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8.2 Trigonometric Integrals

forward, but the techniques in items 3 and 4 can be rather tedious. A few exam-
ples will help with these methods.

Example 5 IntegraƟng powers of tangent and secant
Evaluate

ˆ
tan2 x sec6 x dx.

SÊ½çã®ÊÄ Since the power of secant is even, we use rule #1 from Key
Idea 27 and pull out a sec2 x in the integrand. We convert the remaining powers
of secant into powers of tangent.

ˆ
tan2 x sec6 x dx =

ˆ
tan2 x sec4 x sec2 x dx

=

ˆ
tan2 x

(
1+ tan2 x

)2 sec2 x dx
Now subsƟtute, with u = tan x, with du = sec2 x dx.

=

ˆ
u2
(
1+ u2

)2 du
We leave the integraƟon and subsequent subsƟtuƟon to the reader. The final
answer is

=
1
3
tan3 x+

2
5
tan5 x+

1
7
tan7 x+ C.

We derived integrals for tangent and secant in SecƟon 5.5 and will regularly
use them when evaluaƟng integrals of the form tanm x secn xdx. As a reminder:

ˆ
tan x dx = ln |sec x|+ C

ˆ
sec x dx = ln |sec x+ tan x|+ C

Example 6 IntegraƟng powers of tangent and secant
Evaluate

ˆ
sec3 x dx.

SÊ½çã®ÊÄ We apply rule #3 from Key Idea 27 as the power of secant is
odd and the power of tangent is even (0 is an even number). We use IntegraƟon
by Parts; the rule suggests leƫng dv = sec2 x dx, meaning that u = sec x.
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Chapter 8 Techniques of IntegraƟon

u = sec x dv = sec2 x dx
du = ? v = ?

⇒
u = sec x dv = sec2 x dx

du = sec x tan x dx v = tan x

Figure 8.2: Seƫng up IntegraƟon by Parts.
Employing IntegraƟon by Parts, we haveˆ

sec3 x dx =
ˆ

sec x︸︷︷︸
u

· sec2 x dx︸ ︷︷ ︸
dv

= sec x tan x−
ˆ

sec x tan2 x dx.

This new integral also requires applying rule #3 of Key Idea 27:

= sec x tan x−
ˆ

sec x
(
sec2 x− 1

)
dx

= sec x tan x−
ˆ

sec3 x dx+
ˆ

sec x dx

= sec x tan x−
ˆ

sec3 x dx+ ln |sec x+ tan x| dx

In previous applicaƟons of IntegraƟon by Parts, we have seenwhere the original
Note: Remember that in Exam-
ple 5.5.8, we found that

´
sec x dx =

ln |sec x+ tan x|+ C

integral has reappeared in our work. We resolve this by adding
´
sec3 x dx to

both sides, giving:

2
ˆ

sec3 x dx = sec x tan x+ ln |sec x+ tan x|
ˆ

sec3 x dx =
1
2

(
sec x tan x+ ln |sec x+ tan x|

)
+ C.

We give one more example.

Example 7 IntegraƟng powers of tangent and secant
Evaluate

ˆ
tan6 x dx.

SÊ½çã®ÊÄ We employ rule #4 of Key Idea 27.ˆ
tan6 x dx =

ˆ
tan4 x tan2 x dx

=

ˆ
tan4 x

(
sec2 x− 1

)
dx

=

ˆ
tan4 x sec2 x dx−

ˆ
tan4 x dx
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8.2 Trigonometric Integrals

We integrate the first integral with subsƟtuƟon, u = tan x and du = sec2 x dx;
and the second by employing rule #4 again.

=

ˆ
u4 du−

ˆ
tan2 x tan2 x dx

=
1
5
tan5 x−

ˆ
tan2 x

(
sec2 x− 1

)
dx

=
1
5
tan5 x−

ˆ
tan2 x sec2 x dx+

ˆ
tan2 x dx

Again, use subsƟtuƟon for the first integral and rule #4 for the second.

=
1
5
tan5 x− 1

3
tan3 x+

ˆ (
sec2 x− 1

)
dx

=
1
5
tan5 x− 1

3
tan3 x+ tan x− x+ C.

Integrals of the form
ˆ

cotm x cscn x dx

Not surprisingly, evaluaƟng integrals of the form
´
cotm x cscn x dx is similar to

evaluaƟng
´
tanm x secn x dx. The guidelines from Key Idea 27 and the following

three facts will be useful:
d
dx

(cot x) = − csc2 x

d
dx

(csc x) = − csc x cot x, and

csc2 x = cot2 x+ 1

Example 8 IntegraƟng powers of cotangent and cosecant
Evaluate

ˆ
cot2 x csc4 x dx

SÊ½çã®ÊÄ Since the power of cosecant is evenwewill let u = cot x and
save a csc2 x for the resulƟng du = − csc2 x dx.ˆ

cot2 x csc4 x dx =
ˆ

cot2 x csc2 x csc2 x dx

=

ˆ
cot2 x(1+ cot2 x) csc2 x dx

= −
ˆ

u2(1+ u2) du.
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The integraƟon and subsƟtuƟon required to finish this example are similar to
that of previous examples in this secƟon. The result is

−1
3
cot3 x− 1

5
cot5 x+ C.

Integrals of the form
ˆ

sin(mx) sin(nx) dx,
ˆ

cos(mx) cos(nx) dx,

and
ˆ

sin(mx) cos(nx) dx.

FuncƟons that contain products of sines and cosines of differing periods are im-
portant in many applicaƟons including the analysis of sound waves. Integrals of
the form
ˆ

sin(mx) sin(nx) dx,
ˆ

cos(mx) cos(nx) dx and
ˆ

sin(mx) cos(nx) dx

are best approached by first applying the Product to Sum Formulas of Trigonom-
etry found in the back cover of this text, namely

sin(mx) sin(nx) =
1
2

[
cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]
cos(mx) cos(nx) =

1
2

[
cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]
sin(mx) cos(nx) =

1
2

[
sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]
Example 9 IntegraƟng products of sin(mx) and cos(nx)

Evaluate
ˆ

sin(5x) cos(2x) dx.

SÊ½çã®ÊÄ The applicaƟon of the formula and subsequent integraƟon
are straighƞorward:

ˆ
sin(5x) cos(2x) dx =

ˆ
1
2

[
sin(3x) + sin(7x)

]
dx

= −1
6
cos(3x)− 1

14
cos(7x) + C.
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IntegraƟng other combinaƟons of trigonometric funcƟons
CombinaƟons of trigonometric funcƟons thatwehavenot discussed in this chap-
ter are evaluated by applying algebra, trigonometric idenƟƟes and other integra-
Ɵon strategies to create an equivalent integrand that we can evaluate. To eval-
uate “crazy” combinaƟons, those not readily manipulated into a familiar form,
one should use integral tables. A table of “common crazy” combinaƟons can be
found at the end of this text.

These laƩer examples were admiƩedly long, with repeated applicaƟons of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this soluƟon method is. A trigonometric funcƟon of
a high power can be systemaƟcally reduced to trigonometric funcƟons of lower
powers unƟl all anƟderivaƟves can be computed.

The next secƟon introduces an integraƟon technique known as Trigonomet-
ric SubsƟtuƟon, a clever combinaƟon of SubsƟtuƟon and the Pythagorean The-
orem.
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Exercises 8.2
Terms and Concepts

1. T/F:
ˆ

sin2 x cos2 x dx cannot be evaluated using the tech-
niques described in this secƟon since both powers of sin x
and cos x are even.

2. T/F:
ˆ

sin3 x cos3 x dx cannot be evaluated using the tech-
niques described in this secƟon since both powers of sin x
and cos x are odd.

3. T/F: This secƟon addresses how to evaluate indefinite inte-
grals such as

ˆ
sin5 x tan3 x dx.

Problems
In Exercises 4–30, evaluate the indefinite integral.

4.
ˆ

cos2 x dx

5.
ˆ

cos4 x dx

6.
ˆ

sin3 x cos2 x dx

7.
ˆ

sin3 x cos3 x dx

8.
ˆ

sin6 x cos5 x dx

9.
ˆ

cos2 x tan3 x dx

10.
ˆ

sin2 x cos2 x dx

11.
ˆ

sin3 x
√
cos x dx

12.
ˆ

sin(x) cos(2x) dx

13.
ˆ

sin(3x) sin(7x) dx

14.
ˆ

sin(πx) sin(2πx) dx

15.
ˆ

cos(x) cos(2x) dx

16.
ˆ

cos
(π
2
x
)
cos(πx) dx

17.
ˆ

tan2 x dx

18.
ˆ

tan2 x sec4 x dx

19.
ˆ

tan3 x sec4 x dx

20.
ˆ

tan3 x sec2 x dx

21.
ˆ

tan3 x sec3 x dx

22.
ˆ

tan5 x sec5 x dx

23.
ˆ

tan4 x dx

24.
ˆ

sec5 x dx

25.
ˆ

tan2 x sec x dx

26.
ˆ

tan2 x sec3 x dx

27.
ˆ

csc x dx

28.
ˆ

cot3 x csc3 x dx

29.
ˆ

cot3 x dx

30.
´
cot6 x csc4 x dx

In Exercises 31–39, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in the previous set.

31.
ˆ π

0
sin x cos4 x dx

32.
ˆ π

−π

sin3 x cos x dx

33.
ˆ π/2

−π/2
sin2 x cos7 x dx

34.
ˆ π/2

0
sin(5x) cos(3x) dx

35.
ˆ π/2

−π/2
cos(x) cos(2x) dx

36.
ˆ π/4

0
tan4 x sec2 x dx

37.
ˆ π/4

−π/4
tan2 x sec4 x dx

38.
ˆ π

2

π
6

cot2 x dx

39.
ˆ π

2

π
4

cot3 x dx
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8.3 Trigonometric SubsƟtuƟon

8.3 Trigonometric SubsƟtuƟon
In SecƟon 5.2 we defined the definite integral as the “signed area under the
curve.” In that secƟon we had not yet learned the Fundamental Theorem of
Calculus, so we evaluated special definite integrals which described nice, geo-
metric shapes. For instance, we were able to evaluate

ˆ 3

−3

√
9− x2 dx =

9π
2

(8.1)

as we recognized that f(x) =
√
9− x2 described the upper half of a circle with

radius 3.
We have since learned a number of integraƟon techniques, including Sub-

sƟtuƟon and IntegraƟon by Parts, yet we are sƟll unable to evaluate the above
integral without resorƟng to a geometric interpretaƟon. This secƟon introduces
Trigonometric SubsƟtuƟon, amethod of integraƟon that fills this gap in our inte-
graƟon skill. This techniqueworks on the sameprinciple as SubsƟtuƟon as found
in SecƟon 5.5, though it can feel “backward.” In SecƟon 5.5, we set u = f(x), for
some funcƟon f, and replaced f(x) with u. In this secƟon, we will set x = f(θ),
where f is a trigonometric funcƟon, then replace x with f(θ).

Watch the video:
Trigonometric SubsƟtuƟon — Example 3 / Part 1 at
https://youtu.be/yW6Odu0YHL0

We start by demonstraƟng this method in evaluaƟng the integral in EquaƟon
(8.1). AŌer the example, wewill generalize themethod and givemore examples.

Example 1 Using Trigonometric SubsƟtuƟon

Evaluate
ˆ 3

−3

√
9− x2 dx.

SÊ½çã®ÊÄ We begin by noƟng that 9 sin2 θ + 9 cos2 θ = 9, and hence
9 cos2 θ = 9−9 sin2 θ. If we let x = 3 sin θ, then 9−x2 = 9−9 sin2 θ = 9 cos2 θ.

Seƫng x = 3 sin θ gives dx = 3 cos θ dθ. We are almost ready to subsƟtute.
We also change our bounds of integraƟon. The bound x = −3 corresponds to
θ = −π/2 (for when θ = −π/2, x = 3 sin θ = −3). Likewise, the bound of
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x = 3 is replaced by the bound θ = π/2. Thus

ˆ 3

−3

√
9− x2 dx =

ˆ π/2

−π/2

√
9− 9 sin2 θ(3 cos θ) dθ

=

ˆ π/2

−π/2
3
√
9 cos2 θ cos θ dθ

=

ˆ π/2

−π/2
3 |3 cos θ| cos θ dθ.

On [−π/2, π/2], cos θ is always posiƟve, so we can drop the absolute value bars,
then employ a half–angle formula:

=

ˆ π/2

−π/2
9 cos2 θ dθ

=

ˆ π/2

−π/2

9
2
(
1+ cos(2θ)

)
dθ

=
9
2

(
θ +

1
2
sin(2θ)

)∣∣∣∣π/2
−π/2

=
9
2
π.

This matches our answer from before.

We now describe in detail Trigonometric SubsƟtuƟon. This method excels
when dealing with integrands that contain

√
a2 − x2,

√
x2 − a2 and

√
x2 + a2.

The following Key Idea outlines the procedure for each case, followed by more
examples.
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8.3 Trigonometric SubsƟtuƟon

Key Idea 28 Trigonometric SubsƟtuƟon

(a) For integrands containing
√
a2 − x2:

Let x = a sin θ, for−π/2 ≤ θ ≤ π/2 and a > 0.
On this interval, cos θ ≥ 0, so

√
a2 − x2 = a cos θ

(b) For integrands containing
√
x2 + a2:

Let x = a tan θ, for−π/2 < θ < π/2 and a > 0.
On this interval, sec θ > 0, so

√
x2 + a2 = a sec θ

(c) For integrands containing
√
x2 − a2:

Let x = a sec θ, restricƟng our work to where x ≥ a > 0,
so x/a ≥ 1, and 0 ≤ θ < π/2.
On this interval, tan θ ≥ 0, so

√
x2 − a2 = a tan θ

Example 2 Using Trigonometric SubsƟtuƟon
Evaluate

ˆ
1√

5+ x2
dx.

SÊ½çã®ÊÄ Using Key Idea 28(b), we recognize a =
√
5 and set x =√

5 tan θ. This makes dx =
√
5 sec2 θ dθ. We will use the fact that

√
5+ x2 =√

5+ 5 tan2 θ =
√
5 sec2 θ =

√
5 sec θ. SubsƟtuƟng, we have:

ˆ
1√

5+ x2
dx =

ˆ
1√

5+ 5 tan2 θ

√
5 sec2 θ dθ

=

ˆ √
5 sec2 θ√
5 sec θ

dθ

=

ˆ
sec θ dθ

= ln |sec θ + tan θ|+ C.

While the integraƟon steps are over, we are not yet done. The original problem
was stated in terms of x, whereas our answer is given in terms of θ. We must
convert back to x.

√
5

x√ x2 +
5

θ

Figure 8.3: A reference triangle for Exam-
ple 2

The lengths of the sides of the reference triangle in Figure 8.3 are determined
by the Pythagorean Theorem. With x =

√
5 tan θ, we have

tan θ =
x√
5

and sec θ =

√
x2 + 5√

5
.
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This gives

ˆ
1√

5+ x2
dx = ln |sec θ + tan θ|+ C

= ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C.

We can leave this answer as is, or we can use a logarithmic idenƟty to simplify
it. Note:

ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C = ln
∣∣∣∣ 1√

5

(√
x2 + 5+ x

)∣∣∣∣+ C

= ln
∣∣∣∣ 1√

5

∣∣∣∣+ ln
∣∣∣√x2 + 5+ x

∣∣∣+ C

= ln
∣∣∣√x2 + 5+ x

∣∣∣+ C,

where the ln
(
1/
√
5
)
term is absorbed into the constant C. (In SecƟon 7.4 we

learned another way of approaching this problem.)

Example 3 Using Trigonometric SubsƟtuƟon
Evaluate

ˆ √
4x2 − 1 dx.

SÊ½çã®ÊÄ Westart by rewriƟng the integrand so that it looks like
√
x2 − a2

for some value of a:

√
4x2 − 1 =

√
4
(
x2 − 1

4

)

= 2

√
x2 −

(
1
2

)2

.

Sowe have a = 1/2, and following Key Idea 28(c), we set x = 1
2 sec θ, and hence
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dx = 1
2 sec θ tan θ dθ. We now rewrite the integral with these subsƟtuƟons:

ˆ √
4x2 − 1 dx =

ˆ
2

√
x2 −

(
1
2

)2

dx

=

ˆ
2
√

1
4
sec2 θ − 1

4

(
1
2
sec θ tan θ

)
dθ

=

ˆ √
1
4
(sec2 θ − 1)

(
sec θ tan θ

)
dθ

=

ˆ √
1
4
tan2 θ

(
sec θ tan θ

)
dθ

=

ˆ
1
2
tan2 θ sec θ dθ

=
1
2

ˆ (
sec2 θ − 1

)
sec θ dθ

=
1
2

ˆ (
sec3 θ − sec θ

)
dθ.

We integrated sec3 θ in Example 8.2.6, finding its anƟderivaƟves to be
ˆ

sec3 θ dθ =
1
2

(
sec θ tan θ + ln |sec θ + tan θ|

)
+ C.

Thus
ˆ √

4x2 − 1 dx

=
1
2

ˆ (
sec3 θ − sec θ

)
dθ

=
1
2

(
1
2

(
sec θ tan θ + ln |sec θ + tan θ|

)
− ln |sec θ + tan θ|

)
+ C

=
1
4
(sec θ tan θ − ln |sec θ + tan θ|) + C.

Weare not yet done. Our original integral is given in terms of x, whereas our final
answer, as given, is in terms of θ. We need to rewrite our answer in terms of x.
With a = 1/2, and x = 1

2 sec θ, we use the Pythagorean Theorem to determine
the lengths of the sides of the reference triangle in Figure 8.4.

1/2

√
x2 − 1/4

x

θ

Figure 8.4: A reference triangle for Exam-
ple 3

tan θ =

√
x2 − 1

4
1
2

= 2
√

x2 − 1
4

and sec θ = 2x.

Notes:

407



Chapter 8 Techniques of IntegraƟon

Therefore,
ˆ √

4x2 − 1 dx =
1
4

(
sec θ tan θ − ln |sec θ + tan θ|

)
+ C

=
1
4

(
2x · 2

√
x2 − 1

4
− ln

∣∣∣∣∣2x+ 2
√

x2 − 1
4

∣∣∣∣∣ )+ C

=
1
4

(
4x
√

x2 − 1
4
− ln

∣∣∣∣∣2x+ 2
√

x2 − 1
4

∣∣∣∣∣ )+ C

=
1
4

(
2x
√
4x2 − 1− ln

∣∣∣2x+√4x2 − 1
∣∣∣ )+ C.

Example 4 Using Trigonometric SubsƟtuƟon

Evaluate
ˆ √

4− x2

x2
dx.

SÊ½çã®ÊÄ We use Key Idea 28(a) with a = 2, x = 2 sin θ, dx = 2 cos θ
and hence

√
4− x2 = 2 cos θ. This gives

ˆ √
4− x2

x2
dx =

ˆ
2 cos θ
4 sin2 θ

(2 cos θ) dθ

=

ˆ
cot2 θ dθ

=

ˆ
(csc2 θ − 1) dθ

= − cot θ − θ + C.

We need to rewrite our answer in terms of x. Using the Pythagorean Theorem

√
4− x2

x2

θ

Figure 8.5: A reference triangle for Exam-
ple 4

we determine the lengths of the sides of the reference triangle in Figure 8.5. We
have cot θ =

√
4− x2/x and θ = sin−1(x/2). Thus
ˆ √

4− x2

x2
dx = −

√
4− x2

x
− sin−1

( x
2

)
+ C.

Trigonometric SubsƟtuƟon can be applied in many situaƟons, even those
not of the form

√
a2 − x2,

√
x2 − a2 or

√
x2 + a2. In the following example, we

apply it to an integral we already know how to handle.

Example 5 Using Trigonometric SubsƟtuƟon
Evaluate

ˆ
1

x2 + 1
dx.
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SÊ½çã®ÊÄ We know the answer already as tan−1 x+ C. We apply Trig-
onometric SubsƟtuƟon here to show that we get the same answer without in-
herently relying on knowledge of the derivaƟve of the arctangent funcƟon.

Using Key Idea 28(b), let x = tan θ, dx = sec2 θ dθ and note that x2 + 1 =
tan2 θ + 1 = sec2 θ. Thusˆ

1
x2 + 1

dx =
ˆ

1
sec2 θ

sec2 θ dθ

=

ˆ
1 dθ

= θ + C.

Since x = tan θ, θ = tan−1 x, and we conclude that
ˆ

1
x2 + 1

dx = tan−1 x+C.

The next example is similar to the previous one in that it does not involve a
square–root. It shows how several techniques and idenƟƟes can be combined
to obtain a soluƟon.

Example 6 Using Trigonometric SubsƟtuƟon
Evaluate

ˆ
1

(x2 + 6x+ 10)2
dx.

SÊ½çã®ÊÄ We start by compleƟng the square, then make the subsƟtu-
Ɵon u = x+ 3, followed by the trigonometric subsƟtuƟon of u = tan θ:

Note: Remember the sine and cosine
double angle idenƟƟes:

sin 2θ = 2 sin θ cos θ
cos 2θ = cos2 θ − sin2 θ

= 2 cos2 θ − 1
= 1− 2 sin2 θ

They are oŌen needed for wriƟng
your final answer in terms of x.

ˆ
1

(x2 + 6x+ 10)2
dx =

ˆ
1(

(x+ 3)2 + 1
)2 dx =

ˆ
1

(u2 + 1)2
du.

Now make the subsƟtuƟon u = tan θ, du = sec2 θ dθ:

=

ˆ
1

(tan2 θ + 1)2
sec2 θ dθ

=

ˆ
1

(sec2 θ)2
sec2 θ dθ

=

ˆ
cos2 θ dθ.

Applying a half–angle formula, we have

=

ˆ (
1
2
+

1
2
cos(2θ)

)
dθ

=
1
2
θ +

1
4
sin(2θ) + C. (8.2)

Notes:

409



Chapter 8 Techniques of IntegraƟon

We need to return to the variable x. As u = tan θ, θ = tan−1 u. Using the
idenƟty sin(2θ) = 2 sin θ cos θ and using the reference triangle found in Key
Idea 28(b), we have

1
4
sin(2θ) =

1
2

u√
u2 + 1

· 1√
u2 + 1

=
1
2

u
u2 + 1

.

Finally, we return to xwith the subsƟtuƟon u = x+3. We start with the expres-
sion in EquaƟon (8.2):

1
2
θ +

1
4
sin(2θ) + C =

1
2
tan−1 u+

1
2

u
u2 + 1

+ C

=
1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.

StaƟng our final result in one line,
ˆ

1
(x2 + 6x+ 10)2

dx =
1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric SubsƟtuƟon,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of θ, then converƟng back to x) and then
evaluate using the original bounds. It is much more straighƞorward, though, to
change the bounds as we subsƟtute.

Example 7 Definite integraƟon and Trigonometric SubsƟtuƟon

Evaluate
ˆ 5

0

x2√
x2 + 25

dx.

SÊ½çã®ÊÄ Using Key Idea 28(b), we set x = 5 tan θ, dx = 5 sec2 θ dθ,
and note that

√
x2 + 25 = 5 sec θ. As we subsƟtute, we change the bounds of

integraƟon.
The lower bound of the original integral is x = 0. As x = 5 tan θ, we solve for

θ and find θ = tan−1(x/5). Thus the new lower bound is θ = tan−1(0) = 0. The
original upper bound is x = 5, thus the new upper bound is θ = tan−1(5/5) =
π/4.

Thus we have
ˆ 5

0

x2√
x2 + 25

dx =
ˆ π/4

0

25 tan2 θ
5 sec θ

5 sec2 θ dθ

= 25
ˆ π/4

0
tan2 θ sec θ dθ.
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We encountered this indefinite integral in Example 3 where we found
ˆ

tan2 θ sec θ dθ =
1
2
(
sec θ tan θ − ln |sec θ + tan θ|

)
.

So

25
ˆ π/4

0
tan2 θ sec θ dθ =

25
2

(sec θ tan θ − ln |sec θ + tan θ|)
∣∣∣∣π/4
0

=
25
2
(√

2− ln(
√
2+ 1)

)
.

The next secƟon introduces ParƟal FracƟonDecomposiƟon, which is an alge-
braic technique that turns “complicated” fracƟons into sums of “simpler” frac-
Ɵons, making integraƟon easier.
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Exercises 8.3
Terms and Concepts

1. Trigonometric SubsƟtuƟonworks on the sameprinciples as
IntegraƟon by SubsƟtuƟon, though it can feel “ ”.

2. If one uses Trigonometric SubsƟtuƟon on an integrand con-
taining

√
25− x2, then one should set x = .

3. Consider the Pythagorean IdenƟty sin2 θ + cos2 θ = 1.

(a) What idenƟty is obtained when both sides are di-
vided by cos2 θ?

(b) Use the new idenƟty to simplify 9 tan2 θ + 9.

4. Why does Key Idea 28(a) state that
√
a2 − x2 = a cos θ,

and not |a cos θ|?

Problems

In Exercises 5–12, apply Trigonometric SubsƟtuƟon to evaluate
the indefinite integrals.

5.
ˆ √

x2 + 1 dx

6.
ˆ √

x2 − 1 dx

7.
ˆ √

4x2 + 1 dx

8.
ˆ √

1− 9x2 dx

9.
ˆ √

16x2 − 1 dx

10.
ˆ

8√
x2 + 2

dx

11.
ˆ

3√
7− x2

dx

12.
ˆ

5√
x2 − 8

dx

In Exercises 13–20, evaluate the indefinite integrals. Somemay
be evaluated without Trigonometric SubsƟtuƟon.

13.
ˆ √

x2 − 11
x

dx

14.
ˆ

x√
x2 − 3

dx

15.
ˆ

x
(x2 + 9)3/2

dx

16.
ˆ

5x2√
x2 − 10

dx

17.
ˆ

1
(x2 + 4x+ 13)2

dx

18.
ˆ

x2(1− x2)−3/2 dx

19.
ˆ √

5− x2
7x2

dx

20.
ˆ

x2√
x2 + 3

dx

In Exercises 21–26, evaluate the definite integrals by mak-
ing the proper trigonometric subsƟtuƟon and changing the
bounds of integraƟon.

21.
ˆ 1

−1

√
1− x2 dx

22.
ˆ 8

4

√
x2 − 16 dx

23.
ˆ 2

0

√
x2 + 4 dx

24.
ˆ 1

−1

1
(x2 + 1)2

dx

25.
ˆ 1

−1

√
9− x2 dx

26.
ˆ 1

−1
x2
√
1− x2 dx
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8.4 ParƟal FracƟon DecomposiƟon
In this secƟonwe invesƟgate the anƟderivaƟves of raƟonal funcƟons. Recall that
raƟonal funcƟons are funcƟons of the form f(x) = p(x)

q(x) , where p(x) and q(x) are
polynomials and q(x) ̸= 0. Such funcƟons arise in many contexts, one of which
is the solving of certain fundamental differenƟal equaƟons.

We begin with an example that demonstrates the moƟvaƟon behind this
secƟon. Consider the integral

ˆ
1

x2 − 1
dx. We do not have a simple formula

for this (if the denominator were x2 + 1, we would recognize the anƟderivaƟve
as being the arctangent funcƟon). It can be solved using Trigonometric SubsƟ-
tuƟon, but note how the integral is easy to evaluate once we realize:

1
x2 − 1

=
1/2
x− 1

− 1/2
x+ 1

.

Thus
ˆ

1
x2 − 1

dx =
ˆ

1/2
x− 1

dx−
ˆ

1/2
x+ 1

dx

=
1
2
ln |x− 1| − 1

2
ln |x+ 1|+ C.

This secƟon teaches how to decompose

1
x2 − 1

into
1/2
x− 1

− 1/2
x+ 1

.

We start with a raƟonal funcƟon f(x) =
p(x)
q(x)

, where p and q do not have

any common factors. We first consider the degree of p and q.

• If the deg(p) ≥ deg(q) then we use polynomial long division to divide q
into p to determine a remainder r(x) where deg(r) < deg(q). We then

write f(x) = s(x)+
r(x)
q(x)

and apply parƟal fracƟon decomposiƟon to
r(x)
q(x)

.

• If the deg(p) < deg(q) we can apply parƟal fracƟon decomposiƟon to
p(x)
q(x)

without addiƟonal work.

ParƟal fracƟon decomposiƟon is based on an algebraic theorem that guar-
antees that any polynomial, and hence q, can use real numbers to factor into
the product of linear and irreducible quadraƟcs factors. The following Key Idea An irreducible quadraƟc is one that

cannot factor into linear terms with
real coefficients.

states how to decompose a raƟonal funcƟon into a sum of raƟonal funcƟons
whose denominators are all of lower degree than q.
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Key Idea 29 ParƟal FracƟon DecomposiƟon

Let
p(x)
q(x)

be a raƟonal funcƟon, where deg(p) < deg(q).

1. Factor q(x) : Write q(x) as the product of its linear and irreducible quadraƟc
factors of the form (ax+b)m and (ax2+bx+ c)n wherem and n are the highest
powers of each factor that divide q.

• Linear Terms: For each linear factor of q(x) the decomposiƟon of
p(x)
q(x)

will

contain the following terms:

A1

(ax+ b)
+

A2

(ax+ b)2
+ · · · Am

(ax+ b)m

• Irreducible QuadraƟc Terms: For each irreducible quadraƟc factor of q(x)

the decomposiƟon of
p(x)
q(x)

will contain the following terms:

B1x+ C1
(ax2 + bx+ c)

+
B2x+ C2

(ax2 + bx+ c)2
+ · · · Bnx+ Cn

(ax2 + bx+ c)n

2. Finding the Coefficients Ai, Bi, and Ci:

• Set
p(x)
q(x)

equal to the sum of its linear and irreducible quadraƟc terms.

p(x)
q(x)

=
A1

(ax+ b)
+ · · · Am

(ax+ b)m
+

B1x+ C1
(ax2 + bx+ c)

+ · · · Bnx+ Cn
(ax2 + bx+ c)n

• MulƟply this equaƟon by the factored form of q(x) and simplify to clear
the denominators.

• Solve for the coefficients Ai, Bi, and Ci by
(a) mulƟplying out the remaining terms and collecƟng like powers of x,

equaƟng the resulƟng coefficients and solving the resulƟng system of
linear equaƟons, or

(b) subsƟtuƟng in values for x that eliminate terms so the simplified equa-
Ɵon can be solved for a coefficient.
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Watch the video:
IntegraƟon Using method of ParƟal FracƟons at
https://youtu.be/6qVgHWxdlZ0

The following examples will demonstrate how to put this Key Idea into prac-
Ɵce. In Example 1, we focus on the seƫng up the decomposiƟon of a raƟonal
funcƟon.

Example 1 Decomposing into parƟal fracƟons
Decompose f(x) =

1
(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

without solving

for the resulƟng coefficients.

SÊ½çã®ÊÄ The denominator is already factored, as both x2+ x+ 2 and
x2+x+7 are irreducible quadraƟcs. We need to decompose f(x) properly. Since
(x+ 5) is a linear factor that divides the denominator, there will be a

A
x+ 5

term in the decomposiƟon.
As (x− 2)3 divides the denominator, we will have the following terms in the

decomposiƟon:
B

x− 2
,

C
(x− 2)2

and
D

(x− 2)3
.

The x2 + x+ 2 term in the denominator results in a
Ex+ F

x2 + x+ 2
term.

Finally, the (x2 + x+ 7)2 term results in the terms
Gx+ H

x2 + x+ 7
and

Ix+ J
(x2 + x+ 7)2

.

All together, we have

1
(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

=

A
x+ 5

+
B

x− 2
+

C
(x− 2)2

+
D

(x− 2)3
+

Ex+ F
x2 + x+ 2

+
Gx+ H

x2 + x+ 7
+

Ix+ J
(x2 + x+ 7)2

Solving for the coefficients A, B, …, Jwould be a bit tedious but not “hard.” In the
next example we demonstrate solving for the coefficients using both methods
given in Key Idea 29.

Notes:

415

https://youtu.be/6qVgHWxdlZ0
https://youtu.be/6qVgHWxdlZ0


Chapter 8 Techniques of IntegraƟon

Example 2 Decomposing into parƟal fracƟons
Perform the parƟal fracƟon decomposiƟon of

1
x2 − 1

.

SÊ½çã®ÊÄ The denominator can bewriƩen as the product of two linear
factors: x2 − 1 = (x− 1)(x+ 1). Thus

1
x2 − 1

=
A

x− 1
+

B
x+ 1

. (8.3)

Using themethod described in Key Idea 29 2(a) to solve forA and B, firstmulƟply
through by x2 − 1 = (x− 1)(x+ 1):

1 =
A(x− 1)(x+ 1)

x− 1
+

B(x− 1)(x+ 1)
x+ 1

= A(x+ 1) + B(x− 1) (8.4)
= Ax+ A+ Bx− B
= (A+ B)x+ (A− B) collect like terms.

The next step is key. For clarity’s sake, rewrite the equality we have as

0x+ 1 = (A+ B)x+ (A− B).

On the leŌ, the coefficient of the x term is 0; on the right, it is (A+B). Since both
sides are equal for all values of x, we must have that 0 = A + B. Likewise, on
the leŌ, we have a constant term of 1; on the right, the constant term is (A−B).
Therefore we have 1 = A− B.

We have two linear equaƟons with two unknowns. This one is easy to solve
by hand, leading to

A+ B = 0
A− B = 1

⇒
A = 1/2
B = −1/2.

Thus
1

x2 − 1
=

1/2
x− 1

− 1/2
x+ 1

.

Before solving forA and B using themethod described in Key Idea 29 2(b), we
note that EquaƟons (8.3) and (8.4) are not equivalent. Only the second equaƟon
holds for all values of x, including x = −1 and x = 1, by conƟnuity of polynomi-
als. Thus, we can choose values for x that eliminate terms in the polynomial to
solve for A and B.

1 = A(x+ 1) + B(x− 1).

Notes:
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If we choose x = −1,

1 = A(0) + B(−2)

B = −1
2
.

Next choose x = 1:

1 = A(2) + B(0)

A =
1
2
.

ResulƟng in the same decomposiƟon as above.

In Example 3, we solve for the decomposiƟon coefficients using the system
of linear equaƟons (method 2a). The margin note explains how to solve using
subsƟtuƟon (method 2b).

Example 3 IntegraƟng using parƟal fracƟons
Use parƟal fracƟon decomposiƟon to integrate

ˆ
1

(x− 1)(x+ 2)2
dx.

SÊ½çã®ÊÄ Wedecompose the integrand as follows, as described by Key
Idea 29:

1
(x− 1)(x+ 2)2

=
A

x− 1
+

B
x+ 2

+
C

(x+ 2)2
. (8.5)

To solve for A, B and C, we mulƟply both sides by (x− 1)(x+ 2)2 and collect like
terms:

Note: EquaƟons (8.5) and (8.6) are
not equivalent for x = 1 and x =
−2. However, due to the conƟnuity
of polynomials we can let x = 1 to
simplify the right hand side to A(1 +
2)2 = 9A. Since the leŌ hand side
is sƟll 1, we have 1 = 9A, so that
A = 1/9.
Likewise,when x = −2; this leads to
the equaƟon 1 = −3C. Thus C =
−1/3.
Knowing A and C, we can find the
value of B by choosing yet another
value of x, such as x = 0, and solving
for B.

1 = A(x+ 2)2 + B(x− 1)(x+ 2) + C(x− 1) (8.6)
= Ax2 + 4Ax+ 4A+ Bx2 + Bx− 2B+ Cx− C
= (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

We have

0x2 + 0x+ 1 = (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

leading to the equaƟons

A+ B = 0, 4A+ B+ C = 0 and 4A− 2B− C = 1.

These three equaƟons of three unknowns lead to a unique soluƟon:

A = 1/9, B = −1/9 and C = −1/3.

Notes:
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Thus
ˆ

1
(x− 1)(x+ 2)2

dx =
ˆ

1/9
x− 1

dx+
ˆ
−1/9
x+ 2

dx+
ˆ
−1/3

(x+ 2)2
dx.

Each can be integratedwith a simple subsƟtuƟonwith u = x−1 or u = x+2.
The end result isˆ

1
(x− 1)(x+ 2)2

dx =
1
9
ln |x− 1| − 1

9
ln |x+ 2|+ 1

3(x+ 2)
+ C.

Example 4 IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to integrate
ˆ

x3

(x− 5)(x+ 3)
dx.

SÊ½çã®ÊÄ Key Idea 29 presumes that the degree of the numerator is
less than the degree of the denominator. Since this is not the case here, we
begin by using polynomial division to reduce the degree of the numerator. We
omit the steps, but encourage the reader to verify that

x3

(x− 5)(x+ 3)
= x+ 2+

19x+ 30
(x− 5)(x+ 3)

.

Using Key Idea 29, we can rewrite the new raƟonal funcƟon as:

19x+ 30
(x− 5)(x+ 3)

=
A

x− 5
+

B
x+ 3

for appropriate values of A and B. Clearing denominators, we have

19x+ 30 = A(x+ 3) + B(x− 5).

As in the previous examples we choose values of x to eliminate terms in the
polynomial. If we choose x = −3,

19(−3) + 30 = A(0) + B(−8)

B =
27
8
.

Next choose x = 5:

19(5) + 30 = A(8) + B(0)

A =
125
8

.

Notes:
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We can now integrate:
ˆ

x3

(x− 5)(x+ 3)
dx =

ˆ (
x+ 2+

125/8
x− 5

+
27/8
x+ 3

)
dx

=
x2

2
+ 2x+

125
8

ln |x− 5|+ 27
8

ln |x+ 3|+ C.

Before the next example we remind the reader of a raƟonal integrand eval-
uated by trigonometric subsƟtuƟon:

ˆ
1

x2 + a2
dx =

1
a
tan−1

( x
a

)
+ C.

Example 5 IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to evaluate
ˆ

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx.

SÊ½çã®ÊÄ The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 29. We have:

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

=
A

x+ 1
+

Bx+ C
x2 + 6x+ 11

.

Now clear the denominators.

7x2 + 31x+ 54 = A(x2 + 6x+ 11) + (Bx+ C)(x+ 1).

Again, we choose values of x to eliminate terms in the polynomial. If we choose
x = −1,

30 = 6A+ (−B+ C)(0)
A = 5.

Although none of the other terms can be zeroed out, we conƟnue by leƫng
A = 5 and subsƟtuƟng helpful values of x. Choosing x = 0, we noƟce

54 = 55+ C
C = −1.

Finally, choose x = 1 (any value other than −1 and 0 can be used, 1 is easy to
work with)

92 = 90+ (B− 1)(2)
B = 2.

Notes:
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Thus ˆ
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx =

ˆ (
5

x+ 1
+

2x− 1
x2 + 6x+ 11

)
dx.

Thefirst termof this new integrand is easy to evaluate; it leads to a 5 ln |x+ 1|
term. The second term is not hard, but takes several steps and uses subsƟtuƟon
techniques.

The integrand
2x− 1

x2 + 6x+ 11
has a quadraƟc in the denominator and a linear

term in the numerator. This leads us to try subsƟtuƟon. Let u = x2+6x+11, so
du = (2x+ 6) dx. The numerator is 2x− 1, not 2x+ 6, but we can get a 2x+ 6
term in the numerator by adding 0 in the form of “7− 7.”

2x− 1
x2 + 6x+ 11

=
2x− 1+ 7− 7
x2 + 6x+ 11

=
2x+ 6

x2 + 6x+ 11
− 7

x2 + 6x+ 11
.

Wecannow integrate the first termwith subsƟtuƟon, leading to a ln
∣∣x2 + 6x+ 11

∣∣
term. The final term can be integrated using arctangent. First, complete the
square in the denominator:

7
x2 + 6x+ 11

=
7

(x+ 3)2 + 2
.

An anƟderivaƟve of the laƩer term can be found using Key Idea 28 and subsƟ-
tuƟon: ˆ

7
x2 + 6x+ 11

dx =
7√
2
tan−1

(
x+ 3√

2

)
+ C.

Let’s start at the beginning and put all of the steps together.ˆ
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx

=

ˆ (
5

x+ 1
+

2x− 1
x2 + 6x+ 11

)
dx

=

ˆ
5

x+ 1
dx+

ˆ
2x+ 6

x2 + 6x+ 11
dx−

ˆ
7

x2 + 6x+ 11
dx

= 5 ln |x+ 1|+ ln
∣∣x2 + 6x+ 11

∣∣− 7√
2
tan−1

(
x+ 3√

2

)
+ C.

As with many other problems in calculus, it is important to remember that one
is not expected to “see” the final answer immediately aŌer seeing the problem.
Rather, given the iniƟal problem, we break it down into smaller problems that
are easier to solve. The final answer is a combinaƟon of the answers of the
smaller problems.
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ParƟal FracƟon DecomposiƟon is an important tool when dealing with raƟo-
nal funcƟons. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewriƟng a fracƟon in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.
The next secƟonwill require the reader to determine an appropriatemethod for
evaluaƟng a variety of integrals.

Notes:
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Exercises 8.4
Terms and Concepts
1. Fill in the blank: ParƟal FracƟon DecomposiƟon is a

method of rewriƟng funcƟons.
2. T/F: It is someƟmes necessary to use polynomial division

before using ParƟal FracƟon DecomposiƟon.

3. Decompose 1
x2 − 3x

without solving for the coefficients, as
done in Example 1.

4. Decompose 7− x
x2 − 9

without solving for the coefficients, as
done in Example 1.

5. Decompose x− 3
x2 − 7

without solving for the coefficients, as
done in Example 1.

6. Decompose 2x+ 5
x3 + 7x

without solving for the coefficients, as
done in Example 1.

Problems
In Exercises 7–32, evaluate the indefinite integral.

7.
ˆ

7x+ 7
x2 + 3x− 10

dx

8.
ˆ

7x− 2
x2 + x

dx

9.
ˆ

−4
3x2 − 12

dx

10.
ˆ

x+ 7
(x+ 5)2

dx

11.
ˆ

−3x− 20
(x+ 8)2

dx

12.
ˆ

9x2 + 11x+ 7
x(x+ 1)2

dx

13.
ˆ

−12x2 − x+ 33
(x− 1)(x+ 3)(3− 2x)

dx

14.
ˆ

94x2 − 10x
(7x+ 3)(5x− 1)(3x− 1)

dx

15.
ˆ

x2 + x+ 1
x2 + x− 2

dx

16.
ˆ

x3

x2 − x− 20
dx

17.
ˆ

2x2 − 4x+ 6
x2 − 2x+ 3

dx

18.
ˆ

1
x3 + 2x2 + 3x

dx

19.
ˆ

dx
x4 − x2

20.
ˆ

x2 + x+ 5
x2 + 4x+ 10

dx

21.
ˆ

12x2 + 21x+ 3
(x+ 1)(3x2 + 5x− 1)

dx

22.
ˆ

6x2 + 8x− 4
(x− 3)(x2 + 6x+ 10)

dx

23.
ˆ

1− x+ 2x2 − x3

x(x2 + 1)2
dx

24.
ˆ

2x2 + x+ 1
(x+ 1)(x2 + 9)

dx

25.
ˆ

x2 − 20x− 69
(x− 7)(x2 + 2x+ 17)

dx

26.
ˆ

x3 + x2 + 2x+ 1
(x2 + 1)(x2 + 2)

dx

27.
ˆ

x
x4 + 4x2 + 3

dx

28.
ˆ

x− 3
(x2 + 2x+ 4)2

dx

29.
ˆ

9x2 − 60x+ 33
(x− 9)(x2 − 2x+ 11)

dx

30.
ˆ

6x2 + 45x+ 121
(x+ 2)(x2 + 10x+ 27)

dx

31.
ˆ

1
x4 − 16

dx

32.
ˆ

1
x2 + x

dx

In Exercises 33–36, evaluate the definite integral.

33.
ˆ 2

1

8x+ 21
(x+ 2)(x+ 3)

dx

34.
ˆ 5

0

14x+ 6
(3x+ 2)(x+ 4)

dx

35.
ˆ 1

−1

x2 + 5x− 5
(x− 10)(x2 + 4x+ 5)

dx

36.
ˆ 1

0

x
(x+ 1)(x2 + 2x+ 1)

dx
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8.5 IntegraƟon Strategies

8.5 IntegraƟon Strategies
We’ve now seen a fair number of different integraƟon techniques and so we
should probably pause at this point to talk a liƩle bit about a strategy to use for
determining the correct technique to use when faced with an integral.

There are a couple of points that need to be made about this strategy. First,
it isn’t a hard and fast set of rules for determining the method that should be
used. It is really nothing more than a general set of guidelines that will help us
to idenƟfy techniques that may work. Some integrals can be done in more than
one way and so depending on the path you take through the strategy you may
end up with a different technique than someone else who also went through
this strategy.

Second, while the strategy is presented as a way to idenƟfy the technique
that could be used on an integral keep in mind that, for many integrals, it can
also automaƟcally exclude certain techniques as well. When going through the
strategy keep two lists in mind. The first list is integraƟon techniques that simply
won’t work and the second list is techniques that look like they might work.
AŌer going through the strategy, if the second list has only one entry then that
is the technique to use. If on the other hand, there is more than one possible
technique to use we will have to decide on which is liable to be the best for us
to use. Unfortunately there is no way to teach which technique is the best as
that usually depends upon the person and which technique they find to be the
easiest.

Third, don’t forget thatmany integrals can be evaluated inmulƟple ways and
somore than one techniquemay be used on it. This has already beenmenƟoned
in each of the previous points, but is important enough to warrant a separate
menƟon. SomeƟmes one technique will be significantly easier than the others
and so don’t just stop at the first technique that appears towork. Always idenƟfy
all possible techniques and then go back and determine which you feel will be
the easiest for you to use.

Next, it’s enƟrely possible that you will need to use more than one method
to completely evaluate an integral. For instance a subsƟtuƟonmay lead to using
integraƟon by parts or parƟal fracƟons integral.

Notes:
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Key Idea 30 Guidelines for Choosing an IntegraƟon Strategy

1. Simplify the integrand, if possible

2. See if a “simple” subsƟtuƟon will work

3. IdenƟfy the type of integral

4. Relate the integral to an integral we already know how to do

5. Try mulƟple techniques

6. Try again

Let’s expand on the ideas of the previous Key Idea.

1. Simplify the integrand, if possible. This step is very important in the
integraƟon process. Many integrals can be taken from very difficult to
very easy with a liƩle simplificaƟon or manipulaƟon. Don’t forget basic
trigonometric and algebraic idenƟƟes as these can oŌen be used to sim-
plify the integral.
We used this idea when we were looking at integrals involving trigono-
metric funcƟons. For example consider the following integral.

ˆ
cos2 x dx

the integral can’t be done as it is, however by recalling the idenƟty,

cos2 x =
1
2
(1+ cos 2x)

the integral becomes very easy to do.
Note that this example also shows that simplificaƟons does not necessar-
ily mean that we’ll write the integrand in a ”simpler” form. It ony means
that we’ll write the integrand into a form that we can deal with and this is
oŌen longer and/or ”messier” than the original integral.

2. See if a “simple” subsƟtuƟon will work. Look to see if a simple subsƟ-
tuƟon can be used instead of the oŌen more complicated methods from
Calculus II. For example consider both of the following integrals.

ˆ
x

x2 − 1
dx

ˆ
x
√

x2 − 1 dx

Notes:
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The first integral can be done with the method of parƟal fracƟons and the
second could be done with a trigonometric subsƟtuƟon.
However, both could also be evaluated using the subsƟtuƟon u = x2 − 1
and the work involved in the subsƟtuƟon would be significantly less than
the work involved in either parƟal fracƟons or trigonometric subsƟtuƟon.
So, always look for quick, simple subsƟtuƟons before moving on to the
more complicated Calculus II techniques.

3. IdenƟfy the type of integral. Note that any integral may fall into more
than one of these types. Because of this fact it’s usually best to go all the
way through the list and idenƟfy all possible types since onemay be easier
than the other and it’s enƟrely possible that the easier type is listed lower
in the list.

(a) Is the integrand a raƟonal expression (i.e. is the integrand a poly-
nomial divided by a polynomial)? If so then parƟal fracƟons (Sec-
Ɵon 8.4) may work on the integral.

(b) Is the integrand a polynomial Ɵmes a trigonometric funcƟon, expo-
nenƟal, or logarithm? If so, then integraƟon by parts (SecƟon 8.1)
may work.

(c) Is the integrand a product of sines and cosines, secants and tan-
gents, or cosecants and cotangents? If so, then the topics from Sec-
Ɵon 8.2 may work. Likewise, don’t forget that some quoƟents in-
volving these funcƟons can also be done using these techniques.

(d) Does the integrand involve
√
b2x2 + a2,

√
b2x2 − a2, or

√
a2 − b2x2?

If so, then a trigonometric subsƟtuƟon (SecƟon8.3)mightwork nicely.
(e) Does the integrand have roots other than those listed above in it? If

so then the subsƟtuƟon u = n
√

g(x)might work.
(f) Does the integrand have a quadraƟc in it? If so then compleƟng the

square on the quadraƟc might put it into a form that we can deal
with.

4. Relate the integral to an integral we already know how to do. In other
words, can we use a subsƟtuƟon or manipulaƟon to write the integrand
into a form that does fit into the forms we’ve looked at previously in this
chapter. A typical example is the following integral.

ˆ
cos x

√
1+ sin2 x dx

This integral doesn’t obviously fit into any of the forms we looked at in
this chapter. However, with the subsƟtuƟon u = sin x we can reduce the

Notes:
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integral to the form ˆ √
1+ u2 dx

which is a trigonometric subsƟtuƟon problem.

5. Try mulƟple techniques. In this step we need to ask ourselves if it is pos-
sible that we’ll need to usemulƟple techniques. The example in the previ-
ous part is a good example. Using a subsƟtuƟon didn’t allow us to actually
do the integral. All it did was put the integral into a form that we could
use a different technique on.
Don’t ever get locked into the idea that an integral will only required one
step to completely evaluate it. Many will require more than one step.

6. Try again. If everything that you’ve tried to this point doesn’t work then
go back through the process again. This Ɵme try a technique that you
didn’t use the first Ɵme around.

As noted above, this strategy is not a hard and fast set of rules. It is only
intended to guide you through the process of best determining how to do any
given integral. Note as well that the only place Calculus II actually arises is the
third step. Steps 1, 2, and 4 involve nothing more than manipulaƟon of the
integrand either through direct manipulaƟon of the integrand or by using a sub-
sƟtuƟon. The last two steps are simply ideas to think about in going through this
strategy.

Many students go through this process and concentrate almost exclusively
on Step 3 (aŌer all this is Calculus II, so it’s easy to see why they might do that...)
to the exclusion of the other steps. One very large consequence of that exclusion
is that oŌen a simplemanipulaƟon or subsƟtuƟon is overlooked that couldmake
the integral very easy to do.

Before moving on to the next secƟon we will work a couple of examples
illustraƟng a couple of not so obvious simplificaƟons/manipulaƟons and a not
so obvious subsƟtuƟon.

Example 1 Strategies of IntegraƟon
Evaluate the integral ˆ

tan x
sec4 x

dx

SÊ½çã®ÊÄ This integral almost falls into the form given in 3c. It is a
quoƟent of tangent and secant and we know that someƟmes we can use the
same methods for products of tangents and secants on quoƟents.

The process from SecƟon 8.2 tells us that if we have even powers of secant
to save two of them and convert the rest to tangents. That won’t work here. We
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can save two secants, but they would be in the denominator and they won’t do
us any good here. Remember that the point of saving them is so they could be
there for the subsƟtuƟon u = tan x. That requires them to be in the numerator.
So, that won’t work. We need to find another soluƟon method.

There are in fact two soluƟon methods to this integral depending on how
you want to go about it.

SoluƟon 1 In this soluƟon method we could just convert everything to
sines and cosines and see if that gives us an integral we can deal with.

ˆ
tan x
sec4 x

dx =
ˆ

sin x
cos x

cos4 x dx

=

ˆ
sin x cos3 x dx subsƟtute u = cos x

= −
ˆ

u3 du

= −1
4
cos4 x+ C

Note that just converƟng to sines and cosines won’t always work and if it
does it won’t always work this nicely. OŌen there will be a lot more work that
would need to be done to complete the integral.

SoluƟon 2 This soluƟon method goes back to dealing with secants and
tangents. Let’s noƟce that if we had a secant in the numerator we could just use
u = sec x as a subsƟtuƟon and it would be a fairly quick and simple subsƟtuƟon
to use. We don’t have a secant in the numerator. However we could very easily
get a secant in the numerator by mulƟplying the numerator and denominator
by secant (i.e. we mulƟply the integrand by “1”).

ˆ
tan x
sec4 x

dx =
ˆ

tan x sec x
sec5 x

dx subsƟtute u = sec x

=

ˆ
1
u5

du

= −1
4

1
sec4 x

+ C

= −1
4
cos4 x+ C

In the previous examplewe saw two “simplificaƟons” that allowed us to eval-
uate the integral. The first was using idenƟƟes to rewrite the integral into terms
we could deal with and the second involved mulƟplying the numerator and de-
nominator by something to again put the integral into terms we could deal with.
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Using idenƟƟes to rewrite an integral is an important “simplificaƟon” andwe
should not forget about it. Integrals can oŌen be greatly simplified or at least
put into a form that can be dealt with by using an idenƟty.

The second “simplificaƟon” is not used as oŌen, but does show up on oc-
casion so again, it’s best to remember it. In fact, let’s take another look at an
example in which mulƟplying the integrand by “1” will allow us to evaluate an
integral.

Example 2 Strategy for IntegraƟon
Evaluate the integral ˆ

1
1+ sin x

dx

SÊ½çã®ÊÄ This is an integral which if we just concentrate on the third
step we won’t get anywhere. This integral doesn’t appear to be any of the kinds
of integrals that we worked on in this chapter. We can evaluate the integral
however, if we do the following,

ˆ
1

1+ sin x
dx =

ˆ
1

1+ sin x
1− sin x
1− sin x

dx

=

ˆ
1− sin x
1− sin2 x

dx

This does not appear to have done anything for us. However, if we now
remember the first ”simplificaƟon” we looked at above we will noƟce that we
can use an idenƟty to rewrite the denominator. Once we do that we can further
manipulate the integrand into something we can evaluate.

ˆ
1

1+ sin x
dx =

ˆ
1− sin x
cos2 x

dx

=

ˆ
1

cos2 x
− sin x

cos x
1

cos x
dx

=

ˆ
sec2 x− tan x sec x dx

= tan x− sec x+ C

So, we’ve just seen once again that mulƟplying by a helpful form of “1” can
put the integral into a form we can integrate. NoƟce as well that this exam-
ple also showed that “simplificaƟons” do not necessarily put an integral into a
simpler form. They only put the integrand into a form that is easier to integrate.

Let’s now take a quick look at an example of a subsƟtuƟon that is not so
obvious.

Notes:
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Example 3 Strategy for IntegraƟon
Evaluate the integral ˆ

cos
√
x dx

SÊ½çã®ÊÄ We introduced this integral by saying that the subsƟtuƟon
was not so obvious. However, this is really an integral that falls into the form
given by 3e in Key Idea 30. Many peoplemiss that form and so don’t think about
it. So, let’s try the following subsƟtuƟon.

u =
√
x x = u2 dx = 2u du

With this subsƟtuƟon the integral becomes,
ˆ

cos
√
x dx = 2

ˆ
u cos u du

This is now an integraƟon by parts. Remember that oŌen we will need to use
more than one technique to completely do the integral. This is a fairly simple
integraƟon by parts problem so we’ll leave the remainder of the details for you
to check. ˆ

cos
√
x dx = 2(cos

√
x+
√
x sin
√
x) + C.

It will be possible to integrate every integral assigned in this class, but it is im-
portant to note that there are integrals that just can’t be evaluated. We should
also note that aŌer we look at series in Chapter 9 we will be able to write down
a series representaƟon of many of these types of integrals.

Notes:
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Exercises 8.5
Problems
In Exercises 1–51, compute the indefinite integral.

1.
ˆ

sin−1 x dx

2.
ˆ

cos3 2x sin2 2x dx

3.
ˆ

4x2 − 12x− 10
(x− 2)(x2 − 4x+ 3)

dx

4.
ˆ

tan x sec5 x dx

5.
ˆ

1
(x2 + 25)3/2

dx

6.
ˆ √

4− x2
x

dx

7.
ˆ

x3 + 1
x(x− 1)3

dx

8.
ˆ

x√
4+ 4x− x2

dx

9.
ˆ

x3ex
2
dx

10.
ˆ 3√x+ 8

x
dx

11.
ˆ

e2x sin2 3x dx

12.
ˆ

cos3 x sin3 x dx

13.
ˆ

x√
4− x2

dx

14.
ˆ

x5 − x3 + 1
x3 + 2x2

dx

15.
ˆ

1
x3/2 + x1/2

dx

16.
ˆ

ex sec ex dx

17.
ˆ

x2 sin 3x dx

18.
ˆ

sin3 x
√
cos x dx

19.
ˆ

ex
√
ex + 1 dx

20.
ˆ

x2√
4x2 + 9

dx

21.
ˆ

sec2 x tan2 x dx

22.
ˆ

x csc x cot x dx

23.
ˆ

x2(8− x3)1/3 dx

24.
ˆ

sin
√
x dx

25.
ˆ

x
√
3− 2x dx

26.
ˆ

e3x

1+ ex
dx

27.
ˆ

x2 − 4x+ 3√
x

dx

28.
ˆ

x3√
16− x2

dx

29.
ˆ

1− 2x
x2 + 12x+ 35

dx

30.
ˆ

tan−1 5x dx

31.
ˆ

etan x

cos2 x
dx

32.
ˆ

1√
7+ 5x2

dx

33.
ˆ

cot6 x dx

34.
ˆ

x3
√
x2 − 25 dx

35.
ˆ

(x2 − sech2 4x) dx

36.
ˆ

x2e−4x dx

37.
ˆ

3√
11− 10x− x2

dx

38.
ˆ

x3 − 20x2 − 63x− 198
x4 − 1

dx

39.
ˆ

tan 7x cos 7x dx

40.
ˆ

tan3 x sec x dx

41.
ˆ

(x3 + 1) cos x dx

42.
ˆ √

9− 4x2
x2

dx

43.
ˆ

(x− cot 3x)2 dx

44.
ˆ

1
x(
√
x− 4

√
x)

dx

45.
ˆ

sin x√
1+ cos x

dx

46.
ˆ

x2

(25+ x2)2
dx

47.
ˆ

2x3 + 4x2 + 10x+ 13
x4 + 9x2 + 20

dx

48.
ˆ

(x2 − 2)2

x
dx

49.
ˆ

x3/2 ln x dx

50.
ˆ

x2
3√2x+ 3

dx

51.
ˆ

xex

(x+ 1)2
dx
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8.6 Improper IntegraƟon

8.6 Improper IntegraƟon
We begin this secƟon by considering the following definite integrals:

•
ˆ 100

0

1
1+ x2

dx ≈ 1.5608,

•
ˆ 1000

0

1
1+ x2

dx ≈ 1.5698,

•
ˆ 10,000

0

1
1+ x2

dx ≈ 1.5707.

NoƟce how the integrand is 1/(1+ x2) in each integral (which is sketched in
Figure 8.6). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:

ˆ b

0

1
1+ x2

dx = tan−1 x
∣∣∣b
0
= tan−1 b− tan−1 0 = tan−1 b.

As b→∞, tan−1 b→ π/2. Therefore it seems that as the upper bound b grows,

the value of the definite integral
ˆ b

0

1
1+ x2

dx approaches π/2 ≈ 1.5708. This

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

5 10

0.5

1

x

y

Figure 8.6: Graphing f(x) = 1
1+ x2

.

Whenwe defined the definite integral
ˆ b

a
f(x) dx, wemade two sƟpulaƟons:

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The funcƟon f(x) was conƟnuous on [a, b] (ensuring that the range of f
was finite).

In this secƟon we consider integrals where one or both of the above condi-
Ɵons do not hold. Such integrals are called improper integrals.

Notes:

431



Chapter 8 Techniques of IntegraƟon

Improper Integrals with Infinite Bounds

DefiniƟon 28 Improper Integrals with Infinite Bounds

1. Let f be a conƟnuous funcƟon on [a,∞). For t ≥ a let
ˆ ∞

a
f(x) dx = lim

t→∞

ˆ t

a
f(x) dx.

2. Let f be a conƟnuous funcƟon on (−∞, b]. For t ≤ b let
ˆ b

−∞
f(x) dx = lim

t→−∞

ˆ b

t
f(x) dx.

3. Let f be a conƟnuous funcƟon on (−∞,∞). For any real number
c (which one doesn’t maƩer), let

ˆ ∞

−∞
f(x) dx = lim

a→−∞

ˆ c

a
f(x) dx + lim

b→∞

ˆ b

c
f(x) dx.

An improper integral is said to converge if its corresponding limit exists; oth-
erwise, it diverges. The improper integral in part 3 converges if and only if both
of its limits exist.

Watch the video:
Improper Integral— Infinity in Upper and Lower Lim-
its at
https://youtu.be/f6cGotvktxs

Example 1 EvaluaƟng improper integrals
Evaluate the following improper integrals.

1.
ˆ ∞

1

1
x2

dx

2.
ˆ ∞

1

1
x
dx

3.
ˆ 0

−∞
ex dx

4.
ˆ ∞

−∞

1
1+ x2

dx

Notes:
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8.6 Improper IntegraƟon

SÊ½çã®ÊÄ

1.

f(x) =
1
x2

1 5 10

0.5

1

x

y

Figure 8.7: A graph of f(x) = 1
x2 in

Example 1 part 1.

ˆ ∞

1

1
x2

dx = lim
t→∞

ˆ t

1

1
x2

dx

= lim
t→∞

−1
x

∣∣∣∣t
1

= lim
t→∞

−1
t

+ 1

= 1.

A graph of the area defined by this integral is given in Figure 8.7.

2.

f(x) =
1
x2

1 5 10

0.5

1

x

y

Figure 8.8: A graph of f(x) = 1
x in

Example 1 part 2.

ˆ ∞

1

1
x
dx = lim

t→∞

ˆ t

1

1
x
dx

= lim
t→∞

ln |x|
∣∣∣t
1

= lim
t→∞

ln(t)

=∞.

The limit does not exist, hence the improper integral
ˆ ∞

1

1
x
dx diverges.

Compare the graphs in Figures 8.7 and 8.8; noƟce how the values of f(x) =
1/x are noƟceably larger than those of f(x) = 1/x2. This difference is
enough to cause the improper integral to diverge.

3.

f(x) = ex

−1−5−10

1

x

y

Figure 8.9: A graph of f(x) = ex in
Example 1 part 3.

ˆ 0

−∞
ex dx = lim

t→−∞

ˆ 0

t
ex dx

= lim
t→−∞

ex
∣∣∣0
t

= lim
t→−∞

e0 − et

= 1.

A graph of the area defined by this integral is given in Figure 8.9.

Notes:
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Chapter 8 Techniques of IntegraƟon

4. We will need to break this into two improper integrals and choose a value
of c as in part 3 of DefiniƟon 28. Any value of c is fine; we choose c = 0.

f(x) =
1

1 + x2

−10 −5 5 10

1

x

y

Figure 8.10: A graph of f(x) = 1
1+x2 in Ex-

ample 1 part 4.

ˆ ∞

−∞

1
1+ x2

dx = lim
t→−∞

ˆ 0

t

1
1+ x2

dx+ lim
t→∞

ˆ t

0

1
1+ x2

dx

= lim
t→−∞

tan−1 x
∣∣∣0
t
+ lim

t→∞
tan−1 x

∣∣∣t
0

= lim
t→−∞

(
tan−1 0− tan−1 t

)
+ lim

t→∞

(
tan−1 t− tan−1 0

)
=

(
0− −π

2

)
+
(π
2
− 0
)
.

= π.

A graph of the area defined by this integral is given in Figure 8.10.

SecƟon 7.5 introduced L’Hôpital’s Rule, a method of evaluaƟng limits that
return indeterminate forms. It is not uncommon for the limits resulƟng from
improper integrals to need this rule as demonstrated next.

Example 2 Improper integraƟon and L’Hôpital’s Rule

Evaluate the improper integral
ˆ ∞

1

ln x
x2

dx.

SÊ½çã®ÊÄ This integral will require the use of IntegraƟon by Parts. Let
u = ln x and dv = 1/x2 dx. Then

f(x) =
ln x
x2

1 5 10

0.2

0.4

x

y

Figure 8.11: A graph of f(x) = ln x
x2 in Ex-

ample 2.

ˆ ∞

1

ln x
x2

dx = lim
t→∞

ˆ t

1

ln x
x2

dx

= lim
t→∞

(
− ln x

x

∣∣∣t
1
+

ˆ t

1

1
x2

dx
)

= lim
t→∞

(
− ln x

x
− 1

x

)∣∣∣∣t
1

= lim
t→∞

(
− ln t

t
− 1

t
− (− ln 1− 1)

)
.

The 1/t goes to 0, and ln 1 = 0, leaving lim
t→∞

ln t
t

with L’Hôpital’s Rule. We have:

lim
t→∞

ln t
t

by LHR
= lim

t→∞

1/t
1

= 0.

Notes:
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8.6 Improper IntegraƟon

Thus the improper integral evaluates as:
ˆ ∞

1

ln x
x2

dx = 1.

Improper Integrals with Infinite Range
We have just considered definite integrals where the interval of integraƟon was
infinite. We now consider another type of improper integraƟon, where the
range of the integrand is infinite.

DefiniƟon 29 Improper IntegraƟon with Infinite Range
Let f(x) be a conƟnuous funcƟon on [a, b] except at c, a ≤ c ≤ b, where
x = c is a verƟcal asymptote of f. Define

ˆ b

a
f(x) dx = lim

t→c−

ˆ t

a
f(x) dx+ lim

t→c+

ˆ b

t
f(x) dx.

Note that c can be one of the endpoints (a or b). In that case, there is only
one limit to consider as part of the definiƟon.

Example 3 Improper integraƟon of funcƟons with infinite range
Evaluate the following improper integrals:

1.
ˆ 1

0

1√
x
dx 2.

ˆ 1

−1

1
x2

dx.

SÊ½çã®ÊÄ

1. A graph of f(x) = 1/
√
x is given in Figure 8.12. NoƟce that f has a verƟcal

f(x) =
1
√
x

0.5 1

5

10

x

y

Figure 8.12: A graph of f(x) = 1√
x in Ex-

ample 3.

asymptote at x = 0. In some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?

ˆ 1

0

1√
x
dx = lim

t→0+

ˆ 1

t

1√
x
dx

= lim
t→0+

2
√
x
∣∣∣1
t

= lim
t→0+

2
(√

1−
√
t
)

= 2.

Notes:
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Chapter 8 Techniques of IntegraƟon

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathemaƟcs when considering
the infinite).

2. The funcƟon f(x) = 1/x2 has a verƟcal asymptote at x = 0, as shown
in Figure 8.13, so this integral is an improper integral. Let’s eschew using
limits for amoment and proceedwithout recognizing the improper nature
of the integral. This leads to:

f(x) =
1
x2

−1 −0.5 0.5 1

5

10

x

y

Figure 8.13: A graph of f(x) = 1
x2 in Ex-

ample 3.

ˆ 1

−1

1
x2

dx = −1
x

∣∣∣1
−1

= −1− (1)
= −2.

Clearly the area in quesƟon is above the x-axis, yet the area is supposedly
negaƟve. In this example we noted the disconƟnuity of the integrand on
[−1, 1] (its improper nature) but conƟnued anyway to apply the Funda-
mental Theorem of Calculus. ViolaƟng the hypothesis of the FTC led us
to an incorrect area of −2. If we now evaluate the integral using Defini-
Ɵon 29 we will see that the area is unbounded.

ˆ 1

−1

1
x2

dx = lim
t→0−

ˆ t

−1

1
x2

dx+ lim
t→0+

ˆ 1

t

1
x2

dx

= lim
t→0−

−1
x

∣∣∣t
−1

+ lim
t→0+

−1
x

∣∣∣1
t

= lim
t→0−

−1
t
+ 1+ lim

t→0+
−1+ 1

t
.

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical.

Understanding Convergence and Divergence
OŌenƟmes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integraƟng.

Our first tool is knowing the behavior of funcƟons of the form
1
xp

.

Notes:
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8.6 Improper IntegraƟon

Example 4 Improper integraƟon of 1/xp

Determine the values of p for which
ˆ ∞

1

1
xp

dx converges.

SÊ½çã®ÊÄ We begin by integraƟng and then evaluaƟng the limit.
ˆ ∞

1

1
xp

dx = lim
t→∞

ˆ t

1

1
xp

dx

= lim
t→∞

ˆ t

1
x−p dx (assume p ̸= 1)

= lim
t→∞

1
−p+ 1

x−p+1
∣∣∣t
1

= lim
t→∞

1
1− p

(
t1−p − 11−p).

When does this limit converge – i.e., when is this limit not∞? This limit con-

f(x) =
1
x q

f(x) =
1
x p

p < 1 < q

1
x

y

Figure 8.14: Ploƫng funcƟons of the form
1/x p in Example 4.

verges precisely when the power of b is less than 0: when 1− p < 0⇒ 1 < p.

Our analysis shows that if p > 1, then
ˆ ∞

1

1
xp

dx converges. When p < 1

the improper integral diverges; we showed in Example 1 that when p = 1 the
integral also diverges.

Figure 8.14 graphs y = 1/xwith a dashed line, alongwith graphs of y = 1/xp,
p < 1, and y = 1/xq, q > 1. Somehow the dashed line forms a dividing line
between convergence and divergence.

The result of Example 4 provides an important tool in determining the con-
vergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
ˆ 1

0

1
xp

dx. These results are summarized in the

following Key Idea.

Key Idea 31 Convergence of Improper Integrals
ˆ ∞

1

1
xp

dx and
ˆ 1

0

1
xp

dx.

1. The improper integral
ˆ ∞

1

1
xp

dx converges when p > 1 and diverges when p ≤ 1.

2. The improper integral
ˆ 1

0

1
xp

dx converges when p < 1 and diverges when p ≥ 1.

Notes:
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Chapter 8 Techniques of IntegraƟon

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We oŌen use integrands of the form 1/xp in compar-
isons as their convergence on certain intervals is known. This is described in the
following theorem.

Note: We used the upper and lower
bound of “1” in Key Idea 31 for con-
venience. It can be replaced by any a
where a > 0.

Theorem 55 Direct Comparison Test for Improper Integrals
Let f and g be conƟnuous on [a,∞) where 0 ≤ f(x) ≤ g(x) for all x in
[a,∞).

1. If
ˆ ∞

a
g(x) dx converges, then

ˆ ∞

a
f(x) dx converges.

2. If
ˆ ∞

a
f(x) dx diverges, then

ˆ ∞

a
g(x) dx diverges.

Example 5 Determining convergence of improper integrals
Determine the convergence of the following improper integrals.

1.
ˆ ∞

1
e−x2 dx 2.

ˆ ∞

3

1√
x2 − x

dx

SÊ½çã®ÊÄ

1. The funcƟon f(x) = e−x2 does not have an anƟderivaƟve expressible in
terms of elementary funcƟons, so we cannot integrate directly. It is com-
parable to g(x) = 1/x2, and as demonstrated in Figure 8.15, e−x2 < 1/x2

on [1,∞). We know from Key Idea 31 that
ˆ ∞

1

1
x2

dx converges, henceˆ ∞

1
e−x2 dx also converges.

f(x) = e−x2

f(x) =
1
x2

1 2 3 4

0.5

1

x

y

Figure 8.15: Graphs of f(x) = e−x2 and
f(x) = 1/x2 in Example 5.

2. Note that for large values of x,
1√

x2 − x
≈ 1√

x2
=

1
x
. We know from Key

Idea 31 and the subsequent note that
ˆ ∞

3

1
x
dx diverges, so we seek to

compare the original integrand to 1/x.

It is easy to see that when x > 0, we have x =
√
x2 >

√
x2 − x. Taking

reciprocals reverses the inequality, giving

1
x
<

1√
x2 − x

.

Notes:
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8.6 Improper IntegraƟon

Using Theorem55,we conclude that since
ˆ ∞

3

1
x
dxdiverges,

ˆ ∞

3

1√
x2 − x

dx

diverges as well. Figure 8.16 illustrates this.

f(x) =
1

√
x2 − x

f(x) =
1
x

2 4 6

0.2

0.4

x

y

Figure 8.16: Graphs of f(x) = 1/
√
x2 − x

and f(x) = 1/x in Example 5.

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a liƩle
“too nice.” For instance, it was convenient that

1
x
<

1√
x2 − x

, but what if the

“−x” were replaced with a “+2x+ 5”? That is, what can we say about the con-

vergence of
ˆ ∞

3

1√
x2 + 2x+ 5

dx? We have
1
x
>

1√
x2 + 2x+ 5

, so we cannot

use Theorem 55.
In cases like this (and many more) it is useful to employ the following theo-

rem.

Theorem 56 Limit Comparison Test for Improper Integrals
Let f and g be conƟnuous funcƟons on [a,∞) where f(x) > 0 and
g(x) > 0 for all x. If

lim
x→∞

f(x)
g(x)

= L, 0 < L <∞,

then ˆ ∞

a
f(x) dx and

ˆ ∞

a
g(x) dx

either both converge or both diverge.

Example 6 Determining convergence of improper integrals

Determine the convergence of
ˆ ∞

3

1√
x2 + 2x+ 5

dx.

SÊ½çã®ÊÄ As x gets large, the quadraƟc funcƟon will begin to behave
much like y = x. So we compare 1√

x2 + 2x+ 5
to 1

x
with the Limit Comparison

Test:

lim
x→∞

1/
√
x2 + 2x+ 5
1/x

= lim
x→∞

x√
x2 + 2x+ 5

.

The immediate evaluaƟonof this limit returns∞/∞, an indeterminate form.
Using L’Hôpital’s Rule seems appropriate, but in this situaƟon, it does not lead

Notes:
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Chapter 8 Techniques of IntegraƟon

to useful results. (We encourage the reader to employ L’Hôpital’s Rule at least
once to verify this.)

The trouble is the square root funcƟon. We determine the limit by using a
technique we learned in Calculus I:

f(x) =
1

√
x2 + 2x + 5

f(x) =
1
x

5 10 15 20

0.2

x

y

Figure 8.17: Graphing f(x) = 1√
x2+2x+5

and f(x) = 1
x in Example 6.

lim
x→∞

x√
x2 + 2x+ 5

= lim
x→∞

x
x√

x2+2x+5
x2

= lim
x→∞

1√
1+ 2

x +
5
x2

= 1

Since we know that
ˆ ∞

3

1
x dx diverges, by the Limit Comparison Test we know

that
ˆ ∞

3

1√
x2+2x+5 dx also diverges. Figure 8.17 graphs f(x) = 1/

√
x2 + 2x+ 5

and f(x) = 1/x, illustraƟng that as x gets large, the funcƟons become indisƟn-
guishable.

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a liƩle more difficult to employ,
they are omiƩed from this text.

This chapter has exploredmany integraƟon techniques. We learned Integra-
Ɵon by Parts, which reverses the Product Rule of differenƟaƟon. Wealso learned
specialized techniques for handling trigonometric and raƟonal funcƟons. All
techniques effecƟvely have this goal in common: rewrite the integrand in a new
way so that the integraƟon step is easier to see and implement.

As stated before, integraƟon is, in general, hard. It is easy to write a funcƟon
whose anƟderivaƟve is impossible to write in terms of elementary funcƟons,
and evenwhen a funcƟon does have an anƟderivaƟve expressible by elementary
funcƟons, it may be really hard to discover what it is. The powerful computer
algebra systemMathemaƟca® has approximately 1,000 pages of code dedicated
to integraƟon.

Do not let this difficulty discourage you. There is great value in learning in-
tegraƟon techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximaƟng
the value of integraƟon.

The next chapter stresses the uses of integraƟon. We generally do not find
anƟderivaƟves for anƟderivaƟve’s sake, but rather because they provide the so-
luƟon to some type of problem. The following chapter introduces us to several
different problems whose soluƟon is provided by integraƟon.

Notes:
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Exercises 8.6
Terms and Concepts
1. The definite integral was defined with what two sƟpula-

Ɵons?

2. If lim
b→∞

ˆ b

0
f(x) dx exists, then the integral

ˆ ∞

0
f(x) dx is

said to .

3. If
ˆ ∞

1
f(x) dx = 10, and 0 ≤ g(x) ≤ f(x) for all x, then we

know that
ˆ ∞

1
g(x) dx .

4. For what values of p will
ˆ ∞

1

1
xp

dx converge?

5. For what values of p will
ˆ ∞

10

1
xp

dx converge?

6. For what values of p will
ˆ 1

0

1
xp

dx converge?

Problems
In Exercises 7–37, evaluate the given improper integral.

7.
ˆ ∞

0
e5−2x dx

8.
ˆ ∞

1

1
x3

dx

9.
ˆ ∞

1
x−4 dx

10.
ˆ ∞

−∞

1
x2 + 9

dx

11.
ˆ 0

−∞
2x dx

12.
ˆ 0

−∞

(
1
2

)x

dx

13.
ˆ ∞

−∞

x
x2 + 1

dx

14.
ˆ ∞

−∞

x
x2 + 4

dx

15.
ˆ ∞

2

1
(x− 1)2

dx

16.
ˆ 2

1

1
(x− 1)2

dx

17.
ˆ ∞

2

1
x− 1

dx

18.
ˆ 2

1

1
x− 1

dx

19.
ˆ 3

0

1
x
dx

20.
ˆ 1

−1

1
x
dx

21.
ˆ 5

2

dx√
x− 2

22.
ˆ 9

1

dx
3√9− x

23.
ˆ 3

1

1
x− 2

dx

24.
ˆ π

0
sec2 x dx

25.
ˆ π

2

0
sec x dx

26.
ˆ 1

−2

1√
|x|

dx

27.
ˆ ∞

0
xe−x dx

28.
ˆ ∞

0
xe−x2 dx

29.
ˆ ∞

−∞
xe−x2 dx

30.
ˆ ∞

−∞

1
ex + e−x dx

31.
ˆ 1

0
x ln x dx

32.
ˆ ∞

1

ln x
x

dx

33.
ˆ 1

0
ln x dx

34.
ˆ ∞

1

ln x
x2

dx

35.
ˆ ∞

1

ln x√
x
dx

36.
ˆ ∞

0
e−x sin x dx

37.
ˆ ∞

0
e−x cos x dx

In Exercises 38–47, use the Direct Comparison Test or the Limit
Comparison Test to determine whether the given definite inte-
gral converges or diverges. Clearly statewhat test is being used
and what funcƟon the integrand is being compared to.

38.
ˆ ∞

10

3√
3x2 + 2x− 5

dx

39.
ˆ ∞

2

4√
7x3 − x

dx

40.
ˆ ∞

0

√
x+ 3√

x3 − x2 + x+ 1
dx

41.
ˆ ∞

1
e−x ln x dx

42.
ˆ ∞

5
e−x2+3x+1 dx

43.
ˆ ∞

0

√
x

ex
dx

44.
ˆ ∞

2

1
x2 + sin x

dx

45.
ˆ ∞

0

x
x2 + cos x

dx

46.
ˆ ∞

0

1
x+ ex

dx

47.
ˆ ∞

0

1
ex − x

dx
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Chapter 8 Techniques of IntegraƟon

8.7 Numerical IntegraƟon
The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on compuƟng an-
ƟderivaƟves. Despite the power of this theorem, there are sƟll situaƟons where
wemustapproximate the value of the definite integral instead of finding its exact
value. The first situaƟon we explore is where we cannot compute an anƟderiva-
Ɵve of the integrand. The second case is when we actually do not know the
integrand, but only its value when evaluated at certain points.

An elementary funcƟon is any funcƟon that is a combinaƟon of polyno-
mials, nth roots, raƟonal, exponenƟal, logarithmic and trigonometric funcƟons
and their inverses. We can compute the derivaƟve of any elementary funcƟon,
but there are many elementary funcƟons of which we cannot compute an an-
ƟderivaƟve. For example, the following funcƟons do not have anƟderivaƟves
that we can express with elementary funcƟons:

e−x2 , sin(x3) and
sin x
x

.

The simplest way to refer to the anƟderivaƟves of e−x2 is to simply writeˆ
e−x2 dx.

y = e−x2

0.5 1

0.5

1

x

y

y = sin(x3)

−1 1

−0.5

0.5

1

x

y

y =
sin x
x

5 10 15

0.5

1

x

y

Figure 8.18: Graphically represenƟng
three definite integrals that cannot be
evaluated using anƟderivaƟves.

This secƟon outlines three common methods of approximaƟng the value of
definite integrals. We describe each as a systemaƟc method of approximaƟng
area under a curve. By approximaƟng this area accurately, we find an accurate
approximaƟon of the corresponding definite integral.

We will apply the methods we learn in this secƟon to the following definite
integrals:

ˆ 1

0
e−x2 dx,

ˆ π
2

− π
4

sin(x3) dx, and
ˆ 4π

0.5

sin(x)
x

dx,

as pictured in Figure 8.18.

The LeŌ and Right Hand Rule Methods
In SecƟon 5.3 we addressed the problem of evaluaƟng definite integrals by ap-
proximaƟng the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximaƟng definite integrals.

We start with a review of notaƟon. Let f be a conƟnuous funcƟon on the

interval [a, b]. We wish to approximate
ˆ b

a
f(x) dx. We parƟƟon [a, b] into n

Notes:
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8.7 Numerical IntegraƟon

equally spaced subintervals, each of length∆x =
b− a
n

. The endpoints of these
subintervals are labeled as

x0 = a, x1 = a+∆x, x2 = a+ 2∆x, . . . , xi = a+ i∆x, . . . , xn = b.

SecƟon 5.3 showed that to use the LeŌ Hand Rule we use the summaƟon
n∑

i=1

f(xi−1)∆x and to use the Right Hand Rule we use
n∑

i=1

f(xi)∆x. We review

the use of these rules in the context of examples.

Example 1 ApproximaƟng definite integrals with rectangles

Approximate
ˆ 1

0
e−x2 dx using the LeŌ and Right Hand Rules with 5 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by parƟƟoning the interval [0, 1] into 5 equally
spaced intervals. We have∆x = 1−0

5 = 1/5 = 0.2, so

x0 = 0, x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8, and x5 = 1.

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

Figure 8.19: ApproximaƟng
ˆ 1

0
e−x2 dx in

Example 1 using (top) the leŌ hand rule
and (boƩom) the right hand rule.

Using the LeŌ Hand Rule, we have:

n∑
i=1

f(xi−1)∆x =
(
f(x0) + f(x1) + f(x2) + f(x3) + f(x4)

)
∆x

=
(
f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)

)
∆x

≈
(
1+ 0.961+ 0.852+ 0.698+ 0.527)(0.2)

≈ 0.808.

Using the Right Hand Rule, we have:

n∑
i=1

f(xi)∆x =
(
f(x1) + f(x2) + f(x3) + f(x4) + f(x5)

)
∆x

=
(
f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)

)
∆x

≈
(
0.961+ 0.852+ 0.698+ 0.527+ 0.368)(0.2)

≈ 0.681.

Figure 8.19 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this parƟcular case, the LeŌ Hand
Rule is an over approximaƟon and the Right Hand Rule is an under approxima-
Ɵon. To get a beƩer approximaƟon, we could use more rectangles, as we did in

Notes:
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Chapter 8 Techniques of IntegraƟon

SecƟon 5.3. We could also average the LeŌ and Right Hand Rule results together,
giving

0.808+ 0.681
2

= 0.7445.

The actual answer, accurate to 4 places aŌer the decimal, is 0.7468, showing our
average is a good approximaƟon.

xi Exact Approx. sin(x3i )

x0 −π/4 −0.785 −0.466
x1 −7π/40 −0.550 −0.165
x2 −π/10 −0.314 −0.031
x3 −π/40 −0.0785 0
x4 π/20 0.157 0.004
x5 π/8 0.393 0.061
x6 π/5 0.628 0.246
x7 11π/40 0.864 0.601
x8 7π/20 1.10 0.971
x9 17π/40 1.34 0.690
x10 π/2 1.57 −0.670

Figure 8.20: Table of values used to ap-

proximate
ˆ π

2

− π
4

sin(x3) dx in Example 2.

Example 2 ApproximaƟng definite integrals with rectangles

Approximate
ˆ π

2

− π
4

sin(x3) dx using the LeŌ and Right Hand Rules with 10 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by finding∆x:

b− a
n

=
π/2− (−π/4)

10
=

3π
40
≈ 0.236.

It is useful towrite out the endpoints of the subintervals in a table; in Figure 8.20,
we give the exact values of the endpoints, their decimal approximaƟons, and
decimal approximaƟons of sin(x3) evaluated at these points.

y = sin(x3)

−1 1

−0.5

0.5

1

x

y

y = sin(x3)

−1 1

−0.5

0.5

1

x

y

Figure 8.21: ApproximaƟngˆ π
2

− π
4

sin(x3) dx in Example 2 using (top)

the leŌ hand rule and (boƩom) the right
hand rule.

Once this table is created, it is straighƞorward to approximate the definite
integral using the LeŌ and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The LeŌHand Rule sums the first 10 values
of sin(x3i ) and mulƟplies the sum by ∆x; the Right Hand Rule sums the last 10
values of sin(x3i ) and mulƟplies by∆x. Therefore we have:

LeŌ Hand Rule:
ˆ π

2

− π
4

sin(x3) dx ≈ (1.91)(0.236) = 0.451.

Right Hand Rule:
ˆ π

2

− π
4

sin(x3) dx ≈ (1.71)(0.236) = 0.404.

The average of the LeŌ and Right Hand Rules is 0.4275. The actual answer,
accurate to 3 places aŌer the decimal, is 0.460. Our approximaƟons were once
again fairly good. The rectangles used in each approximaƟon are shown in Fig-
ure 8.21. It is clear from the graphs that using more rectangles (and hence,
narrower rectangles) should result in a more accurate approximaƟon.

Notes:
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8.7 Numerical IntegraƟon

The Trapezoidal Rule

In Example 1we approximated the value of
ˆ 1

0
e−x2 dxwith 5 rectangles of equal

width. Figure 8.19 showed the rectangles used in the LeŌ and Right Hand Rules.
These graphs clearly show that rectangles do not match the shape of the graph
all that well, and that accurate approximaƟons will only come by using lots of
rectangles.

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

Figure 8.22: ApproximaƟng
´ 1
0 e−x2 dx us-

ing 5 trapezoids of equal widths.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 8.22, we show the region under f(x) = e−x2 on [0, 1] ap-
proximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a beƩer
approximaƟon of

´ 1
0 e−x2 dx. (In fact, these trapezoids seem to give a great ap-

proximaƟon of the area.)

Watch the video:
The Trapezoid Rule for ApproximaƟng Integrals at
https://youtu.be/8z6JRFvjkpc

a
b

h

Area = a+b
2 h

Figure 8.23: The area of a trapezoid.

The formula for the area of a trapezoid is given in Figure 8.23. We approxi-
mate

´ 1
0 e−x2 dx with these trapezoids in the following example.

Example 3 ApproximaƟng definite integrals using trapezoids

Use 5 trapezoids of equal width to approximate
ˆ 1

0
e−x2 dx.

SÊ½çã®ÊÄ To compute the areas of the 5 trapezoids in Figure 8.22, it
will again be useful to create a table of values as shown in Figure 8.24.

xi e−x2i

0 1
0.2 0.961
0.4 0.852
0.6 0.698
0.8 0.527
1 0.368

Figure 8.24: A table of values of e−x2 .

The leŌmost trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the leŌmost trapezoid is:

1+ 0.961
2

(0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height
of 0.2. Thus its area is:

0.961+ 0.852
2

(0.2) = 0.1813.

Notes:
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Chapter 8 Techniques of IntegraƟon

The sum of the areas of all 5 trapezoids is:

1+ 0.961
2

(0.2) +
0.961+ 0.852

2
(0.2) +

0.852+ 0.698
2

(0.2)

+
0.698+ 0.527

2
(0.2) +

0.527+ 0.368
2

(0.2) = 0.7445.

We approximate
ˆ 1

0
e−x2 dx ≈ 0.7445.

There are many things to observe in this example. Note how each term in
the final summaƟonwasmulƟplied by both 1/2 and by∆x = 0.2. We can factor
these coefficients out, leaving a more concise summaƟon as:

1
2
(0.2)

[
(1+0.961)+(0.961+0.852)+(0.852+0.698)+(0.698+0.527)+(0.527+0.368)

]
.

Now noƟce that all numbers except for the first and the last are added twice.
Therefore we can write the summaƟon even more concisely as

0.2
2

[
1+ 2(0.961+ 0.852+ 0.698+ 0.527) + 0.368

]
.

This is the heart of the Trapezoidal Rule, wherein a definite integral
ˆ b

a
f(x)dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints x0,
x1, …, xn, we again have∆x =

b− a
n

. Thus:

ˆ b

a
f(x) dx ≈

n∑
i=1

f(xi−1) + f(xi)
2

∆x

=
∆x
2

n∑
i=1

(
f(xi−1) + f(xi)

)
=

∆x
2

[
f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)

]
.

Example 4 Using the Trapezoidal Rule

Revisit Example 2 and approximate
ˆ π

2

− π
4

sin(x3) dx using the Trapezoidal Rule

and 10 equally spaced subintervals.

Notes:
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8.7 Numerical IntegraƟon

SÊ½çã®ÊÄ Werefer back to Figure 8.20 for the table of values of sin(x3).
Recall that∆x = 3π/40 ≈ 0.236. Thus we have:
ˆ π

2

− π
4

sin(x3) dx

≈ 0.236
2

[
− 0.466+ 2

(
− 0.165+ (−0.031) + · · ·+ 0.69

)
+ (−0.67)

]
= 0.4275.

NoƟce how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this secƟon;
the real work is creaƟng a table of xi and f(xi) values. Once this is completed, ap-
proximaƟng the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computaƟons and make using lots
of subintervals easy.

Also noƟce the approximaƟons the Trapezoidal Rule gives. It is the average
of the approximaƟons given by the LeŌ and Right Hand Rules! This effecƟvely
renders the LeŌ and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximaƟon is needed, one is gener-
ally beƩer off using the Trapezoidal Rule instead of either the LeŌ or Right Hand
Rule.

We will also show that the Trapezoidal Rule makes using the Midpoint Rule
obsolete as well. With much more work, it will turn out that the Midpoint Rule
has only a marginal gain in accuracy. But we will include it in our results for the
sake of completeness.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The LeŌ Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a funcƟon f with constant funcƟons
on small subintervals and then computes the definite integral of these constant
funcƟons. The Trapezoidal Rule is really approximaƟng a funcƟon fwith a linear
funcƟon on a small subinterval, then computes the definite integral of this linear
funcƟon. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximaƟng fwith a constant func-
Ɵon and then with a linear funcƟon. What is next? A quadraƟc funcƟon. By
approximaƟng the curve of a funcƟon with lots of parabolas, we generally get
an even beƩer approximaƟon of the definite integral. We call this process Simp-
son’s Rule, named aŌer Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

Notes:
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Chapter 8 Techniques of IntegraƟon

Simpson’s Rule
Given one point, we can create a constant funcƟon that goes through that point.
Given two points, we can create a linear funcƟon that goes through those points.
Given three points, we can create a quadraƟc funcƟon that goes through those
three points (given that no two have the same x–value).

Consider three points (x1, y1), (x2, y2) and (x3, y3) whose x–values are equ-
ally spaced and x1 < x2 < x3. Let f be the quadraƟc funcƟon that goes through
these three points. An exercise will ask you to show that

ˆ x3

x1
f(x) dx =

x3 − x1
6

(
y1 + 4y2 + y3

)
. (8.7)

1 2 3

1

2

3

x

y

Figure 8.25: A graph of a funcƟon f and
a parabola that approximates it well on
[1, 3].

Consider Figure 8.25. A funcƟon f goes through the 3 points shown and the
parabola g that also goes through those points is graphed with a dashed line.
Using our equaƟon from above, we know exactly that

ˆ 3

1
g(x) dx =

3− 1
6
(
3+ 4(1) + 2

)
= 3.

Since g is a good approximaƟon for f on [1, 3], we can state that
ˆ 3

1
f(x) dx ≈ 3.

NoƟce how the interval [1, 3]was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
ˆ b

a
f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width∆x = (b−
a)/n. We approximate fwith n/2 parabolic curves, using EquaƟon (8.7) to com-
pute the area under these parabolas. Adding up these areas gives the formula:

ˆ b

a
f(x)dx ≈ ∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)] .

Note how the coefficients of the terms in the summaƟon have the paƩern 1, 4,
2, 4, 2, 4, …, 2, 4, 1.

Let’s demonstrate Simpson’s Rule with a concrete example.

Example 5 Using Simpson’s Rule

Approximate
ˆ 1

0
e−x2 dxusing Simpson’s Rule and 4 equally spaced subintervals.

Notes:
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8.7 Numerical IntegraƟon

SÊ½çã®ÊÄ We begin bymaking a table of values as we have in the past,
as shown in Figure 8.26(a). Simpson’s Rule states that

xi e−x2i

0 1
0.25 0.939
0.5 0.779
0.75 0.570
1 0.368

(a)

y = e−x2

0.25 0.5 0.75 1

0.5

1

x

y

(b)

Figure 8.26: A table of values to approxi-
mate

´ 1
0 e−x2 dx in Example 5, along with

a graph of the funcƟon.

ˆ 1

0
e−x2 dx ≈ 0.25

3

[
1+ 4(0.939) + 2(0.779) + 4(0.570) + 0.368

]
= 0.74683.

Recall in Example 1 we stated that the correct answer, accurate to 4 places
aŌer the decimal, was 0.7468. Our approximaƟon with Simpson’s Rule, with 4
subintervals, is beƩer than our approximaƟon with the Trapezoidal Rule using 5.

Figure 8.26(b) shows f(x) = e−x2 along with its approximaƟng parabolas,
demonstraƟng how good our approximaƟon is. The approximaƟng curves are
nearly indisƟnguishable from the actual funcƟon.

Example 6 Using Simpson’s Rule

Approximate
ˆ π

2

− π
4

sin(x3) dx using Simpson’s Rule and 10 equally spaced inter-

vals.

SÊ½çã®ÊÄ Figure 8.27(a) shows the table of values that we used in the

xi sin(x3i )

−0.785 −0.466
−0.550 −0.165
−0.314 −0.031
−0.0785 0
0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601
1.10 0.971
1.34 0.690
1.57 −0.670

(a)

y = sin(x3)

−1 1

−0.5

0.5

1

x

y

(b)

Figure 8.27: A table of values to approxi-
mate

´ π
2

− π
4
sin(x3) dx in Example 6, along

with a graph of the funcƟon.

past for this problem, shown here again for convenience. Again, ∆x = (π/2 +
π/4)/10 ≈ 0.236.

Simpson’s Rule states that

ˆ π
2

− π
4

sin(x3) dx ≈ 0.236
3

[
(−0.466) + 4(−0.165) + 2(−0.031) + · · ·

· · ·+ 2(0.971) + 4(0.69) + (−0.67)
]

= 0.4701

Recall that the actual value, accurate to 3 decimal places, is 0.460. Our
approximaƟon is within one 1/100th of the correct value. The graph in Fig-
ure 8.27(b) shows how closely the parabolas match the shape of the graph.

Summary and Error Analysis

We summarize the key concepts of this secƟon thus far in the following Key Idea.

Notes:
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Chapter 8 Techniques of IntegraƟon

Key Idea 32 Numerical IntegraƟon
Let f be a conƟnuous funcƟon on [a, b], let n be a posiƟve integer, and let ∆x =

b− a
n

. Set x0 = a,

x1 = a+∆x, …, xi = a+ i∆x, xn = b. Consider
ˆ b

a
f(x) dx.

LeŌ Hand Rule:
ˆ b

a
f(x) dx ≈ ∆x

[
f(x0) + f(x1) + · · ·+ f(xn−1)

]
.

Right Hand Rule:
ˆ b

a
f(x) dx ≈ ∆x

[
f(x1) + f(x2) + · · ·+ f(xn)

]
.

Midpoint Rule:
ˆ b

a
f(x) dx ≈ ∆x

[
f
(x0 + x1

2
)
+ f
(x1 + x2

2
)
+ · · ·+ f

(xn−1 + xn
2

)]
.

Trapezoidal Rule:
ˆ b

a
f(x) dx ≈ ∆x

2

[
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

]
.

Simpson’s Rule:
ˆ b

a
f(x) dx ≈ ∆x

3

[
f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn)

]
(n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several quesƟons in the reader’s mind, such as:

1. How was the “right” answer computed?

2. If the right answer can be found, what is the point of approximaƟng?

3. If there is value to approximaƟng, how are we supposed to know if the
approximaƟon is any good?

These are good quesƟons, and their answers are educaƟonal. In the exam-
ples, the right answer was never computed. Rather, an approximaƟon accurate
to a certain number of places aŌer the decimal was given. In Example 1, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximaƟons were computed using numerical integraƟon but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximaƟon sƟll has its place.
How are we to tell if the approximaƟon is any good?

“Trial and error” provides one way. Using technology, make an approxima-
Ɵon with, say, 10, 100, and 200 subintervals. This likely will not take much Ɵme
at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your

Notes:
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approximaƟon will be. For instance, the formula might state that the approx-
imaƟon is within 0.1 of the correct answer. If the approximaƟon is 1.58, then
one knows that the correct answer is between 1.48 and 1.68. By using lots of
subintervals, one can get an approximaƟon as accurate as one likes. Theorem 57
states what these bounds are.

Theorem 57 Error Bounds in Numerical IntegraƟon
Suppose thatMn is an upper bound on

∣∣f(n)(x)∣∣ on [a, b]. Then a bound
for the error of the numerical method of integraƟon is given by:

Method Error Bound

LeŌ/Right Hand Rule
M1(b− a)2

2n
Midpoint Rule

M2(b− a)3

24n2

Trapezoidal Rule
M2(b− a)3

12n2

Simpson’s Rule
M4(b− a)5

180n4

There are some key things to note about this theorem.

1. The larger the interval, the larger the error. This should make sense intu-
iƟvely.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. When n doubles, the LeŌ and Right Hand Rules double in accuracy, the
Midpoint and Trapezoidal Rules quadruple in accuracy, and Simpson’s Rule
is 16 Ɵmes more accurate.

4. The error in Simpson’s Rule has a term relaƟng to the 4th derivaƟve of f.
Consider a cubic polynomial: its 4th derivaƟve is 0. Therefore, the error in
approximaƟng the definite integral of a cubic polynomial with Simpson’s
Rule is 0 – Simpson’s Rule computes the exact answer!

We revisit Examples 3 and 5 and compute the error bounds using Theo-
rem 57 in the following example.

Example 7 CompuƟng error bounds

Find the error bounds when approximaƟng
ˆ 1

0
e−x2 dx using the Trapezoidal

Rule and 5 subintervals, and using Simpson’s Rule with 4 subintervals.

Notes:
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Chapter 8 Techniques of IntegraƟon

SÊ½çã®ÊÄ Trapezoidal Rule with n = 5:
We start by compuƟng the 2nd derivaƟve of f(x) = e−x2 :

y = e−x2 (4x2 − 2)

0.5 1

−2

−1

x

y

Figure 8.28: Graphing f ′′(x) in Example 7
to help establish error bounds.

f ′′(x) = e−x2(4x2 − 2).

Figure 8.28 shows a graph of f ′′(x) on [0, 1]. It is clear that the largest value of
f ′′, in absolute value, is 2. Thus we letM = 2 and apply the error formula from
Theorem 57.

ET =
(1− 0)3

12 · 52
· 2 = 0.006.

Our error esƟmaƟon formula states that our approximaƟon of 0.7445 found
in Example 3 is within 0.0067 of the correct answer, hence we know that

0.7445− 0.0067 = .7378 ≤
ˆ 1

0
e−x2 dx ≤ 0.7512 = 0.7445+ 0.0067.

We had earlier computed the exact answer, correct to 4 decimal places, to be
0.7468, affirming the validity of Theorem 57.

Simpson’s Rule with n = 4:
We start by compuƟng the 4th derivaƟve of f(x) = e−x2 :

y = e−x2 (16x4 − 48x2 + 12)

0.5 1

−5

5

10

x

y

Figure 8.29: Graphing f (4)(x) in Exam-
ple 7 to help establish error bounds.

f (4)(x) = e−x2(16x4 − 48x2 + 12).

Figure 8.29 shows a graph of f (4)(x) on [0, 1]. It is clear that the largest value of
f (4), in absolute value, is 12. Thus we let M = 12 and apply the error formula
from Theorem 57.

Es =
(1− 0)5

180 · 44
· 12 = 0.00026.

Our error esƟmaƟon formula states that our approximaƟonof 0.74683 found
in Example 5 is within 0.00026 of the correct answer, hence we know that

0.74683− 0.00026 = .74657 ≤
ˆ 1

0
e−x2 dx ≤ 0.74709 = 0.74683+ 0.00026.

Once again we affirm the validity of Theorem 57.

At the beginning of this secƟon we menƟoned two main situaƟons where
numerical integraƟon was desirable. We have considered the case where an
anƟderivaƟve of the integrand cannot be computed. We now invesƟgate the
situaƟonwhere the integrand is not known. This is, in fact, themost widely used
applicaƟon of Numerical IntegraƟon methods. “Most of the Ɵme” we observe
behavior but do not know “the” funcƟon that describes it. We instead collect
data about the behavior and make approximaƟons based off of this data. We
demonstrate this in an example.

Notes:
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Example 8 ApproximaƟng distance traveled
One of the authors drove his daughter home from school while she recorded
their speed every 30 seconds. The data is given in Figure 8.30. Approximate the

Time Speed
(mph)

0 0
1 25
2 22
3 19
4 39
5 0
6 43
7 59
8 54
9 51

10 43
11 35
12 40
13 43
14 30
15 0
16 0
17 28
18 40
19 42
20 40
21 39
22 40
23 23
24 0

Figure 8.30: Speed data collected at 30
second intervals for Example 8.

distance they traveled.

SÊ½çã®ÊÄ Recall that by integraƟng a speed funcƟon we get distance
traveled. We have informaƟon about v(t); we will use Simpson’s Rule to approx-

imate
ˆ b

a
v(t) dt.

Themost difficult aspect of this problem is converƟng the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
Ɵme is measured in 30 second increments.

We need to compute∆x = (b − a)/n. Clearly, n = 24. What are a and b?
Since we start at Ɵme t = 0, we have that a = 0. The final recorded Ɵme came
aŌer 24 periods of 30 seconds, which is 12 minutes or 1/5 of an hour. Thus we
have

∆x =
b− a
n

=
1/5− 0

24
=

1
120

;
∆x
3

=
1

360
.

Thus the distance traveled is approximately:
ˆ 0.2

0
v(t) dt ≈ 1

360

[
f(x1) + 4f(x2) + 2f(x3) + · · ·+ 4f(xn) + f(xn+1)

]
=

1
360

[
0+ 4 · 25+ 2 · 22+ · · ·+ 2 · 40+ 4 · 23+ 0

]
≈ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the reader
wants to know, the author’s odometer recorded the distance as about 6.05
miles.)

Notes:
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Exercises 8.7
Terms and Concepts
1. T/F: Simpson’s Rule is a method of approximaƟng an-

ƟderivaƟves.
2. What are the twobasic situaƟonswhere approximaƟng the

value of a definite integral is necessary?
3. Why are the LeŌ and Right Hand Rules rarely used?
4. Why is the Midpoint Rule rarely used?

Problems
In Exercises 5–12, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
and n = 4.

(c) Find the exact value of the integral.

5.
ˆ 1

−1
x2 dx

6.
ˆ 10

0
5x dx

7.
ˆ π

0
sin x dx

8.
ˆ 4

0

√
x dx

9.
ˆ 3

0
(x3 + 2x2 − 5x+ 7) dx

10.
ˆ 1

0
x4 dx

11.
ˆ 2π

0
cos x dx

12.
ˆ 3

−3

√
9− x2 dx

In Exercises 13–20, approximate the definite integral with the
Trapezoidal Rule and Simpson’s Rule, with n = 6.

13.
ˆ 1

0
cos
(
x2
)
dx

14.
ˆ 1

−1
ex

2
dx

15.
ˆ 5

0

√
x2 + 1 dx

16.
ˆ π

0
x sin x dx

17.
ˆ π/2

0

√
cos x dx

18.
ˆ 4

1
ln x dx

19.
ˆ 1

−1

1
sin x+ 2

dx

20.
ˆ 6

0

1
sin x+ 2

dx

In Exercises 21–24, find n such that the error in approximaƟng
the given definite integral is less than 0.0001 when using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

21.
ˆ π

0
sin x dx

22.
ˆ 4

1

1√
x
dx

23.
ˆ π

0
cos
(
x2
)
dx

24.
ˆ 5

0
x4 dx

In Exercises 25–26, a region is given. Find the area of the re-
gion using Simpson’s Rule:

(a) where the measurements are in cenƟmeters, taken in 1
cm increments, and

(b) where the measurements are in hundreds of yards,
taken in 100 yd increments.

25. 4.
7

6.
3

6.
9

6.
6

5.
1

26. 3.
6

3.
6

4.
5 6.
6

5.
6

27. Let f be the quadraƟc funcƟon that goes through the points
(x1, y1), (x1 + ∆x, y2) and (x1 + 2∆x, y3). Show thatˆ x1+2∆x

x1
f(x)dx = ∆x

3
(y1 + 4y2 + y3).
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9: S�Øç�Ä��Ý �Ä� S�Ù®�Ý
This chapter introduces sequences and series, important mathemaƟcal con-
strucƟons that are useful when solving a large variety of mathemaƟcal prob-
lems. The content of this chapter is considerably different from the content of
the chapters before it. While the material we learn here definitely falls under
the scope of “calculus,” we will make very liƩle use of derivaƟves or integrals.
Limits are extremely important, though, especially limits that involve infinity.

One of the problems addressed by this chapter is this: suppose we know
informaƟon about a funcƟon and its derivaƟves at a point, such as f(1) = 3,
f ′(1) = 1, f ′′(1) = −2, f ′′′(1) = 7, and so on. What can I say about f(x) itself?
Is there any reasonable approximaƟon of the value of f(2)? The topic of Taylor
Series addresses this problem, and allows us to make excellent approximaƟons
of funcƟons when limited knowledge of the funcƟon is available.

9.1 Sequences
We commonly refer to a set of events that occur one aŌer the other as a se-
quence of events. In mathemaƟcs, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one aŌer the other.”

For instance, the numbers 2, 4, 6, 8, …, form a sequence. The order is impor-
tant; the first number is 2, the second is 4, etc. It seems natural to seek a formula
that describes a given sequence, and oŌen this can be done. For instance, the
sequence above could be described by the funcƟon a(n) = 2n, for the values
of n = 1, 2, . . . (it could also be described by n4 − 10n3 + 35n2 − 48n+ 24, to
give one of infinitelymany other opƟons). To find the 10th term in the sequence,
we would compute a(10). This leads us to the following, formal definiƟon of a
sequence.

NotaƟon: We use N to describe the
set of natural numbers, that is, the in-
tegers 1, 2, 3, …DefiniƟon 30 Sequence

A sequence is a funcƟon a(n) whose domain is N. The range of a
sequence is the set of all disƟnct values of a(n).

The terms of a sequence are the values a(1), a(2), …, which are usually
denoted with subscripts as a1, a2, ….

A sequence a(n) is oŌen denoted as {an}.



Chapter 9 Sequences and Series

Watch the video:
Sequences — Examples showing convergence or di-
vergence at
https://youtu.be/9K1xx6wfN-U

Factorial: The expression 3! refers to
the number 3 · 2 · 1 = 6.
In general, n! = n · (n − 1) · (n −
2) · · · 2 · 1, where n is a natural num-
ber.
We define 0! = 1. While this
does not immediately make sense, it
makes many mathemaƟcal formulas
work properly.

Example 1 LisƟng terms of a sequence
List the first four terms of the following sequences.

an =
3n

n!

1 2 3 4

1

2

3

4

5

n

y

(a)

an = 4 + (−1)n

1 2 3 4

1

2

3

4

5

n

y

(b)

an =
(−1)n(n+1)/2

n2

1 2 3 4 5

−1

1/2

1/4

n

y

(c)

Figure 9.1: Ploƫng sequences in Exam-
ple 1.

1. {an} =
{
3n

n!

}
2. {an} = {4+ (−1)n} 3. {an} =

{
(−1)n(n+1)/2

n2

}
SÊ½çã®ÊÄ

1. a1 =
31

1!
= 3; a2 =

32

2!
=

9
2
; a3 =

33

3!
=

9
2
; a4 =

34

4!
=

27
8

We can plot the terms of a sequence with a scaƩer plot. The “x”-axis is
used for the values of n, and the values of the terms are ploƩed on the
y-axis. To visualize this sequence, see Figure 9.1(a).

2. a1 = 4+ (−1)1 = 3; a2 = 4+ (−1)2 = 5;
a3 = 4+ (−1)3 = 3; a4 = 4+ (−1)4 = 5.
Note that the range of this sequence is finite, consisƟng of only the values
3 and 5. This sequence is ploƩed in Figure 9.1(b).

3. a1 =
(−1)1(2)/2

12
= −1; a2 =

(−1)2(3)/2

22
= −1

4

a3 =
(−1)3(4)/2

32
=

1
9

a4 =
(−1)4(5)/2

42
=

1
16

;

a5 =
(−1)5(6)/2

52
= − 1

25
.

We gave one extra term to begin to show the paƩern of signs is “−, −,
+, +, −, −, . . .”, due to the fact that the exponent of −1 is a special
quadraƟc. This sequence is ploƩed in Figure 9.1(c).

Example 2 Determining a formula for a sequence
Find the nth term of the following sequences, i.e., find a funcƟon that describes
each of the given sequences.

Notes:
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9.1 Sequences

1. 2, 5, 8, 11, 14, . . .

2. 2,−5, 10,−17, 26,−37, . . .

3. 1, 1, 2, 6, 24, 120, 720, . . .

4.
5
2
,
5
2
,
15
8
,
5
4
,
25
32

, . . .

SÊ½çã®ÊÄ We should first note that there is never exactly one funcƟon
that describes a finite set of numbers as a sequence. There are many sequences
that start with 2, then 5, as our first example does. We are looking for a simple
formula that describes the terms given, knowing there is possiblymore than one
answer.

1. Note how each term is 3more than the previous one. This implies a linear
funcƟon would be appropriate: a(n) = an = 3n+b for some appropriate
value of b. As we want a1 = 2, we set b = −1. Thus an = 3n− 1.

2. First noƟce how the sign changes from term to term. This is most com-
monly accomplished bymulƟplying the terms by either (−1)n or (−1)n+1.
Using (−1)n mulƟplies the odd terms by (−1); using (−1)n+1 mulƟplies
the even terms by (−1). As this sequence has negaƟve even terms, we
will mulƟply by (−1)n+1.
AŌer this, we might feel a bit stuck as to how to proceed. At this point,
we are just looking for a paƩern of some sort: what do the numbers 2, 5,
10, 17, etc., have in common? There are many correct answers, but the
one that we’ll use here is that each is one more than a perfect square.
That is, 2 = 12 + 1, 5 = 22 + 1, 10 = 32 + 1, etc. Thus our formula is
an = (−1)n+1(n2 + 1).

3. One who is familiar with the factorial funcƟon will readily recognize these
numbers. They are 0!, 1!, 2!, 3!, etc. Since our sequences start with n = 1,
we cannot write an = n!, for this misses the 0! term. Instead, we shiŌ by
1, and write an = (n− 1)!.

4. This one may appear difficult, especially as the first two terms are the
same, but a liƩle “sleuthing” will help. NoƟce how the terms in the nu-
merator are always mulƟples of 5, and the terms in the denominator are
always powers of 2. Does something as simple as an = 5n

2n work?
When n = 1, we see that we indeed get 5/2 as desired. When n = 2,
we get 10/4 = 5/2. Further checking shows that this formula indeed
matches the other terms of the sequence.

Notes:
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A common mathemaƟcal endeavor is to create a new mathemaƟcal object
(for instance, a sequence) and then apply previously knownmathemaƟcs to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will invesƟgate what it means to find the limit of a sequence.

DefiniƟon 31 Limit of a Sequence, Convergent, Divergent
Let {an} be a sequence and let L be a real number. Given any ε > 0,
if an m can be found such that |an − L| < ε for all n > m, then we say
the limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se-
quence diverges.

This definiƟon states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjecƟve
terms, but hopefully the intent is clear.

This definiƟon is reminiscent of the ε–δ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal definiƟon; we
do so here as well.

Theorem 58 Limit of a Sequence
Let {an} be a sequence and let f(x) be a funcƟon whose domain
contains the posiƟve real numbers where f(n) = an for all n in N.

If lim
x→∞

f(x) = L, then lim
n→∞

an = L.

Theorem 58 allows us, in certain cases, to apply the tools developed in Chap-
ter 1 to limits of sequences. Note two things not stated by the theorem:

1. If lim
x→∞

f(x) does not exist, we cannot conclude that lim
n→∞

an does not exist.
It may, or may not, exist. For instance, we can define a sequence {an} =
{cos(2πn)}. Let f(x) = cos(2πx). Since the cosine funcƟon oscillates
over the real numbers, the limit lim

x→∞
f(x) does not exist.

However, for every posiƟve integer n, cos(2πn) = 1, so lim
n→∞

an = 1.

Notes:

458



9.1 Sequences

2. If we cannot find a funcƟon f(x) whose domain contains the posiƟve real
numbers where f(n) = an for all n inN, we cannot conclude lim

n→∞
an does

not exist. It may, or may not, exist.

Example 3 Determining convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

an =
3n2 − 2n + 1
n2 − 1000

20 40 60 80 100

−10

−5

5

10

n

y

(a)

20 40 60 80 100

−1

−0.5

0.5

1

n

y
an = cos n

(b)

an =
(−1)n

n

5 10 15 20

−1

−0.5

0.5

1

n

y

(c)

Figure 9.2: ScaƩer plots of the sequences
in Example 3.

1. {an} =
{
3n2 − 2n+ 1
n2 − 1000

}
2. {an} = {cos n} 3. {an} =

{
(−1)n

n

}
SÊ½çã®ÊÄ

1. Using Key Idea 2, we can state that lim
x→∞

3x2 − 2x+ 1
x2 − 1000

= 3. (We could
have also directly applied L’Hôpital’s Rule.) Thus the sequence {an} con-
verges, and its limit is 3. A scaƩer plot of every 5 values of an is given in
Figure 9.2 (a). The values of an vary widely near n = 30, ranging from
about−73 to 125, but as n grows, the values approach 3.

2. The limit lim
x→∞

cos x does not exist, as cos x oscillates (and takes on every
value in [−1, 1] infinitely many Ɵmes). Thus we cannot apply Theorem 58.
The fact that the cosine funcƟon oscillates strongly hints that cos n, when
n is restricted toN, will also oscillate. Figure 9.2 (b), where the sequence is
ploƩed, shows that this is true. Because only discrete values of cosine are
ploƩed, it does not bear strong resemblance to the familiar cosine wave.
Based on the graph, we suspect that lim

n→∞
an does not exist, but we have

not decisively proven it yet.

3. We cannot actually apply Theorem58here, as the funcƟon f(x) = (−1)x/x
is not well defined. (What does (−1)

√
2 mean? In actuality, there is an an-

swer, but it involves complex analysis, beyond the scope of this text.) So
for now we say that we cannot determine the limit. (But we will be able
to very soon.) By looking at the plot in Figure 9.2 (c), we would like to
conclude that the sequence converges to 0. That is true, but at this point
we are unable to decisively say so.

It seems that {(−1)n/n} converges to 0 but we lack the formal tool to prove
it. The following theorem gives us that tool.

Theorem 59 Absolute Value Theorem
Let {an} be a sequence. If lim

n→∞
|an| = 0, then lim

n→∞
an = 0

Notes:
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Proof
We know − |an| ≤ an ≤ |an| and lim

n→∞
(− |an|) = − lim

n→∞
|an| = 0. Thus by the

Squeeze Theorem lim
n→∞

an = 0. □

Example 4 Determining the convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =
{
(−1)n

n

}
2. {an} =

{
(−1)n(n+ 1)

n

}
SÊ½çã®ÊÄ

1. This appeared in Example 3. We want to apply Theorem 59, so consider
the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)nn

∣∣∣∣
= lim

n→∞

1
n

= 0.

Since this limit is 0, we can apply Theorem 59 and state that lim
n→∞

an = 0.

2. Because of the alternaƟng nature of this sequence (i.e., every other term

ismulƟplied by−1), we cannot simply look at the limit lim
x→∞

(−1)x(x+ 1)
x

.
We can try to apply the techniques of Theorem 59:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n(n+ 1)
n

∣∣∣∣
= lim

n→∞

n+ 1
n

= 1.

We have concluded that when we ignore the alternaƟng sign, the se-

an =
(−1)n(n + 1)

n

5 10 15 20

−1

−2

1

2

n

y

Figure 9.3: A plot of a sequence in Exam-
ple 4, part 2.

quence approaches 1. This means we cannot apply Theorem 59; it states
the the limit must be 0 in order to conclude anything.

Since we know that the signs of the terms alternate and we know that
the limit of |an| is 1, we know that as n approaches infinity, the terms
will alternate between values close to 1 and −1, meaning the sequence
diverges. A plot of this sequence is given in Figure 9.3.

Notes:
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9.1 Sequences

We conƟnue our study of the limits of sequences by considering some of the
properƟes of these limits.

Theorem 60 ProperƟes of the Limits of Sequences
Let {an} and {bn} be sequences such that lim

n→∞
an = L, lim

n→∞
bn = K,

and let c be a real number.

1. lim
n→∞

(an ± bn) = L± K

2. lim
n→∞

(an · bn) = L · K

3. lim
n→∞

(an/bn) = L/K, K ̸= 0

4. lim
n→∞

c · an = c · L

Example 5 Applying properƟes of limits of sequences
Let the following limits be given:

• lim
n→∞

an = 0;

• lim
n→∞

bn = e; and

• lim
n→∞

cn = 5.

Evaluate the following limits.

1. lim
n→∞

(an + bn) 2. lim
n→∞

(bn · cn) 3. lim
n→∞

(1000 · an)

SÊ½çã®ÊÄ We will use Theorem 60 to answer each of these.

1. Since lim
n→∞

an = 0 and lim
n→∞

bn = e, we conclude that lim
n→∞

(an + bn) =

0+ e = e. So even though we are adding something to each term of the
sequence bn, we are adding something so small that the final limit is the
same as before.

2. Since lim
n→∞

bn = e and lim
n→∞

cn = 5, we conclude that lim
n→∞

(bn · cn) =

e · 5 = 5e.

3. Since lim
n→∞

an = 0, we have lim
n→∞

1000an = 1000 · 0 = 0. It does not
maƩer that wemulƟply each term by 1000; the sequence sƟll approaches
0. (It just takes longer to get close to 0.)

Notes:
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Chapter 9 Sequences and Series

DefiniƟon 32 Geometric Sequence
For a constant r, the sequence {rn} is known as a geometric sequence.

Theorem 61 Convergence of Geometric Sequences
The sequence {rn} is convergent if −1 < r ≤ 1 and divergent for all
other values of r. Furthermore,

lim
n→∞

rn =

{
0 −1 < r < 1
1 r = 1

Proof
We can see from Key Idea 18 and by leƫng a = r that

lim
n→∞

rn =

{
∞ r > 1
0 0 < r < 1.

We also know that lim
x→∞

1n = 1 and lim
x→∞

0n = 0. If −1 < r < 0, we know
0 < |r| < 1 so lim

x→∞
|rn| = lim

x→∞
|r|n = 0 and thus by Theorem 59, lim

x→∞
rn = 0.

If r ≤ −1, lim
x→∞

rn does not exist. Therefore, the sequence {rn} is convergent if
−1 < r ≤ 1 and divergent for all other values of r. □

There is more to learn about sequences than just their limits. We will also
study their range and the relaƟonships terms have with the terms that follow.
We start with some definiƟons describing properƟes of the range.

DefiniƟon 33 Bounded and Unbounded Sequences
A sequence {an} is said to be bounded if there exists real numbers m
andM such thatm < an < M for all n in N.

A sequence {an} is said to be unbounded if it is not bounded.

A sequence {an} is said to be bounded above if there exists anM such
that an < M for all n inN; it is bounded below if there exists anm such
thatm < an for all n in N.

Notes:
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9.1 Sequences

It follows from this definiƟon that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

Example 6 Determining boundedness of sequences
Determine the boundedness of the following sequences.

1. {an} =
{
1
n

}
2. {an} = {2n}

an =
1
n

1 2 3 4 5 6 7 8 9 10

1

1/2

1/4

1/10
n

y

(a)

an = 2n

2 4 6 8

100

200

n

y

(b)

Figure 9.4: A plot of {an} = {1/n} and
{an} = {2n} from Example 6.

SÊ½çã®ÊÄ

1. The terms of this sequence are always posiƟve but are decreasing, so we
have 0 < an < 2 for all n. Thus this sequence is bounded. Figure 9.4(a)
illustrates this.

2. The terms of this sequence obviously grow without bound. However, it is
also true that these terms are all posiƟve, meaning 0 < an. Thus we can
say the sequence is unbounded, but also bounded below. Figure 9.4(b)
illustrates this.

The previous example produces some interesƟng concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that
the sequence is bounded, using the following logic. First, “most” terms are near
0, so we could find some sort of bound on these terms (using DefiniƟon 31, the
bound is ε). That leaves a “few” terms that are not near 0 (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic suggests that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.

Theorem 62 Convergent Sequences are Bounded
Let {an} be a convergent sequence. Then {an} is bounded.

Note: Keep inmindwhat Theorem62
does not say. It does not say that
bounded sequences must converge,
nor does it say that if a sequence does
not converge, it is not bounded.

In Example 7.5.3 part 1, we found that lim
x→∞

(1 + 1/x)x = e. If we consider
the sequence {bn} = {(1 + 1/n)n}, we see that lim

n→∞
bn = e. Even though

it may be difficult to intuiƟvely grasp the behavior of this sequence, we know
immediately that it is bounded.

Notes:
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Chapter 9 Sequences and Series

Another interesƟng concept to come out of Example 6 again involves the
sequence {1/n}. We stated, without proof, that the terms of the sequencewere
decreasing. That is, that an+1 < an for all n. (This is easy to show. Clearly
n < n + 1. Taking reciprocals flips the inequality: 1/n > 1/(n + 1). This is the
same as an > an+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

DefiniƟon 34 Monotonic Sequences

1. A sequence {an} ismonotonically increasing if an ≤ an+1 for all
n, i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · an ≤ an+1 · · ·

2. A sequence {an} ismonotonically decreasing if an ≥ an+1 for all
n, i.e.,

a1 ≥ a2 ≥ a3 ≥ · · · an ≥ an+1 · · ·

3. A sequence is monotonic if it is monotonically increasing or
monotonically decreasing.

Note: It is someƟmes useful to call
a monotonically increasing sequence
strictly increasing if an < an+1 for all
n; i.e, we remove the possibility that
subsequent terms are equal.
A similar statement holds for strictly
decreasing.

Example 7 Determining monotonicity
Determine the monotonicity of the following sequences.

1. {an} =
{
n+ 1
n

}

2. {an} =
{
n2 + 1
n+ 1

}
3. {an} =

{
n2 − 9

n2 − 10n+ 26

}

4. {an} =
{
n2

n!

}
SÊ½çã®ÊÄ In each of the following, wewill examine an+1−an. If an+1−

an ≥ 0, we conclude that an ≤ an+1 and hence the sequence is increasing. If
an+1 − an ≤ 0, we conclude that an ≥ an+1 and the sequence is decreasing. Of
course, a sequence need not be monotonic and perhaps neither of the above
will apply.

We also give a scaƩer plot of each sequence. These are useful as they sug-
gest a paƩern of monotonicity, but analyƟc work should be done to confirm a
graphical trend.

Notes:
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9.1 Sequences

1.

an =
n + 1
n

5 10

1

2

n

y

Figure 9.5: A plot of {an} = { n+1
n } in Ex-

ample 7(a).

an+1 − an =
n+ 2
n+ 1

− n+ 1
n

=
(n+ 2)(n)− (n+ 1)2

(n+ 1)n

=
−1

n(n+ 1)
< 0 for all n.

Since an+1−an < 0 for all n, we conclude that the sequence is decreasing.

2.

an =
n2 + 1
n + 1

5 10

5

10

n

y

Figure 9.6: A plot of {an} = { n2+1
n+1 } in

Example 7(b).

an+1 − an =
(n+ 1)2 + 1

n+ 2
− n2 + 1

n+ 1

=

(
(n+ 1)2 + 1

)
(n+ 1)− (n2 + 1)(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 4n+ 1

(n+ 1)(n+ 2)
> 0 for all n.

Since an+1 − an > 0 for all n, we conclude the sequence is increasing.

an =
n2 − 9

n2 − 10n + 26

5 10

5

10

15

n

y

Figure 9.7: A plot of {an} = { n2−9
n2−10n+26}

in Example 7(c).

3. We can clearly see in Figure 9.7, where the sequence is ploƩed, that it is
not monotonic. However, it does seem that aŌer the first 4 terms it is de-
creasing. To understand why, perform the same analysis as done before:

an+1 − an =
(n+ 1)2 − 9

(n+ 1)2 − 10(n+ 1) + 26
− n2 − 9

n2 − 10n+ 26

=
n2 + 2n− 8
n2 − 8n+ 17

− n2 − 9
n2 − 10n+ 26

=
(n2 + 2n− 8)(n2 − 10n+ 26)− (n2 − 9)(n2 − 8n+ 17)

(n2 − 8n+ 17)(n2 − 10n+ 26)

=
−10n2 + 60n− 55

(n2 − 8n+ 17)(n2 − 10n+ 26)
.

We want to know when this is greater than, or less than, 0. The denomi-
nator is always posiƟve, therefore we are only concerned with the numer-
ator. Using the quadraƟc formula, we can determine that−10n2 + 60n−
55 = 0 when n ≈ 1.13, 4.87. So for n < 1.13, the sequence is decreas-
ing. Since we are only dealing with the natural numbers, this means that
a1 > a2.

Notes:
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Chapter 9 Sequences and Series

Between 1.13 and 4.87, i.e., for n = 2, 3 and 4, we have that an+1 >
an and the sequence is increasing. (That is, when n = 2, 3 and 4, the
numerator−10n2 + 60n+ 55 from the fracƟon above is> 0.)
When n > 4.87, i.e, for n ≥ 5, we have that −10n2 + 60n + 55 < 0,
hence an+1 − an < 0, so the sequence is decreasing.
In short, the sequence is simply not monotonic. However, it is useful to
note that for n ≥ 5, the sequence is monotonically decreasing.

an =
n2

n!

5 10

0.5

1

1.5

2

n

y

Figure 9.8: A plot of {an} = {n2/n!} in
Example 7(d).

4. Again, the plot in Figure 9.8 shows that the sequence is not monotonic,
but it suggests that it is monotonically decreasing aŌer the first term. In-
stead of looking at an+1 − an, this Ɵme we’ll look at an/an+1:

an
an+1

=
n2

n!
(n+ 1)!
(n+ 1)2

=
n2

n+ 1

= n− 1+
1

n+ 1

When n = 1, the above expression is < 1; for n ≥ 2, the above expres-
sion is > 1. Thus this sequence is not monotonic, but it is monotonically
decreasing aŌer the first term.

Knowing that a sequence is monotonic can be useful. In parƟcular, if we
know that a sequence is bounded andmonotonic, we can conclude it converges.
Consider, for example, a sequence that ismonotonically decreasing and is bound-
ed below. We know the sequence is always geƫng smaller, but that there is a
bound to how small it can become. This is enough to prove that the sequence
will converge, as stated in the following theorem.

Theorem 63 Bounded Monotonic Sequences are Convergent
Let {an} be a bounded, monotonic sequence. Then {an} converges;
i.e., lim

n→∞
an exists.

Consider once again the sequence {an} = {1/n}. It is easy to show it is
monotonically decreasing and that it is always posiƟve (i.e., bounded below by
0). Therefore we can conclude by Theorem 63 that the sequence converges. We
already knew this by other means, but in the following secƟon this theoremwill
become very useful.

Notes:
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9.1 Sequences

Convergence of a sequence does not depend on the first N terms of a se-
quence. For example, we could adapt the sequence of the previous paragraph
to be

1, 10, 100, 1000,
1
5
,
1
6
,
1
7
,
1
8
,
1
9
,

1
10

, . . .

Because we only changed three of the first 4 terms, we have not affected whe-
ther the sequence converges or diverges.

Sequences are a great source of mathemaƟcal inquiry. The On-Line Ency-
clopedia of Integer Sequences (http://oeis.org) contains thousands of se-
quences and their formulae. (As of this wriƟng, there are 257,537 sequences
in the database.) Perusing this database quickly demonstrates that a single se-
quence can represent several different “real life” phenomena.

InteresƟng as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in a1+a2+a3+ · · · . Of course, one might immediately counter with
“Doesn’t this just add up to ‘infinity’?” Many Ɵmes, yes, but there are many im-
portant cases where the answer is no. This is the topic of series, which we begin
to invesƟgate in the next secƟon.

Notes:
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Exercises 9.1
Terms and Concepts

1. Use your own words to define a sequence.

2. The domain of a sequence is the numbers.

3. Use your own words to describe the range of a sequence.

4. Describe what it means for a sequence to be bounded.

Problems

In Exercises 5–8, give the first five terms of the given sequence.

5. {an} =

{
4n

(n+ 1)!

}
6. {bn} =

{(
−3
2

)n}
7. {cn} =

{
− nn+1

n+ 2

}

8. {dn} =

{
1√
5

((
1+

√
5

2

)n

−
(
1−

√
5

2

)n
)}

In Exercises 9–12, determine the nth term of the given se-
quence.

9. 4, 7, 10, 13, 16, . . .

10. 3, −3
2
,
3
4
, −3

8
, . . .

11. 10, 20, 40, 80, 160, . . .

12. 1, 1, 1
2
,
1
6
,

1
24

,
1

120
, . . .

In Exercises 13–16, use the following informaƟon to determine
the limit of the given sequences.

• {an} =

{
2n − 20

2n

}
; lim

n→∞
an = 1

• {bn} =

{(
1+ 2

n

)n}
; lim

n→∞
bn = e2

• {cn} = {sin(3/n)}; lim
n→∞

cn = 0

13. {an} =

{
2n − 20
7 · 2n

}
14. {an} = {3bn − an}

15. {an} =

{
sin(3/n)

(
1+ 2

n

)n}

16. {an} =

{(
1+ 2

n

)2n
}

In Exercises 17–39, determine whether the sequence con-
verges or diverges. If convergent, give the limit of the se-
quence.

17. {an} =

{
(−1)n n

n+ 1

}

18. {an} =

{
4n2 − n+ 5
3n2 + 1

}
19. {an} =

{
4n

5n

}
20. {an} =

{
(n− 3)!
(n+ 1)!

}
21. {an} =

{
n− 1
n

− n
n− 1

}
, n ≥ 2

22. {an} =

{
6n+3

8n

}
23. {an} = {ln(n)}

24. {an} =

{
3n√
n2 + 1

}
25. {an} =

{(
1+ 1

n

)n}
26. {an} =

{
(2n+ 1)!
(2n− 1)!

}
27. {an} =

{
5− 1

n

}
28. {an} =

{
(−1)n+1

n

}
29. {an} =

{
1.1n

n

}
30. {an} =

{
2n

n+ 1

}
31. {an} =

{
(−1)n n2

2n − 1

}
32. {an} =

{
2+ 9n

8n

}
33. {an} =

{
(n− 1)!
(n+ 1)!

}
34. {an} = {ln(3n+ 2)− ln n}
35. {an} = {ln(2n2 + 3n+ 1)− ln(n2 + 1)}

36. {an} =

{
n sin

(
1
n

)}
37. {an} =

{
cos2 n
2n

}
38. {an} =

{
en + e−n

e2n − 1

}
39. {an} =

{
ln n
ln 2n

}
In Exercises 40–43, determine whether the sequence is
bounded, bounded above, bounded below, or none of the
above.

40. {an} = {sin n}

41. {an} =

{
(−1)n 3n− 1

n

}
42. {an} =

{
3n2 − 1

n

}
43. {an} = {2n − n!}
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In Exercises 44–49, determine whether the sequence is mono-
tonically increasing or decreasing. If it is not, determine if
there is anm such that it is monotonic for all n ≥ m.

44. {an} =

{
n

n+ 2

}
45. {an} =

{
n2 − 6n+ 9

n

}
46. {an} =

{
(−1)n 1

n3

}
47. {an} =

{
n2

2n

}
48. {an} =

{
cos
(
nπ
2

)}

49. {an} = {ne−n}

50. Prove Theorem 59; that is, use the definiƟon of the limit of
a sequence to show that if lim

n→∞
|an| = 0, then lim

n→∞
an =

0.

51. Let {an} and {bn} be sequences such that lim
n→∞

an = L and
lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then L ≤ K.

(b) Give an example where L = K.

52. Prove the Squeeze Theorem for sequences: Let {an} and
{bn} be such that lim

n→∞
an = L and lim

n→∞
bn = L, and let

{cn} be such that an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L
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Chapter 9 Sequences and Series

9.2 Infinite Series
Given the sequence {an} = {1/2n} = 1/2, 1/4, 1/8, . . ., consider the follow-
ing sums:

a1 = 1/2 = 1/2
a1 + a2 = 1/2+ 1/4 = 3/4

a1 + a2 + a3 = 1/2+ 1/4+ 1/8 = 7/8
a1 + a2 + a3 + a4 = 1/2+ 1/4+ 1/8+ 1/16 = 15/16

Later, we will be able to show that

a1 + a2 + a3 + · · ·+ an =
2n − 1
2n

= 1− 1
2n

.

Let Sn be the sum of the first n terms of the sequence {1/2n}. From the above,
we see that S1 = 1/2, S2 = 3/4, and that Sn = 1− 1/2n.

Now consider the following limit: lim
n→∞

Sn = lim
n→∞

(
1−1/2n

)
= 1. This limit

can be interpreted as saying something amazing: the sum of all the terms of the
sequence {1/2n} is 1.

This example illustrates some interesƟng concepts that we explore in this
secƟon. We begin this exploraƟon with some definiƟons.

DefiniƟon 35 Infinite Series, nth ParƟal Sums, Convergence, Diver-
gence
Let {an} be a sequence.

1. The sum
∞∑
n=1

an is an infinite series (or, simply series).

2. Let Sn =
n∑

i=1

ai ; the sequence {Sn} is the sequence of nth parƟal

sums of {an}.

3. If the sequence {Sn} converges to L, we say the series
∞∑
n=1

an con-

verges to L, and we write
∞∑
n=1

an = L.

4. If the sequence {Sn} diverges, the series
∞∑
n=1

an diverges.

Notes:
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9.2 Infinite Series

Using our new terminology, we can state that the series
∞∑
n=1

1/2n converges,

and
∞∑
n=1

1/2n = 1.

Watch the video:
Finding a Formula for a ParƟal Sum of a Telescoping
Series at
https://youtu.be/cyoiIBs7kIg

We will explore a variety of series in this secƟon. We start with two series
that diverge, showing how we might discern divergence.

Example 1 Showing series diverge

1. Let {an} = {n2}. Show
∞∑
n=1

an diverges.

2. Let {bn} = {(−1)n+1}. Show
∞∑
n=1

bn diverges.

SÊ½çã®ÊÄ

1. Consider Sn, the nth parƟal sum.

5 10

100

200

300

n

y

an Sn

Figure 9.9: ScaƩer plots relaƟng to the se-
ries of Example 1 part 1.

Sn = a1 + a2 + a3 + · · ·+ an
= 12 + 22 + 32 · · ·+ n2

=
n(n+ 1)(2n+ 1)

6
. by Theorem 35

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑
n=1

n2 diverges. It is

instrucƟve to write
∞∑
n=1

n2 =∞ for this tells us how the series diverges: it

grows without bound.
A scaƩer plot of the sequences {an} and {Sn} is given in Figure 9.9. The
terms of {an} are growing, so the terms of the parƟal sums {Sn} are grow-
ing even faster, illustraƟng that the series diverges.

Notes:
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Chapter 9 Sequences and Series

2. The sequence {bn} starts with 1, −1, 1, −1, . . .. Consider some of the
parƟal sums Sn of {bn}:

S1 = 1
S2 = 0
S3 = 1
S4 = 0

This paƩern repeats; we find that Sn =

{
1 n is odd
0 n is even

. As {Sn} oscillates,

repeaƟng 1, 0, 1, 0, . . ., we conclude that lim
n→∞

Sn does not exist, hence
∞∑
n=1

(−1)n+1 diverges.

5 10

−1

−0.5

0.5

1

n

y

bn Sn

Figure 9.10: ScaƩer plots relaƟng to the
series of Example 1 part 2.

A scaƩer plot of the sequence {bn} and the parƟal sums {Sn} is given
in Figure 9.10. When n is odd, bn = Sn so the marks for bn are drawn
oversized to show they coincide.

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this secƟon we will demonstrate
a few general techniques for determining convergence; later secƟons will delve
deeper into this topic.

Geometric Series
One important type of series is a geometric series.

DefiniƟon 36 Geometric Series
A geometric series is a series of the form

∞∑
n=0

arn = a+ ar+ ar2 + ar3 + · · ·+ arn + · · ·

Note that the index starts at n = 0, if the index starts at n = 1 we have
∞∑
n=1

arn−1.

We started this secƟon with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence properƟes.

Notes:
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9.2 Infinite Series

Theorem 64 Convergence of Geometric Series

Consider the geometric series
∞∑
n=0

arn.

1. If r ̸= 1, the nth parƟal sum is: Sn =
a(1− r n)
1− r

.

2. The series converges if, and only if, |r| < 1. When |r| < 1,

∞∑
n=0

arn =
a

1− r
.

Proof
If r = 1, then Sn = a+a+a+· · ·+a = na. Since lim

n→∞
Sn = ±∞, the geometric

series diverges.
If r ̸= 1, we have

Sn = a+ ar+ ar2 + · · ·+ arn−1.

MulƟply each term by r and we have

rSn = ar+ ar2 + ar3 · · ·+ arn.

Subtract these two equaƟons and solve for Sn.

Sn − rSn = a− arn

Sn =
a(1− rn)
1− r

From Theorem 61, we know that if−1 < r < 1, then lim
n→∞

rn = 0 so

lim
n→∞

Sn = lim
n→∞

=
a(1− rn)
1− r

=
a

1− r
− a

1− r
lim

n→∞
rn =

a
1− r

.

So when |r| < 1 the geometric series converges and its sum is
a

1− r
.

If either r ≤ −1 or r > 1, the sequence {rn} is divergent by Theorem 61.
Thus lim

n→∞
Sn does not exist, so the geometric series diverges if r ≤ −1 or r >

1. □

Notes:
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According to Theorem 64, the series
∞∑
n=0

1
2n

=

∞∑
n=0

(
1
2

)2

= 1+
1
2
+

1
4
+ · · ·

converges as r = 1/2, and
∞∑
n=0

1
2n

=
1

1− 1/2
= 2. This concurs with our intro-

ductory example; while there we got a sum of 1, we skipped the first term of 1.

2 4 6 8 10

1

2

n

y

an Sn

(a)

2 4 6 8 10

−1

−0.5

0.5

1

n

y

an Sn

(b)

2 4 6

500

1,000

n

y

an Sn

(c)

Figure 9.11: ScaƩer plots relaƟng to the
series in Example 2.

Example 2 Exploring geometric series
Check the convergence of the following series. If the series converges, find its
sum.

1.
∞∑
n=2

(
3
4

)n

2.
∞∑
n=0

(
−1
2

)n

3.
∞∑
n=0

3n

SÊ½çã®ÊÄ

1. Since r = 3/4 < 1, this series converges. By Theorem 64, we have that
∞∑
n=0

(
3
4

)n

=
1

1− 3/4
= 4.

However, note the subscript of the summaƟon in the given series: we are
to start with n = 2. Therefore we subtract off the first two terms, giving:

∞∑
n=2

(
3
4

)n

= 4− 1− 3
4
=

9
4
.

This is illustrated in Figure 9.11(a).

2. Since |r| = 1/2 < 1, this series converges, and by Theorem 64,
∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

2
3
.

The parƟal sums of this series are ploƩed in Figure 9.11(b). Note how
the parƟal sums are not purely increasing as some of the terms of the
sequence {(−1/2)n} are negaƟve.

3. Since r > 1, the series diverges. (This makes “common sense”; we expect
the sum

1+ 3+ 9+ 27+ 81+ 243+ · · ·
to diverge.) This is illustrated in Figure 9.11(c).

Notes:
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9.2 Infinite Series

Later secƟons will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

Example 3 Telescoping series

Evaluate the sum
∞∑
n=1

(
1
n
− 1

n+ 1

)
.

SÊ½çã®ÊÄ It will help to write down some of the first few parƟal sums
of this series.

S1 =
1
1
− 1

2
= 1− 1

2

S2 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
= 1− 1

3

S3 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
= 1− 1

4

S4 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+

(
1
4
− 1

5

)
= 1− 1

5

Note howmost of the terms in each parƟal sum subtract out. In general, we see

2 4 6 8 10

0.5

1

n

y

an Sn

Figure 9.12: ScaƩer plots relaƟng to the
series of Example 3.

that Sn = 1− 1
n+ 1

. The sequence {Sn} converges, as lim
n→∞

Sn = lim
n→∞

(
1− 1

n+ 1

)
=

1, and so we conclude that
∞∑
n=1

(
1
n
− 1

n+ 1

)
= 1. ParƟal sums of the series

are ploƩed in Figure 9.12.

The series in Example 3 is an example of a telescoping series. Informally, a
telescoping series is one in which the parƟal sums reduce to just a finite number
of terms. The parƟal sum Sn did not contain n terms, but rather just two: 1 and
1/(n+ 1).

When possible, seek away towrite an explicit formula for the nth parƟal sum
Sn. This makes evaluaƟng the limit lim

n→∞
Sn much more approachable. We do so

in the next example.

Example 4 EvaluaƟng series
Evaluate each of the following infinite series.

1.
∞∑
n=1

2
n2 + 2n

2.
∞∑
n=1

ln
(
n+ 1
n

)

Notes:
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SÊ½çã®ÊÄ

1. We can decompose the fracƟon 2/(n2 + 2n) as

2
n2 + 2n

=
1
n
− 1

n+ 2
.

(See SecƟon 8.4, ParƟal FracƟonDecomposiƟon, to recall how this is done,
if necessary.)

Expressing the terms of {Sn} is now more instrucƟve:

S1 = 1−
1
3

= 1−
1
3

S2 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
= 1+

1
2
−

1
3
−

1
4

S3 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
= 1+

1
2
−

1
4
−

1
5

S4 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
= 1+

1
2
−

1
5
−

1
6

S5 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
+

(
1
5
−

1
7

)
= 1+

1
2
−

1
6
−

1
7

Weagain have a telescoping series. In each parƟal sum,most of the terms

2 4 6 8 10

0.5

1

1.5

n

y

an Sn

Figure 9.13: ScaƩer plots relaƟng to the
series of Example 4 part 1.

pair up to add to zero and we obtain the formula Sn = 1+
1
2
− 1

n+ 1
−

1
n+ 2

. Taking limits allows us to determine the convergence of the series:

lim
n→∞

Sn = lim
n→∞

(
1+

1
2
− 1

n+ 1
− 1

n+ 2

)
=

3
2
, so

∞∑
n=1

1
n2 + 2n

=
3
2
.

This is illustrated in Figure 9.13.

2. We begin by wriƟng the first few parƟal sums of the series:

S1 = ln (2)

S2 = ln (2) + ln
(
3
2

)
S3 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
S4 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)

Notes:
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9.2 Infinite Series

At first, this does not seem helpful, but recall the logarithmic idenƟty:
ln x+ ln y = ln(xy). Applying this to S4 gives:

S4 = ln (2)+ ln
(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
= ln

(
2
1
· 3
2
· 4
3
· 5
4

)
= ln (5) .

We must generalize this for Sn.

Sn = ln (2)+ln
(
3
2

)
+· · ·+ln

(
n+ 1
n

)
= ln

(
2
1
· 3
2
· · · n

n− 1
· n+ 1

n

)
= ln(n+1)

50 100

2

4

n

y

an Sn

Figure 9.14: ScaƩer plots relaƟng to the
series of Example 4 part 2.

We can conclude that {Sn} =
{
ln(n+ 1)

}
. This sequence does not con-

verge, as lim
n→∞

Sn = ∞. Therefore
∞∑
n=1

ln
(
n+ 1
n

)
= ∞; the series

diverges. Note in Figure 9.14 how the sequence of parƟal sums grows
slowly; aŌer 100 terms, it is not yet over 5. Graphically we may be fooled
into thinking the series converges, but our analysis above shows that it
does not.

We are learning about a new mathemaƟcal object, the series. As done be-
fore, we apply “old” mathemaƟcs to this new topic.

Theorem 65 ProperƟes of Infinite Series

Suppose that
∞∑
n=1

an and
∞∑
n=1

bn are convergent series, and that

∞∑
n=1

an = L,
∞∑
n=1

bn = K, and c is a constant.

1. Constant MulƟple Rule:
∞∑
n=1

c · an = c ·
∞∑
n=1

an = c · L.

2. Sum/Difference Rule:
∞∑
n=1

(
an ± bn

)
=

∞∑
n=1

an ±
∞∑
n=1

bn = L± K.

Before using this theorem, we will consider the harmonic series
∞∑
n=1

1
n
.

Notes:
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Chapter 9 Sequences and Series

Example 5 Divergence of the Harmonic Series

Show that the harmonic series
∞∑
n=1

1
n
diverges.

SÊ½çã®ÊÄ We will use a proof by contradicƟon here. Suppose the har-
monic series converges to S. That is

S = 1+
1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+

1
8
+ · · ·

We then have

S ≥ 1+
1
2
+

1
4
+

1
4
+

1
6
+

1
6
+

1
8
+

1
8
+ · · ·

= 1+
1
2
+

1
2

+
1
3

+
1
4

+ · · ·

=
1
2
+ S

This gives us S ≥ 1
2 + S which can never be true, thus our assumpƟon that

the harmonic series converges must be false. Therefore, the harmonic series
diverges.

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
secƟon, yet it sƟll may “take some geƫng used to.”

As one contemplates the behavior of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will sƟll diverge if the first term is removed.
(b) The series will sƟll diverge if the first 10 terms are removed.
(c) The series will sƟll diverge if the first 1,000,000 terms are removed.
(d) The series will sƟll diverge if any finite number of terms from any-

where in the series are removed.

These concepts are very important and lie at the heart of the next two the-
orems.

Notes:
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9.2 Infinite Series

Theorem 66 Convergence of Sequence

If the series
∞∑
n=1

an converges, then lim
n→∞

an = 0.

Proof
Let Sn = a1 + a2 + · · ·+ an. We have

Sn = a1 + a2 + · · ·+ an−1 + an
Sn = Sn−1 + an
an = Sn − Sn−1

Since
∑
n→∞

an converges, the sequence {Sn} converges. Let lim
n→∞

Sn = S. As

n→∞, n− 1 also goes to∞, so lim
n→∞

Sn−1 = S. We now have

lim
n→∞

an = lim
n→∞

(Sn − Sn−1)

= lim
n→∞

Sn − lim
n→∞

Sn−1

= S− S = 0 □

Theorem 67 Test for Divergence

If lim
n→∞

an does not exist or lim
n→∞

an ̸= 0, then the series
∞∑
n=1

an diverges.

The Test for Divergence follows from Theorem 66. If the series does not
diverge, it must converge and therefore lim

n→∞
an = 0.

Note that the two statements in Theorems 66 and 67 are really the same.
In order to converge, the limit of the terms of the sequence must approach 0; if
they do not, the series will not converge.

Looking back, we can apply this theorem to the series in Example 1. In that
example, we had {an} = {n2} and {bn} = {(−1)n+1}.

lim
n→∞

an = lim
n→∞

n2 =∞

and
lim

n→∞
bn = lim

n→∞
(−1)n+1 which does not exist.

Notes:
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Chapter 9 Sequences and Series

Thus by the Test for Divergence, both series will diverge.

Important! This theorem does not state that if lim
n→∞

an = 0 then
∞∑
n=1

an

converges. The standard example of this is the Harmonic Series, as given in Ex-
ample 5. The Harmonic Sequence, {1/n}, converges to 0; the Harmonic Series,
∞∑
n=1

1/n, diverges.

Theorem 68 Infinite Nature of Series
The convergence or divergence remains unchanged by the inserƟon or
deleƟon of any finite number of terms. That is:

1. A divergent series will remain divergent with the inserƟon or
deleƟon of any finite number of terms.

2. A convergent series will remain convergent with the inserƟon or
deleƟon of any finite number of terms. (Of course, the sum will
likely change.)

In other words, when we are only interested in the convergence or diver-
gence of a series, it is safe to ignore the first few billion terms.

Example 6 Removing Terms from the Harmonic Series

Consider once more the Harmonic Series
∞∑
n=1

1
n
which diverges; that is, the par-

Ɵal sums SN =

N∑
n=1

1
n
grow (very, very slowly) without bound. One might think

that by removing the “large” terms of the sequence that perhaps the series will
converge. This is simply not the case. For instance, the sum of the first 10 mil-
lion terms of the Harmonic Series is about 16.7. Removing the first 10 million
terms from the Harmonic Series changes the parƟal sums, effecƟvely subtract-
ing 16.7 from the sum. However, a sequence that is growing without bound will
sƟll grow without bound when 16.7 is subtracted from it.

The equaƟon below illustrates this. Even though we have subtracted off the
first 10 million terms, this only subtracts a constant off of an expression that is

Notes:
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sƟll growing to infinity. Therefore, the modified series is sƟll growing to infinity.

∞∑
n=10,000,001

1
n
= lim

N→∞

N∑
n=10,000,001

1
n
= lim

N→∞

N∑
n=1

1
n
−

10,000,001∑
n=1

1
n

= lim
N→∞

N∑
n=1

1
n
− 16.7 =∞.

This secƟon introduced us to series and defined a few special types of se-
ries whose convergence properƟes are well known. We know when a geomet-
ric series converges or diverges. Most series that we encounter are not one of
these types, but we are sƟll interested in knowingwhether or not they converge.
The next three secƟons introduce tests that help us determine whether or not
a given series converges.

Notes:
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Exercises 9.2
Terms and Concepts
1. Use your ownwords to describe how sequences and series

are related.
2. Use your own words to define a parƟal sum.

3. Given a series
∞∑
n=1

an, describe the two sequences related

to the series that are important.
4. Use your own words to explain what a geometric series is.

5. T/F: If {an} is convergent, then
∞∑
n=1

an is also convergent.

Problems

In Exercises 6–13, a series
∞∑
n=1

an is given.

(a) Give the first 5 parƟal sums of the series.
(b) Give a graph of the first 5 terms of an and Sn on the same

axes.

6.
∞∑
n=1

(−1)n

n

7.
∞∑
n=1

1
n2

8.
∞∑
n=1

cos(πn)

9.
∞∑
n=1

n

10.
∞∑
n=1

1
n!

11.
∞∑
n=1

1
3n

12.
∞∑
n=1

(
− 9
10

)n

13.
∞∑
n=1

(
1
10

)n

In Exercises 14–29, state whether the given series converges
or diverges and provide jusƟficaƟon for your conclusion.

14.
∞∑
n=0

1
5n

15.
∞∑
n=1

3n2

n(n+ 2)

16.
∞∑
n=0

6n

5n

17.
∞∑
n=1

2n

n2

18.
∞∑
n=1

√
n

19.
∞∑
n=1

n!
10n

20.
∞∑
n=1

5n − n5

5n + n5

21.
∞∑
n=1

(
1
n!

+
1
n

)

22.
∞∑
n=1

1
2n

23.
∞∑
n=1

2n + 1
2n+1

24.
∞∑
n=1

1
2n− 1

25.
∞∑
n=1

n√3

26.
∞∑
n=1

(
1+ 1

n

)n

27.
∞∑
n=1

πn

3n+1

28.
∞∑
n=1

3n + 2n

6n

29.
∞∑
n=1

3
n(n+ 1)

+
5
4n

In Exercises 30–45, a series is given.
(a) Find a formula for Sn, the nth parƟal sum of the series.
(b) Determine whether the series converges or diverges. If

it converges, state what it converges to.

30.
∞∑
n=0

1
4n

31. 13 + 23 + 33 + 43 + · · ·

32.
∞∑
n=1

(−1)nn

33.
∞∑
n=0

5
2n

34.
∞∑
n=1

e−n

35. 1− 1
3
+

1
9
− 1

27
+

1
81

+ · · ·

36.
∞∑
n=1

1
n(n+ 1)

37.
∞∑
n=1

3
n(n+ 2)
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38.
∞∑
n=1

1
(2n− 1)(2n+ 1)

39.
∞∑
n=1

ln
(

n
n+ 1

)

40.
∞∑
n=1

2n+ 1
n2(n+ 1)2

41. 1
1 · 4 +

1
2 · 5 +

1
3 · 6 +

1
4 · 7 + · · ·

42. 2+
(
1
2
+

1
3

)
+

(
1
4
+

1
9

)
+

(
1
8
+

1
27

)
+ · · ·

43.
∞∑
n=2

1
n2 − 1

44.
∞∑
n=0

(
sin 1

)n

45.
∞∑
n=1

(
2

n(n+ 2)
+

5
4n

)
In Exercises 46–49, find the values of x for which the series
converges.

46.
∞∑
n=1

xn

3n

47.
∞∑
n=1

(x+ 3)n

2n

48.
∞∑
n=1

4n

xn

49.
∞∑
n=1

(x+ 2)n

50. Show the series
∞∑
n=1

n
(2n− 1)(2n+ 1)

diverges.
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9.3 The Integral Test
Knowing whether or not a series converges is very important, especially when
we discuss Power Series in SecƟon 9.8. Theorem 64 gives criteria for when Geo-
metric series converge and Theorem 67 gives a quick test to determine if a series
diverges. There aremany important series whose convergence cannot be deter-
mined by these theorems, though, so we introduce a set of tests that allow us
to handle a broad range of series. We start with the Integral Test.

Integral Test
We stated in SecƟon 9.1 that a sequence {an} is a funcƟon a(n) whose domain
is N, the set of natural numbers. If we can extend a(n) to have the domain of
R, the real numbers, and it is both posiƟve and decreasing on [1,∞), then the

convergence of
∞∑
n=1

an is the same as
ˆ ∞

1
a(x) dx.

Theorem 69 Integral Test
Let a sequence {an} be defined by an = a(n), where a(n) is conƟnuous,

posiƟve and decreasing on [1,∞). Then
∞∑
n=1

an converges, if, and only

if,
ˆ ∞

1
a(x) dx converges. In other words:

1. If
ˆ ∞

1
a(x) dx is convergent, then

∞∑
n=1

an is convergent.

2. If
ˆ ∞

1
a(x) dx is divergent, then

∞∑
n=1

an is divergent.

Note: Theorem69does not state that
the integral and the summaƟon have
the same value.

Note that it is not necessary to start the series or the integral at n = 1. We
may use any interval [n,∞] on which a(n) is conƟnuous, posiƟve and decreas-
ing. Also the sequence {an} does not have to be strictly decreasing. It must
be ulƟmately decreasing which means it is decreasing for all n larger than some
number N.

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 9.15(a), the height of each rectangle is a(n) = an for n = 1, 2, . . .,

Notes:

484



9.3 The Integral Test

and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude thatˆ ∞

1
a(x) dx <

∞∑
n=1

an. (9.1)

In Figure 9.15(b), we draw rectangles under y = a(x)with the Right-Hand rule,

1 2 3 4 5

1

2
y = a(x)

x

y

(a)

1 2 3 4 5

1

2
y = a(x)

x

y

(b)

Figure 9.15: IllustraƟng the truth of the
Integral Test.

starƟng with n = 2. This Ɵme, the area of the rectangles is less than the area

under y = a(x), so
∞∑
n=2

an <

ˆ ∞

1
a(x) dx. Note how this summaƟon starts

with n = 2; adding a1 to both sides lets us rewrite the summaƟon starƟng with
n = 1:

∞∑
n=1

an < a1 +
ˆ ∞

1
a(x) dx. (9.2)

Combining EquaƟons (9.1) and (9.2), we have
∞∑
n=1

an < a1 +
ˆ ∞

1
a(x) dx < a1 +

∞∑
n=1

an. (9.3)

From EquaƟon (9.3) we can make the following two statements:

1. If
∞∑
n=1

an diverges, so does
ˆ ∞

1
a(x)dx (because

∞∑
n=1

an < a1+
ˆ ∞

1
a(x)dx)

2. If
∞∑
n=1

an converges, so does
ˆ ∞

1
a(x)dx (because

ˆ ∞

1
a(x)dx <

∞∑
n=1

an.)

Therefore the series and integral either both converge or both diverge. Theo-
rem 68 allows us to extend this theorem to series where a(n) is posiƟve and
decreasing on [b,∞) for some b > 1.

Watch the video:
Integral Test for Series: Why It Works at
https://youtu.be/ObiRjUFHJHo

Example 1 Using the Integral Test

Determine the convergence of
∞∑
n=1

ln n
n2

. (The terms of the sequence {an} =

{ln n/n2} and the nth parƟal sums are given in Figure 9.16.)

Notes:
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SÊ½çã®ÊÄ Figure 9.16 implies that a(n) = (ln n)/n2 is posiƟve and de-

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

n

y

an Sn

Figure 9.16: Ploƫng the sequence and
series in Example 1.

creasing on [2,∞). We can determine this analyƟcally, too. We know a(n) is
posiƟve as both ln n and n2 are posiƟve on [2,∞). To determine that a(n) is
decreasing, consider a′(n) = (1− 2 ln n)/n3, which is negaƟve for n ≥ 2. Since
a′(n) is negaƟve, a(n) is decreasing.

Applying the Integral Test, we test the convergence of
ˆ ∞

1

ln x
x2

dx. Integrat-

ing this improper integral requires the use of IntegraƟon by Parts, with u = ln x
and dv = 1/x2 dx.

ˆ ∞

1

ln x
x2

dx = lim
t→∞

ˆ t

1

ln x
x2

dx

= lim
t→∞

(
−1
x
ln x
∣∣∣t
1
+

ˆ t

1

1
x2

dx
)

= lim
t→∞

(
−1
x
ln x− 1

x

∣∣∣t
1

)
= lim

t→∞

(
1− 1

t
− ln t

t

)
. Apply L’Hôpital’s Rule:

= 1− 0− lim
t→∞

1
t

= 1

Since
ˆ ∞

1

ln x
x2

dx converges, so does
∞∑
n=1

ln n
n2

.

Notes:
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p–Series
Another important type of series is the p-series.

DefiniƟon 37 p–Series, General p–Series

1. A p–series is a series of the form
∞∑
n=1

1
np

.

2. A general p–series is a series of the form
∞∑
n=1

1
(an+ b)p

,

where a and b are real numbers, and an+ b ̸= 0 for all n.

Like geometric series, one of the nice things about p–series is that they have
easy to determine convergence properƟes.

Theorem 70 Convergence of General p–Series
Assume a and b are real numbers and an+ b ̸= 0 for all n.

A general p–series
∞∑
n=1

1
(an+ b)p

will converge if and only if, p > 1.

Proof
Consider the integral

ˆ ∞

1

1
(ax+ b)p

dx; assuming p ̸= 1,

ˆ ∞

1

1
(ax+ b)p

dx = lim
t→∞

ˆ t

1

1
(ax+ b)p

dx

= lim
t→∞

1
a(1− p)

(ax+ b)1−p
∣∣∣t
1

= lim
t→∞

1
a(1− p)

(
(at+ b)1−p − (a+ b)1−p).

Notes:
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This limit converges if and only if, p > 1. It is easy to show that the integral also
diverges in the case of p = 1. (This result is similar to the work preceding Key
Idea 31.)

Therefore
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1. □

Example 2 Determining convergence of series
Determine the convergence of the following series.

1.
∞∑
n=1

1
n

2.
∞∑
n=1

1
n2

3.
∞∑
n=1

1√
n

4.
∞∑
n=1

(−1)n

n

5.
∞∑

n=11

1
( 12n− 5)3

6.
∞∑
n=1

1
2n

SÊ½çã®ÊÄ

1. This is a p–series with p = 1. By Theorem 70, this series diverges.
This series is a famous series, called the Harmonic Series, so named be-
cause of its relaƟonship to harmonics in the study of music and sound.

2. This is a p–series with p = 2. By Theorem 70, it converges. Note that
the theorem does not give a formula by which we can determine what
the series converges to; we just know it converges. A famous, unexpected
result is that this series converges to π2/6.

3. This is a p–series with p = 1/2; the theorem states that it diverges.

4. This is not a p–series; the definiƟon does not allow for alternaƟng signs.
Therefore we cannot apply Theorem 70. Wewill consider this series again
in SecƟon 9.5. (Another famous result states that this series, the Alternat-
ing Harmonic Series, converges to ln 2.)

5. This is a general p–series with p = 3, therefore it converges.

6. This is not a p–series, but a geometric series with r = 1/2. It converges.

In the next secƟon we consider two more convergence tests, both compari-
son tests. That is, we determine the convergence of one series by comparing it
to another series with known convergence.

Notes:
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Exercises 9.3
Terms and Concepts
1. In order to apply the Integral Test to a sequence {an}, the

funcƟon a(n) = an must be , and .
2. T/F: The Integral Test can be used to determine the sum of

a convergent series.

Problems
In Exercises 3–10, use the Integral Test to determine the con-
vergence of the given series.

3.
∞∑
n=1

1
2n

4.
∞∑
n=1

1
n4

5.
∞∑
n=1

n
n2 + 1

6.
∞∑
n=2

1
n ln n

7.
∞∑
n=1

1
n2 + 1

8.
∞∑
n=2

1
n(ln n)2

9.
∞∑
n=1

n
2n

10.
∞∑
n=1

ln n
n3

In Exercises 11–14, find the value(s) of p for which the series is
convergent.

11.
∞∑
i=2

1
n(ln n)p

12.
∞∑
i=1

n(1+ n2)p

13.
∞∑
i=1

ln n
np

14.
∞∑
i=3

1
n ln n[ln(ln n)]p
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9.4 Comparison Tests
In this secƟon we will be comparing a given series with series that we know
either converge or diverge.

Theorem 71 Direct Comparison Test
Let {an} and {bn} be posiƟve sequences where an ≤ bn for all n ≥ N,
for some N ≥ 1.

1. If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

2. If
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

Note: A sequence {an} is a posiƟve
sequence if an > 0 for all n.

Because of Theorem 68, any theorem
that relies on a posiƟve sequence sƟll
holds true when an > 0 for all but a
finite number of values of n.

Proof
First consider the parƟal sums of each series.

Sn =
n∑

i=1

ai and Tn =
n∑

i=1

bi

Since both series have posiƟve terms we know that

Sn ≤ Sn + an+1 =

n∑
i=1

ai + an+1 =

n+1∑
i=1

ai = Sn+1

and

Tn ≤ Tn + bn+1 =

n∑
i=1

bi + bn+1 =

n+1∑
i=1

bi = Tn+1

Therefore, both of the sequences of parƟal sums,{Sn} and {Tn}, are increasing.
We also know that because an ≤ bn for all n ≥ N that we must have Sn ≤ Tn for
all n ≥ N.

For the first part, assume that
∞∑
n=1

bn converges. Since bn ≥ 0 we know that

Tn =
n∑

i=1

bi ≤
∞∑
i=1

bi

Notes:
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From above we know that Sn ≤ Tn for all n ≥ N so we also have

Sn ≤
∞∑
i=1

bi

Because
∞∑
i=1

bi converges it must have a finite value and {Sn} is bounded above.

We also showed that {Sn} is increasing so by Theorem 63 we know {Sn} con-

verges and so
∞∑
n=1

an converges.

For the second part, assume that
∞∑
n=1

an diverges. Because an ≥ 0wemust have

lim
n→∞

Sn = ∞. We also know that for all n, Sn ≤ Tn and so we also know that

lim
n→∞

Tn =∞. Therefore, Tn is a divergent sequence and so
∞∑
i=1

bn diverges. □

Watch the video:
Direct Comparison Test / Limit Comparison Test for
Series — Basic Info at
https://youtu.be/LAHKu3B-1zE

Example 1 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
3n + n2

.

SÊ½çã®ÊÄ This series is neither a geometric or p-series, but seems re-
lated. We predict it will converge, so we look for a series with larger terms that
converges. (Note too that the Integral Test seems difficult to apply here.)

Since 3n < 3n + n2,
1
3n

>
1

3n + n2
for all n ≥ 1. The series

∞∑
n=1

1
3n

is a

convergent geometric series; by Theorem 71,
∞∑
n=1

1
3n + n2

converges.

Notes:
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Example 2 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

n3

n4 − 1
.

SÊ½çã®ÊÄ We know the Harmonic Series
∞∑
n=1

1
n
diverges, and it seems

that the given series is closely related to it, hence we predict it will diverge.

We have
n3

n4 − 1
>

n3

n4
=

1
n
for all n ≥ 1.

The Harmonic Series,
∞∑
n=1

1
n
, diverges, so we conclude that

∞∑
n=1

n3

n4 − 1
di-

verges as well.

The concept of direct comparison is powerful and oŌen relaƟvely easy to
apply. PracƟce helps one develop the necessary intuiƟon to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑
n=1

n3

n4 + 1
. It is very similar to the divergent series given in Ex-

ample 2. We suspect that it also diverges, as
1
n
≈ n3

n4 + 1
for large n. How-

ever, the inequality that we naturally want to use “goes the wrong way”: since
n3

n4 + 1
<

n3

n4
=

1
n
for all n ≥ 1. The given series has terms less than the terms

of a divergent series, and we cannot conclude anything from this.

Fortunately, we can apply another test to the given series to determine its
convergence.

Limit Comparison Test

Notes:
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9.4 Comparison Tests

Theorem 72 Limit Comparison Test
Let {an} and {bn} be posiƟve sequences.

1. If lim
n→∞

an
bn

= L, where L is a posiƟve real number, then
∞∑
n=1

an and

∞∑
n=1

bn either both converge or both diverge.

2. If lim
n→∞

an
bn

= 0, then if
∞∑
n=1

bn converges, then so does
∞∑
n=1

an.

3. If lim
n→∞

an
bn

=∞, then if
∞∑
n=1

bn diverges, then so does
∞∑
n=1

an.

Proof

1. We have 0 < L <∞ so we can find two posiƟve numbers,m andM such
thatm < L < M. Because L = lim

n→∞

an
bn

we know that for large enough n

the quoƟent an
bn must be close to L. So there must be a posiƟve integer N

such that if n > Nwe also havem <
an
bn

< M. MulƟply by bn and we have

mbn < an < Mbn for n > N. If
∞∑
n=1

bn diverges, then so does
∞∑
n=1

mbn.

Also sincembn < an for sufficiently large n, by the Comparison Test
∞∑
n=1

an

also diverges.

Similarly, if
∞∑
n=1

bn converges, then so does
∞∑
n=1

Mbn. Since an < Mbn for

sufficiently large n, by the Comparison Test
∞∑
n=1

an also converges.

2. Since lim
n→∞

an = 0, there is a number N > 0 such that∣∣∣∣anbn − 0
∣∣∣∣ < 1 for all n > N

an < bn since an and bn are posiƟve

Notes:
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Now since
∞∑
n=1

bn converges,
∞∑
n=1

an converges by the Comparison Test.

3. Since lim
n→∞

an =∞, there is a number N > 0 such that

an
bn

> 1 for all n > N

an > bn for all n > N

Now since
∞∑
n=1

bn diverges,
∞∑
n=1

an diverges by the Comparison Test. □

Theorem 72 is most useful when the convergence of the series from {bn} is
known and we are trying to determine the convergence of the series from {an}.

We use the Limit Comparison Test in the next example to examine the series
∞∑
n=1

n3

n4 + 1
which moƟvated this new test.

Example 3 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

n3

n4 + 1
using the Limit Comparison Test.

SÊ½çã®ÊÄ We compare the terms of
∞∑
n=1

n3

n4 + 1
to the terms of the

Harmonic Sequence
∞∑
n=1

1
n
:

lim
n→∞

n3/(n4 + 1)
1/n

= lim
n→∞

n4

n4 + 1
= lim

n→∞

1
1+ 1/n4

= 1.

Since the Harmonic Series diverges, we conclude that
∞∑
n=1

n3

n4 + 1
diverges as

well.

Example 4 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
3n − n2

Notes:
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SÊ½çã®ÊÄ This series is similar to the one in Example 1, but nowwe are
considering “3n − n2” instead of “3n + n2.” This difference makes applying the
Direct Comparison Test difficult.

Instead, weuse the Limit Comparison Test and comparewith the series
∞∑
n=1

1
3n

:

lim
n→∞

1/(3n − n2)
1/3n

= lim
n→∞

3n

3n − n2
L’H
= lim

n→∞

ln 3 · 3n

ln 3 · 3n − 2n
L’H
= lim

n→∞

(ln 3)23n

(ln 3)23n − 2
L’H
= lim

n→∞

(ln 3)33n

(ln 3)33n
= 1.

We know
∞∑
n=1

1
3n

is a convergent geometric series, hence
∞∑
n=1

1
3n − n2

converges

as well.

As menƟoned before, pracƟce helps one develop the intuiƟon to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate exponenƟals, which dominate algebraic func-
Ɵons (e.g., polynomials), which dominate logarithms. In the previous example,

the dominant term of
1

3n − n2
was 3n, so we compared the series to

∞∑
n=1

1
3n

. It is

hard to apply the Limit Comparison Test to series containing factorials, though,
as we have not learned how to apply L’Hôpital’s Rule to n!.

Example 5 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

√
n+ 3

n2 − n+ 1
.

SÊ½çã®ÊÄ We naïvely aƩempt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is 1/n2. Knowing

that
∞∑
n=1

1
n2

converges, we aƩempt to apply the Limit Comparison Test:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n2
= lim

n→∞

n2(
√
n+ 3)

n2 − n+ 1
=∞ (Apply L’Hôpital’s Rule).

Notes:
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Theorem 72 part (3) only applies when
∞∑
n=1

bn diverges; in our case, it con-

verges. UlƟmately, our test has not revealed anything about the convergence
of our series.

The problem is that we chose a poor series with which to compare. Since
the numerator and denominator of the terms of the series are both algebraic
funcƟons, we should have compared our series to the dominant term of the
numerator divided by the dominant term of the denominator.

The dominant term of the numerator is n1/2 and the dominant term of the
denominator is n2. Thus we should compare the terms of the given series to
n1/2/n2 = 1/n3/2:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n3/2
= lim

n→∞

n3/2(
√
n+ 3)

n2 − n+ 1
= 1 (Apply L’Hôpital’s Rule).

Since the p-series
∞∑
n=1

1
n3/2

converges, we conclude that
∞∑
n=1

√
n+ 3

n2 − n+ 1
con-

verges as well.

The tests we have encountered so far has required that we analyze series
from posiƟve sequences (the absolute value of the raƟo and the root tests con-
verts the sequence into a posiƟve sequence). The next secƟon relaxes this re-
stricƟon by considering alternaƟng series, where the underlying sequence has
terms that alternate between being posiƟve and negaƟve.
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Exercises 9.4
Terms and Concepts

1. Suppose
∞∑
n=0

an is convergent, and there are sequences

{bn} and {cn} such that bn ≤ an ≤ cn for all n. What

can be said about the series
∞∑
n=0

bn and
∞∑
n=0

cn?

Problems
In Exercises 2–6, use the Direct Comparison Test to determine
the convergence of the given series; state what series is used
for comparison.

2.
∞∑
n=1

1
n2 + 3n− 5

3.
∞∑
n=1

1
4n + n2 − n

4.
∞∑
n=1

ln n
n

5.
∞∑
n=1

1
n! + n

6.
∞∑
n=2

1√
n2 − 1

In Exercises 7–11, use the Limit Comparison Test to determine
the convergence of the given series; state what series is used
for comparison.

7.
∞∑
n=1

1
n2 − 3n+ 5

8.
∞∑
n=1

1
4n − n2

9.
∞∑
n=4

ln n
n− 3

10.
∞∑
n=1

1√
n2 + n

11.
∞∑
n=1

1
n+

√
n

In Exercises 12–24, use the Direct Comparison Test or the Limit
Comparison Test to determine the convergence of the given
series. State which series is used for comparison.

12.
∞∑
n=5

1√
n− 2

13.
∞∑
n=1

n2 + n+ 1
n3 − 5

14.
∞∑
n=1

n− 10
n2 + 10n+ 10

15.
∞∑
n=1

sin
(
1/n
)

16.
∞∑
n=1

2n

5n + 10

17.
∞∑
n=1

n+ 5
n3 − 5

18.
∞∑
n=1

n
n4 + 1

19.
∞∑
n=1

n− 1
n4n

20.
∞∑
n=2

n
n2 − 1

21.
∞∑
n=1

1√
n+ 100

22.
∞∑
n=2

1
n2 ln n

23.
∞∑
n=1

√
n+ 3

n2 + 17

24.
∞∑
n=1

1+ sin n
10n

25. Given that
∞∑
n=1

an converges, state which of the following

series converges, may converge, or does not converge.

(a)
∞∑
n=1

an
n

(b)
∞∑
n=1

anan+1

(c)
∞∑
n=1

(an)2

(d)
∞∑
n=1

nan

(e)
∞∑
n=1

1
an

In Exercises 26–33, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

26.
∞∑
n=1

n2

2n

27.
∞∑
n=1

1
(2n+ 5)3

28.
∞∑
n=1

n!
10n
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29.
∞∑
n=1

ln n
n!

30.
∞∑
n=1

1
3n + n

31.
∞∑
n=1

n− 2
10n+ 5

32.
∞∑
n=1

3n

n3

33.
∞∑
n=1

cos(1/n)√
n
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9.5 AlternaƟng Series and Absolute Convergence
The series convergence tests we have used require that the underlying sequence
{an} be a posiƟve sequence. (We can relax this with Theorem 68 and state that
there must be an N > 0 such that an > 0 for all n > N; that is, {an} is posiƟve
for all but a finite number of values of n.)

In this secƟon we explore series whose summaƟon includes negaƟve terms.
We start with a very specific form of series, where the terms of the summaƟon
alternate between being posiƟve and negaƟve.

DefiniƟon 38 AlternaƟng Series
Let {bn} be a posiƟve sequence. An alternaƟng series is a series of
either the form

∞∑
n=1

(−1)nbn or
∞∑
n=1

(−1)n+1bn.

We want to think that an alternaƟng sequence {an} is related to a posiƟve
sequence {bn} by an = (−1)nbn.

Recall the termsofHarmonic Series come from theHarmonic Sequence {bn} =
{1/n}. An important alternaƟng series is the AlternaƟng Harmonic Series:

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

Geometric Series can also be alternaƟng series when r < 0. For instance, if
r = −1/2, the geometric series is

∞∑
n=0

(
−1
2

)n

= 1− 1
2
+

1
4
− 1

8
+

1
16
− 1

32
+ · · ·

Theorem 64 states that geometric series converge when |r| < 1 and gives

the sum:
∞∑
n=0

rn =
1

1− r
. When r = −1/2 as above, we find

∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

1
3/2

=
2
3
.

Apowerful convergence theoremexists for other alternaƟng series thatmeet
a few condiƟons.

Notes:
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Theorem 73 AlternaƟng Series Test
Let {bn} be a posiƟve, decreasing sequence where lim

n→∞
bn = 0. Then

∞∑
n=1

(−1)nbn and
∞∑
n=1

(−1)n+1bn

converge.

The basic idea behind Theorem 73 is illustrated in Figure 9.17. A posiƟve,
decreasing sequence {bn} is shown along with the parƟal sums

Sn =
n∑

i=1

(−1)i+1bi = b1 − b2 + b3 − b4 + · · ·+ (−1)n+1bn.

Because {bn} is decreasing, the amount by which Sn bounces up and down de-
creases. Moreover, the odd terms of Sn form a decreasing, bounded sequence,
while the even termsof Sn forman increasing, bounded sequence. Since bounded,
monotonic sequences converge (see Theorem 63) and the terms of {bn} ap-
proach 0, we will show below the odd and even terms of Sn converge to the
same common limit L, the sum of the series.

L

2 4 6 8 10

0.5

1

n

y

bn Sn

Figure 9.17: IllustraƟng convergence with
the AlternaƟng Series Test.

Proof
Because {bn} is a decreasing sequence, we have bn−bn+1 ≥ 0. Wewill consider
the even and odd parƟal sums separately. First consider the even parƟal sums.

S2 = b1 − b2 ≥ 0 since b2 ≤ b1
S4 = b1 − b2 + b3 − b4 = S2 + b3 − b4 ≥ S2 since b3 − b4 ≥ 0
S6 = S4 + b5 − b6 ≥ S4 since b5 − b6 ≥ 0
...

S2n = S2n−2 + b2n−1 − b2n ≥ S2n−2 since b2n−1 − b2n ≥ 0

We now have
0 ≤ S2 ≤ S4 ≤ S6 ≤ · · · ≤ S2n ≤ · · ·

so {S2n} is an increasing sequence. But we can also write

S2n = b1 − b2 + b3 − b4 + b5 − · · · − b2n−2 + b2n−1 − b2n
= b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n−2 − b2n−1)− b2n
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9.5 AlternaƟng Series and Absolute Convergence

Each term in parentheses is posiƟve and b2n is posiƟve so we have S2n ≤ b1 for
all n. We now have the sequence of even parƟal sums, {S2n}, is increasing and
bounded above so by Theorem 63 {S2n} converges. Since we know it converges,
we will assume it’s limit is L or

lim
n→∞

S2n = L

Next we determine the limit of the sequence of odd parƟal sums.

lim
n→∞

S2n+1 = lim
n→∞

(S2n + b2n+1)

= lim
n→∞

S2n + lim
n→∞

b2n+1

= L+ 0
= L

Both the even and odd parƟal sums converge to s so we have lim
n→∞

Sn = L, which
means the series is convergent. □

Watch the video:
AlternaƟng Series — Another Example 4 at
https://youtu.be/aOiZvfFAMW8

Example 1 Applying the AlternaƟng Series Test
Determine if the AlternaƟng Series Test applies to each of the following series.

1.
∞∑
n=1

(−1)n+1 1
n

2.
∞∑
n=2

(−1)n ln n
n

3.
∞∑
n=1

(−1)n+1 |sin n|
n2

SÊ½çã®ÊÄ

1. This is the AlternaƟng Harmonic Series as seen previously. The underlying
sequence is {bn} = {1/n}, which is posiƟve, decreasing, and approaches
0 as n → ∞. Therefore we can apply the AlternaƟng Series Test and
conclude this series converges.
While the test does not state what the series converges to, we will see

later that
∞∑
n=1

(−1)n+1 1
n
= ln 2.
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2. The underlying sequence is {bn} = {ln n/n}. This is posiƟve for n ≥ 2 and

lim
n→∞

ln n
n

= lim
n→∞

1
n

= 0 (use L’Hôpital’s Rule). However, the sequence
is not decreasing for all n. It is straighƞorward to compute b1 ≈ 0.347,
b2 ≈ 0.366, and b3 ≈ 0.347: the sequence is increasing for at least the
first 2 terms.

We do not immediately conclude that we cannot apply the AlternaƟng
Series Test. Rather, consider the long–term behavior of {bn}. TreaƟng
bn = b(n) as a conƟnuous funcƟon of n defined on [2,∞), we can take
its derivaƟve:

b ′(n) =
1− ln n

n2
.

The derivaƟve is negaƟve for all n ≥ 3 (actually, for all n > e), mean-
ing b(n) = bn is decreasing on [3,∞). We can apply the AlternaƟng
Series Test to the series when we start with n = 3 and conclude that
∞∑
n=3

(−1)n ln n
n

converges; adding the terms with n = 2 does not change

the convergence (i.e., we apply Theorem 68).

The important lesson here is that as before, if a series fails to meet the
criteria of the AlternaƟng Series Test on only a finite number of terms, we
can sƟll apply the test.

3. The underlying sequence is {bn} = {|sin n| /n2}. This sequence is posiƟve
and approaches 0 as n → ∞. However, it is not a decreasing sequence;
the value of |sin n| oscillates between 0 and 1 as n → ∞. We cannot
remove a finite number of terms to make {bn} decreasing, therefore we
cannot apply the AlternaƟng Series Test.

Keep in mind that this does not mean we conclude the series diverges;
in fact, it does converge. We are just unable to conclude this based on
Theorem 73.

One of the famous results of mathemaƟcs is that the Harmonic Series,
∞∑
n=1

1
n

diverges, yet the AlternaƟng Harmonic Series,
∞∑
n=1

(−1)n+1 1
n
, converges. The

noƟon that alternaƟng the signs of the terms in a series can make a series con-
verge leads us to the following definiƟons.

Notes:
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DefiniƟon 39 Absolute and CondiƟonal Convergence

1. A series
∞∑
n=1

an converges absolutely if
∞∑
n=1
|an| converges.

2. A series
∞∑
n=1

an converges condiƟonally if
∞∑
n=1

an converges but

∞∑
n=1
|an| diverges.

Note: In DefiniƟon 39,
∞∑
n=1

an is not

necessarily an alternaƟng series; it
just may have some negaƟve terms.

Thus we say the AlternaƟng Harmonic Series converges condiƟonally.

Example 2 Determining absolute and condiƟonal convergence.
Determine if the following series converge absolutely, condiƟonally, or diverge.

1.
∞∑
n=1

(−1)n n+ 3
n2 + 2n+ 5

2.
∞∑
n=1

(−1)n n
2 + 2n+ 5

2n

3.
∞∑
n=3

(−1)n 3n− 3
5n− 10

SÊ½çã®ÊÄ

1. We can show the series
∞∑
n=1

∣∣∣∣(−1)n n+ 3
n2 + 2n+ 5

∣∣∣∣ = ∞∑
n=1

n+ 3
n2 + 2n+ 5

diverges using the Limit Comparison Test, comparing with 1/n.

The series
∞∑
n=1

(−1)n n+ 3
n2 + 2n+ 5

converges using the AlternaƟng Series

Test; we conclude it converges condiƟonally.

2. We can show the series
∞∑
n=1

∣∣∣∣(−1)n n2 + 2n+ 5
2n

∣∣∣∣ = ∞∑
n=1

n2 + 2n+ 5
2n

converges using the RaƟo Test.

Therefore we conclude
∞∑
n=1

(−1)n n
2 + 2n+ 5

2n
converges absolutely.
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3. The series
∞∑
n=3

∣∣∣∣(−1)n 3n− 3
5n− 10

∣∣∣∣ = ∞∑
n=3

3n− 3
5n− 10

diverges using the Test for Divergence, so it does not converge absolutely.

The series
∞∑
n=3

(−1)n 3n− 3
5n− 10

fails the condiƟons of the AlternaƟng Series

Test as (3n− 3)/(5n− 10) does not approach 0 as n→∞. We can state
further that this series diverges; as n→∞, the series effecƟvely adds and
subtracts 3/5 over and over. This causes the sequence of parƟal sums to
oscillate and not converge.

Therefore the series
∞∑
n=1

(−1)n 3n− 3
5n− 10

diverges.

Knowing that a series converges absolutely allows us to make two impor-
tant statements, given in the following theorem. The first is that absolute con-

vergence is “stronger” than regular convergence. That is, just because
∞∑
n=1

an

converges, we cannot conclude that
∞∑
n=1

|an| will converge, but knowing a series

converges absolutely tells us that
∞∑
n=1

an will converge.

Theorem 74 Absolute Convergence Theorem

Let
∞∑
n=1

an be a series that converges absolutely.

1.
∞∑
n=1

an converges.

2. Let {bn} be any rearrangement of the sequence {an}. Then

∞∑
n=1

bn =
∞∑
n=1

an.

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be posiƟve. By taking the absolute value of the
terms of a series where not all terms are posiƟve, we are oŌen able to apply an
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appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+1+2.) Onemay be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affecƟng
the sum.

In Example 2, we determined the series in part 2 converges absolutely. The-
orem 74 tells us the series converges (which we could also determine using the
AlternaƟng Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condiƟon-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named aŌer Bernhard Riemann)
states that any condiƟonally convergent series can have its terms rearranged so
that the sum is any desired value or infinity.

Before we consider an example, we state the following theorem that illus-
trates how the alternaƟng structure of an alternaƟng series is a powerful tool
when approximaƟng the sum of a convergent series.

Theorem 75 The AlternaƟng Series ApproximaƟon Theorem
Let {bn} be a sequence that saƟsfies the hypotheses of the AlternaƟng
Series Test, and let Sn and L be the nth parƟal sums and sum, respec-

Ɵvely, of either
∞∑
n=1

(−1)nbn or
∞∑
n=1

(−1)n+1bn. Then

1. |Sn − L| < bn+1, and

2. L is between Sn and Sn+1.

Part 1 of Theorem 75 states that the nth parƟal sum of a convergent alter-
naƟng series will be within bn+1 of its total sum. Consider the alternaƟng se-

ries we looked at before the statement of the theorem,
∞∑
n=1

(−1)n+1

n2
. Since

b14 = 1/142 ≈ 0.0051, we know that S13 is within 0.0051 of the total sum.
Moreover, Part 2 of the theorem states that since S13 ≈ 0.8252 and S14 ≈

0.8201, we know the sum L lies between 0.8201 and 0.8252. One use of this is
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the knowledge that S14 is accurate to two places aŌer the decimal.
Some alternaƟng series converge slowly. In Example 1 we determined the

series
∞∑
n=2

(−1)n+1 ln n
n

converged. With n = 1001, we find ln n/n ≈ 0.0069,

meaning that S1000 ≈ 0.1633 is accurate to one, maybe two, places aŌer the
decimal. Since S1001 ≈ 0.1564, we know the sum L is 0.1564 ≤ L ≤ 0.1633.

Example 3 ApproximaƟng the sum of convergent alternaƟng series
Approximate the sum of the following series, accurate to within 0.001.

1.
∞∑
n=1

(−1)n+1 1
n3

2.
∞∑
n=1

(−1)n+1 ln n
n

.

SÊ½çã®ÊÄ

1. Using Theorem 75, we want to find n where 1/n3 < 0.001:

1
n3
≤ 0.001 =

1
1000

n3 ≥ 1000

n ≥ 3
√
1000

n ≥ 10.

Let L be the sum of this series. By Part 1 of the theorem, |S9 − L| < b10 =
1/1000. We can compute S9 = 0.902116, which our theorem states is
within 0.001 of the total sum.

We can use Part 2 of the theorem to obtain an even more accurate result.
Aswe know the 10th termof the series is−1/1000, we can easily compute
S10 = 0.901116. Part 2 of the theorem states that L is between S9 and S10,
so 0.901116 < L < 0.902116.

2. We want to find n where ln(n)/n < 0.001. We start by solving ln(n)/n =
0.001 for n. This cannot be solved algebraically, so we will use Newton’s
Method to approximate a soluƟon.

Let f(x) = ln(x)/x− 0.001; we want to know where f(x) = 0. We make a
guess that xmust be “large,” so our iniƟal guess will be x1 = 1000. Recall
how Newton’s Method works: given an approximate soluƟon xn, our next
approximaƟon xn+1 is given by

xn+1 = xn −
f(xn)
f ′(xn)

.
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We find f ′(x) =
(
1− ln(x)

)
/x2. This gives

x2 = 1000− ln(1000)/1000− 0.001(
1− ln(1000)

)
/10002

= 2000.

Using a computer, we find that Newton’s Method seems to converge to a
soluƟon x = 9118.01 aŌer 8 iteraƟons. Taking the next integer higher, we
have n = 9119, where ln(9119)/9119 = 0.000999903 < 0.001.
Again using a computer, we find S9118 = −0.160369. Part 1 of the theo-
rem states that this is within 0.001 of the actual sum L. Already knowing
the 9,119th term,we can compute S9119 = −0.159369,meaning−0.159369 <
L < −0.160369.

NoƟce how the first series converged quite quickly, where we needed only 10
terms to reach the desired accuracy, whereas the second series took over 9,000
terms.

We now consider the AlternaƟng Harmonic Series once more. We have
stated that

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
· · · = ln 2,

(see Example 1).
Consider the rearrangement where every posiƟve term is followed by two

negaƟve terms:

1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
· · ·

(Convince yourself that these are exactly the same numbers as appear in the
AlternaƟng Harmonic Series, just in a different order.) Now group some terms
and simplify:(

1− 1
2

)
− 1

4
+

(
1
3
− 1

6

)
− 1

8
+

(
1
5
− 1

10

)
− 1

12
+ · · · =

1
2
− 1

4
+

1
6
− 1

8
+

1
10
− 1

12
+ · · · =

1
2

(
1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

)
=

1
2
ln 2.

By rearranging the terms of the series, we have arrived at a different sum.
(One could try to argue that the AlternaƟng Harmonic Series does not actually
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converge to ln 2, because rearranging the terms of the series shouldn’t change
the sum. However, the AlternaƟng Series Test proves this series converges to L,
for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the AlternaƟng Series ApproximaƟon Theorem
quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We menƟoned earlier that the Integral Test did not work well with series
containing factorial terms. The next secƟon introduces the RaƟo Test, which
does handle such series well. We also introduce the Root Test, which is good for
series where each term is raised to a power.
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Exercises 9.5
Terms and Concepts

1. Why is
∞∑
n=1

sin n not an alternaƟng series?

2. A series
∞∑
n=1

(−1)nan convergeswhen {an} is ,

and lim
n→∞

an = .

3. Give an example of a series where
∞∑
n=0

an converges but
∞∑
n=0

|an| does not.

4. The sum of a convergent series can be changed by
rearranging the order of its terms.

Problems

In Exercises 5–20, an alternaƟng series
∞∑
n=i

an is given.

(a) Determine if the series converges or diverges.

(b) Determine if
∞∑
n=0

|an| converges or diverges.

(c) If
∞∑
n=0

an converges, determine if the convergence is

condiƟonal or absolute.

5.
∞∑
n=1

(−1)n+1

n2

6.
∞∑
n=1

(−1)n+1
√
n!

7.
∞∑
n=0

(−1)n n+ 5
3n− 5

8.
∞∑
n=1

(−1)n 2
n

n2

9.
∞∑
n=0

(−1)n+1 3n+ 5
n2 − 3n+ 1

10.
∞∑
n=1

(−1)n

ln n+ 1

11.
∞∑
n=2

(−1)n n
ln n

12.
∞∑
n=1

(−1)n+1

1+ 3+ 5+ · · ·+ (2n− 1)

13.
∞∑
n=1

cos
(
πn
)

14.
∞∑
n=1

sin
(
(n+ 1/2)π

)
n ln n

15.
∞∑
n=0

(
−2
3

)n

16.
∞∑
n=0

(−e)−n

17.
∞∑
n=0

(−1)nn2

n!

18.
∞∑
n=0

(−1)n2−n2

19.
∞∑
n=1

(−1)n√
n

20.
∞∑
n=1

(−1000)n

n!

Let Sn be the nth parƟal sum of a series. In Exercises 21–24, a
convergent alternaƟng series is given and a value of n. Com-
pute Sn and Sn+1 and use these values to find bounds on the
sum of the series.

21.
∞∑
n=1

(−1)n

ln(n+ 1)
, n = 5

22.
∞∑
n=1

(−1)n+1

n4
, n = 4

23.
∞∑
n=0

(−1)n

n!
, n = 6

24.
∞∑
n=0

(
−1
2

)n

, n = 9

In Exercises 25–28, a convergent alternaƟng series is given
along with its sum and a value of ε. Use Theorem 75 to find
n such that the nth parƟal sum of the series is within ε of the
sum of the series.

25.
∞∑
n=1

(−1)n+1

n4
=

7π4

720
, ε = 0.001

26.
∞∑
n=0

(−1)n

n!
=

1
e
, ε = 0.0001

27.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
, ε = 0.001

28.
∞∑
n=0

(−1)n

(2n)!
= cos 1, ε = 10−8
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9.6 RaƟo and Root Tests

Theorem 67 states that if a series
∞∑
n=1

an converges, then lim
n→∞

an = 0. That is,

the terms of {an} must get very small. Not only must the terms approach 0,
they must approach 0 “fast enough”: while lim

n→∞
1/n = 0, the Harmonic Series

∞∑
n=1

1
n
diverges as the terms of {1/n} do not approach 0 “fast enough.”

The comparison tests of SecƟon 9.4 determine convergence by comparing
terms of a series to terms of another series whose convergence is known. This
secƟon introduces the RaƟo and Root Tests, which determine convergence by
analyzing the terms of a series to see if they approach 0 “fast enough.”

RaƟo Test

Theorem 76 RaƟo Test
Let {an} be a sequence where lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L =∞, then
∞∑
n=1

an diverges.

3. If L = 1, the RaƟo Test is inconclusive.

The principle of the RaƟo Test is this: if lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then for

large n, each term of {an} is significantly smaller than its previous term which is
enough to ensure convergence. A full proof canbe found athttp://tutorial.
math.lamar.edu/Classes/CalcII/RatioTest.aspx.

Watch the video:
Using the RaƟo Test to Determine if a Series Con-
verges #1 at
https://youtu.be/iy8mhbZTY7g
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9.6 RaƟo and Root Tests

Example 1 Applying the RaƟo Test
Use the RaƟo Test to determine the convergence of the following series:

1.
∞∑
n=1

2n

n!
2.

∞∑
n=1

3n

n3
3.

∞∑
n=1

1
n2 + 1

.

SÊ½çã®ÊÄ

1.
∞∑
n=1

2n

n!
: lim

n→∞

2n+1/(n+ 1)!
2n/n!

= lim
n→∞

2n+1n!
2n(n+ 1)!

= lim
n→∞

2
n+ 1

= 0.

Since the limit is 0 < 1, by the RaƟo Test
∞∑
n=1

2n

n!
converges.

2.
∞∑
n=1

3n

n3
: lim

n→∞

3n+1/(n+ 1)3

3n/n3
= lim

n→∞

3n+1n3

3n(n+ 1)3

= lim
n→∞

3n3

(n+ 1)3

= 3.

Since the limit is 3 > 1, by the RaƟo Test
∞∑
n=1

3n

n3
diverges.

3.
∞∑
n=1

1
n2 + 1

: lim
n→∞

1/
(
(n+ 1)2 + 1

)
1/(n2 + 1)

= lim
n→∞

n2 + 1
(n+ 1)2 + 1

= 1.

Since the limit is 1, the RaƟo Test is inconclusive. We can easily show this
series converges using the Direct or Limit Comparison Tests, with each

comparing to the series
∞∑
n=1

1
n2

.

The RaƟo Test is not effecƟve when the terms of a series only contain al-
gebraic funcƟons (e.g., polynomials). It is most effecƟve when the terms con-
tain some factorials or exponenƟals. The previous example also reinforces our
developing intuiƟon: factorials dominate exponenƟals, which dominate alge-
braic funcƟons, which dominate logarithmic funcƟons. In Part 1 of the example,
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the factorial in the denominator dominated the exponenƟal in the numerator,
causing the series to converge. In Part 2, the exponenƟal in the numerator dom-
inated the algebraic funcƟon in the denominator, causing the series to diverge.

While we have used factorials in previous secƟons, we have not explored
them closely and one is likely to not yet have a strong intuiƟve sense for how
they behave. The following example gives more pracƟce with factorials.

Example 2 Applying the RaƟo Test

Determine the convergence of
∞∑
n=1

n!n!
(2n)!

.

SÊ½çã®ÊÄ Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the former is 8! = 8 · 7 · . . . · 2 · 1 = 40, 320,
whereas the laƩer is 2(4 · 3 · 2 · 1) = 48.

Applying the RaƟo Test:

lim
n→∞

(n+ 1)!(n+ 1)!/
(
2(n+ 1)

)
!

n!n!/(2n)!
= lim

n→∞

(n+ 1)!(n+ 1)!(2n)!
n!n!(2n+ 2)!

NoƟng that (2n+ 2)! = (2n+ 2) · (2n+ 1) · (2n)!, we have

= lim
n→∞

(n+ 1)(n+ 1)
(2n+ 2)(2n+ 1)

= 1/4.

Since the limit is 1/4 < 1, by the RaƟo Test we conclude
∞∑
n=1

n!n!
(2n)!

converges.

Root Test

The final test we introduce is the Root Test, which works parƟcularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.
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Theorem 77 Root Test
Let {an} be a sequence where lim

n→∞
|an|1/n = L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L =∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Root Test is inconclusive.

Example 3 Applying the Root Test
Determine the convergence of the following series using the Root Test:

1.
∞∑
n=1

(
3n+ 1
5n− 2

)n

2.
∞∑
n=1

n4

(ln n)n
3.

∞∑
n=1

2n

n2
.

SÊ½çã®ÊÄ

1. lim
n→∞

((
3n+ 1
5n− 2

)n)1/n

= lim
n→∞

3n+ 1
5n− 2

=
3
5
.

Since the limit is less than 1, we conclude the series converges. Note: it is
difficult to apply the RaƟo Test to this series.

2. lim
n→∞

(
n4

(ln n)n

)1/n

= lim
n→∞

(
n1/n

)4
ln n

.

As n grows, the numerator approaches 1 (apply L’Hôpital’s Rule) and the
denominator grows to infinity. Thus

lim
n→∞

(
n1/n

)4
ln n

= 0.

Since the limit is less than 1, we conclude the series converges.

3. lim
n→∞

(
2n

n2

)1/n

= lim
n→∞

2(
n1/n

)2 = 2.

Since this is greater than 1, we conclude the series diverges.

Notes:
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Chapter 9 Sequences and Series

We end here our study of tests to determine convergence. The next sec-
Ɵon of this text provides strategies for tesƟng series, while the back of the book
contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ulƟmate goal
within calculus is the study of Power Series, whichwewill consider in SecƟon 9.8.
We will use power series to create funcƟons where the output is the result of
an infinite summaƟon.

Notes:
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Exercises 9.6
Terms and Concepts
1. The RaƟo Test is not effecƟve when the terms of a se-

quence only contain funcƟons.
2. The RaƟo Test is most effecƟve when the terms of a se-

quence contains and/or funcƟons.
3. What three convergence tests do not work well with terms

containing factorials?
4. The Root Test works parƟcularly well on series where each

term is to a .

Problems
In Exercises 5–16, determine the convergence of the given se-
ries using the RaƟo Test. If the RaƟo Test is inconclusive, state
so and determine convergence with another test.

5.
∞∑
n=0

2n
n!

6.
∞∑
n=0

5n − 3n
4n

7.
∞∑
n=0

n!10n

(2n)!

8.
∞∑
n=1

5n + n4

7n + n2

9.
∞∑
n=1

1
n

10.
∞∑
n=1

1
3n3 + 7

11.
∞∑
n=1

10 · 5n

7n − 3

12.
∞∑
n=1

n ·
(
3
5

)n

13.
∞∑
n=1

2 · 4 · 6 · 8 · · · 2n
3 · 6 · 9 · 12 · · · 3n

14.
∞∑
n=1

n!
5 · 10 · 15 · · · (5n)

15.
∞∑
n=1

e−nn!

16.
∞∑
n=1

e1/n

n3

In Exercises 17–26, determine the convergence of the given se-
ries using the Root Test. If the Root Test is inconclusive, state
so and determine convergence with another test.

17.
∞∑
n=1

(
2n+ 5
3n+ 11

)n

18.
∞∑
n=1

(
.9n2 − n− 3
n2 + n+ 3

)n

19.
∞∑
n=1

2nn2

3n

20.
∞∑
n=1

1
nn

21.
∞∑
n=1

3n

n22n+1

22.
∞∑
n=1

4n+7

7n

23.
∞∑
n=1

(
n2 − n
n2 + n

)n

24.
∞∑
n=1

(
1
n
− 1

n2

)n

25.
∞∑
n=1

1(
ln n
)n

26.
∞∑
n=1

n2(
ln n
)n
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Chapter 9 Sequences and Series

9.7 Strategy for tesƟng series
We have now covered all of the tests for determining the convergence or diver-
gence of a series, which we summarize here. Because more than one test may
apply to a given series, you should always go completely through the guidelines
and idenƟfy all possible tests that you can use. Once you’ve done this, you can
idenƟfy the test that will be the easiest for you to use.

1. With a quick glance does it look like the series terms don’t converge to
zero in the limit, i.e. does lim

n→∞
an ̸= 0? If so, use the Test for Divergence.

Note that you should only use the Test for Divergence if a quick glance
suggests that the series terms may not converge to zero in the limit.

2. Is the series a p-series
(∑

n−p
)
or a geometric series

(∑
arn
)
? If so,

use the fact that p-series will converge only if p > 1 and a geometric series
will only converge if |r| < 1. Remember as well that oŌen some algebraic
manipulaƟon is required to get a geometric series into the correct form.

3. Is the series similar to a p-series or a geometric series? If so, try the Com-
parison Test.

4. Is the series a raƟonal expression involving only polynomials or polynomi-
als under radicals? If so, try the Comparison test or the Limit Comparison
Test. Remember however, that in order to use the Comparison Test and
the Limit Comparison Test the series terms all need to be posiƟve.

5. Is the series of the form
∑

(−1)nan? If so, then the AlternaƟng Series
Test may work.

6. Does the series contain factorials or constants raised to powers involving
n? If so, then the RaƟo Testmaywork. Note that if the series term contains
a factorial then the only test that we have that will work is the RaƟo Test.

7. Can the series terms be wriƩen in the form an = (bn)n? If so, then the
Root Test may work.

8. If an = f(n) for some posiƟve, decreasing funcƟon and
ˆ ∞

a
f(x) dx is easy

to evaluate then the Integral Test may work.

Again, remember that these are only a set of guidelines and not a set of hard
and fast rules to use when trying to determine the best test to use on a series.
If more that one test can be used, try to use the test that will be the easiest for
you to use. These guidelines are also summarized in a table in the back of the
book.

We now consider several examples.

Notes:
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9.7 Strategy for tesƟng series

Example 1 TesƟng Series
Determine whether the given series converges absolutely, converges condiƟon-
ally, or diverges.

1.
∞∑
n=2

(−1)nn
n2 + 3

2.
∞∑
n=1

n2 − 3n
4n2 − 2n+ 1

3.
∞∑
n=2

en

(n+ 3)!

SÊ½çã®ÊÄ

1. We see that this series is alternaƟng so we use the alternaƟng series test.
The underlying sequence is {an} = { n

n2+3}which is posiƟve and decreas-
ing since a′(n) = 3−n2

(n2+3)2 < 0 for n ≥ 2. We also see lim
n→∞

n
n2 + 3

= 0

so by the AlternaƟng Series Test
∞∑
n=2

(−1)nn
n2 + 3

converges. We now deter-

mine if it converges absolutely. Consider the sequence
∞∑
n=2

∣∣∣∣ (−1)nnn2 + 3

∣∣∣∣ =
∞∑
n=2

n
n2 + 3

. We compare this series to
∞∑
n=2

n
n2

=

∞∑
n=2

1
n
which is a diver-

gent p-series. We also have
n

n2 + 3
>

n
n2

=
1
n
so by the Comparison test,

∞∑
n=2

n
n2 + 3

diverges. Therefore,
∞∑
n=2

(−1)nn
n2 + 3

converges condiƟonally.

2. lim
n→∞

n2 − 3n
4n2 − 2n+ 1

=
1
4
so by the Test for Divergence

∞∑
n=1

n2 − 3n
4n2 − 2n+ 1

diverges.

3. We see the factorial and use the RaƟo Test. All terms of the series are

Notes:
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posiƟve so we consider

lim
n→∞

an+1

an
= lim

n→∞

en+1

(n+4)!
en

(n+3)!

= lim
n→∞

en+1(n+ 3)!
en(n+ 4)!

= lim
n→∞

e · en(n+ 3)!
en(n+ 4)(n+ 3)!

= lim
n→∞

e
n+ 4

= 0 < 1

So by the RaƟo Test,
∞∑
n=2

en

(n+ 3)!
converges. Because all of the series

terms are posiƟve it converges absolutely.

Notes:
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Exercises 9.7
Problems
In Exercises 1–37, determine whether the given series con-
verges absolutely, converges condiƟonally, or diverges.

1.
∞∑
n=1

1
3
√

n(n+ 2)(n+ 4)

2.
∞∑
n=1

(
−2
3

)n−1

3.
∞∑
n=1

32n+1

n5n−1

4.
∞∑
n=1

n−2e
1
n

5.
∞∑
n=1

n!
ln(n+ 2)

6.
∞∑
n=1

(n2 + 4)(−2)1−n

7.
∞∑
n=1

2
n+ 4n

8.
∞∑
n=1

en

ne

9.
∞∑
n=1

(−1)n
4
√
n

10.
∞∑
n=1

sin( 4πn3 )

n4π/3

11.
∞∑
n=1

3nn!
(n+ 2)!

12.
∞∑
n=1

(−1)n
√
n

n+ 1

13.
∞∑
n=1

1− cos n
n3

14.
∞∑
n=1

4+ 3n− 5n3

2+ n3

15.
∞∑
n=1

(−1)n n
2 + 1

n4 + 1

16.
∞∑
n=1

(3n)n

n3n

17.
∞∑
n=1

e2n

(2n− 1)!

18.
∞∑
n=1

1
x
√
ln x

19.
∞∑
n=2

(−1)n−1
√
ln n
n

20.
∞∑
n=1

n2

(−2)n

21.
∞∑
n=1

(−1)n

(2n+ 5)3

22.
∞∑
n=1

n!
(−10)n

23.
∞∑
n=1

ln n
n!

24.
∞∑
n=1

1
(−3)n + n

25.
∞∑
n=1

(−1)n(n− 2)
10n+ 5

26.
∞∑
n=1

(−3)n

n3

27.
∞∑
n=1

cos(1/n)√
n

28.
∞∑
n=1

(−1)n(n2 + 4n− 2)
n3 + 4n2 − 3n+ 7

29.
∞∑
n=1

n4(−4)n

n!

30.
∞∑
n=1

n2

(−3)n + n

31.
∞∑
n=1

(−1)nn√
n2 + 4n+ 1

32.
∞∑
n=1

(−3)n

nn

33.
∞∑
n=1

n!n!n!
(3n)!

34.
∞∑
n=1

(−1)n

ln n

35.
∞∑
n=1

(
n+ 2
n+ 1

)n

36.
∞∑
n=1

n3(
ln n
)n

37.
∞∑
n=1

(
1
n
− 1

n+ 2

)
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Chapter 9 Sequences and Series

9.8 Power Series
So far, our study of series has examined the quesƟon of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspecƟve: as a funcƟon. Given a value of x, we evaluate f(x)
by finding the sum of a parƟcular series that depends on x (assuming the series
converges). We start this new approach to series with a definiƟon.

DefiniƟon 40 Power Series
Let {an} be a sequence, let x be a variable, and let c be a real number.

1. The power series in x is the series

∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + · · ·

2. The power series in x centered at c is the series
∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + · · ·

Example 1 Examples of power series
Write out the first five terms of the following power series:

1.
∞∑
n=0

xn 2.
∞∑
n=1

(−1)n+1 (x+ 1)n

n
3.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
.

SÊ½çã®ÊÄ

1. One of the convenƟons we adopt is that x0 = 1 regardless of the value of
x. Therefore

∞∑
n=0

xn = 1+ x+ x2 + x3 + x4 + · · ·

This is a geometric series in x.

2. This series is centered at c = −1. Note how this series starts with n = 1.
We could rewrite this series starƟng at n = 0 with the understanding that

Notes:
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9.8 Power Series

a0 = 0, and hence the first term is 0.

∞∑
n=1

(−1)n+1 (x+ 1)n

n
= (x+1)− (x+ 1)2

2
+
(x+ 1)3

3
− (x+ 1)4

4
+
(x+ 1)5

5
· · ·

3. This series is centered at c = π. Recall that 0! = 1.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
= −1+ (x− π)2

2
− (x− π)4

24
+

(x− π)6

6!
− (x− π)8

8!
· · ·

We introduced power series as a type of funcƟon, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part 1 of Example 1, we recognized the series
∞∑
n=0

xn as a geometric

series in x. Theorem 64 states that this series converges only when |x| < 1.
This raises the quesƟon: “For what values of xwill a given power series con-

verge?,” which leads us to a theorem and definiƟon.

Theorem 78 Convergence of Power Series

Let a power series
∞∑
n=0

an(x− c)n be given. Then one of the following is

true:

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in
(c− R, c+ R) and diverges for all x < c− R and x > c+ R.

3. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following definiƟon. Also, note that part 2 of Theorem 78
makes a statement about the interval (c− R, c+ R), but the not the endpoints
of that interval. A series may or may not converge at these endpoints.

Notes:
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Chapter 9 Sequences and Series

DefiniƟon 41 Radius and Interval of Convergence

1. The number R given in Theorem 78 is the radius of convergence
of a given series. When a series converges for only x = c, we
say the radius of convergence is 0, i.e., R = 0. When a series
converges for all x, we say the series has an infinite radius of con-
vergence, i.e., R =∞.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the values of x for which a given series converges, wewill use the con-
vergence tests we studied previously (especially the RaƟo Test). However, the
tests all required that the terms of a series be posiƟve. The following theorem
gives us a work–around to this problem.

Theorem 79 The Radius of Convergence of a Series and Absolute
Convergence

The series
∞∑
n=0

an(x − c)n and
∞∑
n=0
|an(x− c)n| have the same radius of

convergence R.

Theorem 79 allows us to find the radius of convergence R of a series by ap-
plying the RaƟo Test (or any applicable test) to the absolute value of the terms
of the series. We pracƟce this in the following example.

Watch the video:
Power Series — Finding the Interval of Convergence
at
https://youtu.be/01LzAU__J-0

Notes:
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9.8 Power Series

Example 2 Determining the radius and interval of convergence.
Find the radius and interval of convergence for each of the following series:

1.
∞∑
n=0

xn

n!
2.

∞∑
n=1

(−1)n+1 xn

n
3.

∞∑
n=0

2n(x− 3)n 4.
∞∑
n=0

n!xn

SÊ½çã®ÊÄ

1. We apply the RaƟo Test to the series
∞∑
n=0

∣∣∣∣xnn!
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)!
∣∣

|xn/n!|
= lim

n→∞

∣∣∣∣xn+1

xn
· n!
(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x
n+ 1

∣∣∣∣
= 0 for all x.

The RaƟo Test shows us that regardless of the choice of x, the series con-
verges. Therefore the radius of convergence is R =∞, and the interval of
convergence is (−∞,∞).

2. We apply the RaƟo Test to the series
∞∑
n=1

∣∣∣∣(−1)n+1 xn

n

∣∣∣∣ = ∞∑
n=1

∣∣∣∣xnn
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)
∣∣

|xn/n|
= lim

n→∞

∣∣∣∣xn+1

xn
· n
n+ 1

∣∣∣∣
= lim

n→∞
|x| n

n+ 1
= |x| .

The RaƟo Test states a series converges if the limit of |an+1/an| = L < 1.
We found the limit above to be |x|; therefore, the power series converges
when |x| < 1, or when x is in (−1, 1). Thus the radius of convergence is
R = 1.
To determine the interval of convergence, we need to check the endpoints
of (−1, 1). When x = −1, we have the opposite of the Harmonic Series:

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

(−1)2n+1

n

=

∞∑
n=1

−1
n

= −∞.

Notes:
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The series diverges when x = −1.

When x = 1, we have the series
∞∑
n=1

(−1)n+1 (1)n

n
, which is the AlternaƟng

Harmonic Series, which converges. Therefore the interval of convergence
is (−1, 1].

3. We apply the RaƟo Test to the series
∞∑
n=0
|2n(x− 3)n|:

lim
n→∞

∣∣2n+1(x− 3)n+1
∣∣

|2n(x− 3)n|
= lim

n→∞

∣∣∣∣2n+1

2n
· (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞
|2(x− 3)| .

According to theRaƟoTest, the series convergeswhen |2(x− 3)| < 1 =⇒
|x− 3| < 1/2. The series is centered at 3, and x must be within 1/2 of 3
in order for the series to converge. Therefore the radius of convergence
is R = 1/2, and we know that the series converges absolutely for all x in
(3− 1/2, 3+ 1/2) = (2.5, 3.5).
We check for convergence at the endpoints to find the interval of conver-
gence. When x = 2.5, we have:

∞∑
n=0

2n(2.5− 3)n =
∞∑
n=0

2n(−1/2)n

=

∞∑
n=0

(−1)n,

which diverges. A similar process shows that the series also diverges at
x = 3.5. Therefore the interval of convergence is (2.5, 3.5).

4. We apply the RaƟo Test to
∞∑
n=0
|n!xn|:

lim
n→∞

∣∣(n+ 1)!xn+1
∣∣

|n!xn|
= lim

n→∞
|(n+ 1)x|

=∞ for all x, except x = 0.

The RaƟo Test shows that the series diverges for all x except x = 0. There-
fore the radius of convergence is R = 0.

Notes:
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9.8 Power Series

Power Series as FuncƟons
We can use a power series to define a funcƟon:

f(x) =
∞∑
n=0

anxn

where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such funcƟons; in parƟcular, we
can find derivaƟves and anƟderivaƟves.

Theorem 80 DerivaƟves and Indefinite Integrals of Power Series
FuncƟons

Let f(x) =
∞∑
n=0

an(x− c)n be a funcƟon defined by a power series, with

radius of convergence R.

1. f(x) is conƟnuous and differenƟable on (c− R, c+ R).

2. f ′(x) =
∞∑
n=1

an · n · (x− c)n−1, with radius of convergence R.

3.
ˆ

f(x) dx = C+
∞∑
n=0

an
(x− c)n+1

n+ 1
, with radius of convergence R.

A few notes about Theorem 80:

1. The theorem states that differenƟaƟon and integraƟon do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. NoƟce how the summaƟon for f ′(x) starts with n = 1. This is because the
constant term a0 of f(x) goes to 0.

3. DifferenƟaƟon and integraƟon are simply calculated term–by–term using
previous rules of integraƟon and differenƟaƟon.

Example 3 DerivaƟves and indefinite integrals of power series

Let f(x) =

∞∑
n=0

xn. Find the following along with their respecƟve intervals of

convergence.

1. f ′(x) and 2. F(x) =
ˆ

f(x) dx

Notes:
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SÊ½çã®ÊÄ We find the derivaƟve and indefinite integral of f(x), follow-
ing Theorem 80.

1. f(x) = 1+ x+ x2 + x3 + x4 + · · · =
∞∑
n=0

xn

f ′(x) = 0+ 1+ 2x+ 3x2 + 4x3 + · · · =
∞∑
n=1

nxn−1

In Example 1, we recognized that
∞∑
n=0

xn is a geometric series in x. We

know that such a geometric series converges when |x| < 1; that is, the
interval of convergence is (−1, 1).
To determine the interval of convergence of f ′(x), we consider the end-
points of (−1, 1). When x = −1 we have

f ′(−1) =
∞∑
n=1

n(−1)n−1

which diverges by the Test for Divergence and when x = 1 we have

f ′(1) =
∞∑
n=1

n

which also diverges by the Test for Divergence. Therefore, the interval of
convergence of f ′(x) is (−1, 1).

2. f(x) = 1+ x+ x2 + x3 + · · · =
∞∑
n=0

xn

F(x) =
ˆ

f(x) dx = C+ x+
x2

2
+

x3

3
+

x4

4
+ · · ·

= C+
∞∑
n=0

xn+1

n+ 1
= C+

∞∑
n=1

xn

n

To find the interval of convergence of F(x), we again consider the end-
points of (−1, 1). When x = −1 we have

F(−1) = C+
∞∑
n=1

(−1)n

n

The value of C is irrelevant; noƟce that the rest of the series is an Alter-
naƟng Series that whose terms converge to 0. By the AlternaƟng Series

Notes:
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9.8 Power Series

Test, this series converges. (In fact, we can recognize that the terms of the
series aŌer C are the opposite of the AlternaƟng Harmonic Series. We can
thus say that F(−1) = C− ln 2.)

F(1) = C+
∞∑
n=1

1
n

NoƟce that this summaƟon is C + the Harmonic Series, which diverges.
Since F converges for x = −1 and diverges for x = 1, the interval of
convergence of F(x) is [−1, 1).

The previous example showed how to take the derivaƟve and indefinite in-
tegral of a power series without moƟvaƟon for why we care about such opera-
Ɵons. Wemay care for the sheer mathemaƟcal enjoyment “that we can”, which
is moƟvaƟon enough for many. However, we would be remiss to not recognize
that we can learn a great deal from taking derivaƟves and indefinite integrals.

Recall that f(x) =

∞∑
n=0

xn in Example 3 is a geometric series. According to

Theorem 64, this series converges to 1/(1− x) when |x| < 1. Thus we can say

f(x) =
∞∑
n=0

xn =
1

1− x
, on (−1, 1).

IntegraƟng the power series, (as done in Example 3,) we find

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
, (9.4)

while integraƟng the funcƟon f(x) = 1/(1− x) gives

F(x) = − ln |1− x|+ C2. (9.5)

EquaƟng EquaƟons (9.4) and (9.5), we have

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
= − ln |1− x|+ C2.

Leƫng x = 0, we have F(0) = C1 = C2. This implies that we can drop the
constants and conclude

∞∑
n=0

xn+1

n+ 1
= − ln |1− x| .

Notes:
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We established in Example 3 that the series
∞∑
n=0

xn+1

n+ 1
converges at x = −1;

subsƟtuƟng x = −1 on both sides of the above equality gives

−1+ 1
2
− 1

3
+

1
4
− 1

5
+ · · · = − ln 2.

On the leŌ we have the opposite of the AlternaƟng Harmonic Series; on the
right, we have− ln 2. We conclude that

1− 1
2
+

1
3
− 1

4
+ · · · = ln 2.

In Example 9.5.1 of SecƟon 9.5 we said the AlternaƟng Harmonic Series con-
verges to ln 2, but did not show why this was the case. The work above shows
how we conclude that the AlternaƟng Harmonic Series Converges to ln 2.

We use this type of analysis in the next example.

Example 4 Analyzing power series funcƟons

Let f(x) =
∞∑
n=0

xn

n!
. Find f ′(x) and

ˆ
f(x) dx, and use these to analyze the behav-

ior of f(x).

SÊ½çã®ÊÄ We start by making two notes: first, in Example 2, we found
the interval of convergence of this power series is (−∞,∞). Second, we will
find it useful later to have a few terms of the series wriƩen out:

∞∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+

x4

24
+ · · · (9.6)

We now find the derivaƟve:

f ′(x) =
∞∑
n=1

n
xn−1

n!

=

∞∑
n=1

xn−1

(n− 1)!
= 1+ x+

x2

2!
+ · · · .

Since the series starts at n = 1 and each term refers to (n− 1), we can re-index
the series starƟng with n = 0:

=

∞∑
n=0

xn

n!

= f(x).

Notes:
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9.8 Power Series

We found the derivaƟve of f(x) is f(x). The only funcƟons for which this is true
are of the form y = cex for some constant c. As f(0) = 1 (see EquaƟon (9.6)), c
must be 1. Therefore we conclude that

f(x) =
∞∑
n=0

xn

n!
= ex

for all x.
We can also find

ˆ
f(x) dx:

ˆ
f(x) dx = C+

∞∑
n=0

xn+1

n!(n+ 1)

= C+
∞∑
n=0

xn+1

(n+ 1)!

We write out a few terms of this last series:

C+
∞∑
n=0

xn+1

(n+ 1)!
= C+ x+

x2

2
+

x3

6
+

x4

24
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indicaƟng that
f(x) = ex.

Example 4 and the work following Example 3 established relaƟonships be-
tween a power series funcƟon and “regular” funcƟons that we have dealt with
in the past. In general, given a power series funcƟon, it is difficult (if not im-
possible) to express the funcƟon in terms of elementary funcƟons. We chose
examples where things worked out nicely.

RepresentaƟons of FuncƟons with Power Series
It can be difficult to recognize an elementary funcƟon by its power series ex-
pansion. It is far easier to start with a known funcƟon, expressed in terms of
elementary funcƟons, and represent it as a power series funcƟon. One may
wonder why we would bother doing so, as the laƩer funcƟon probably seems
more complicated.

Let’s start off with a series we already know how to do, although when we
first ran across this series we didn’t think of it as a power series nor did we ac-
knowledge that it represented a funcƟon. Recall that the geometric series is

∞∑
n=0

arn =
a

1− r
provided |r| < 1.

Notes:
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We also know that if |r| ≥ 1 the series diverges. Now, if we take a = 1 and r = x
this becomes,

∞∑
n=0

xn =
1

1− x
provided |x| < 1 (9.7)

Turning this around we can see that we can represent the funcƟon

f(x) =
1

1− x
(9.8)

with the power series

∞∑
n=0

xn provided |x| < 1. (9.9)

This provision is important. We can clearly plug any number other than x = 1
into the funcƟon, however, we will only get a convergent power series if |x| < 1.
This means the equality in EquaƟon (9.7) will only hold if |x| < 1. For any other
value of x the equality won’t hold. Note as well that we can also use this to
acknowledge that the radius of convergence of this power series is R = 1 and
the interval of convergence is |x| < 1.

This idea of convergence is important here. We will be represenƟng many
funcƟons as power series and it will be important to recognize that the repre-
sentaƟons will oŌen only be valid for a range of x’s and that there may be values
of x that we can plug into the funcƟon that we can’t plug into the power series
representaƟon.

In this secƟon we are going to concentrate on represenƟng funcƟons with
power series where the funcƟon can be related back to a geometric series. In
this way we will hopefully become familiar with some of the kinds of manipu-
laƟons that we will someƟmes need when working with power series. We will
see in SecƟon 9.10 that this strategy is useful for integraƟng funcƟons that don’t
have elementary derivaƟves.

Example 5 Finding a Power Series
Find a power series representaƟon for g(x) =

1
1+ x3

and determine its interval
of convergence.

SÊ½çã®ÊÄ We want to relate this funcƟon back to EquaƟon (9.8). This
is actually easier than it might look. Recall that the x in EquaƟon (9.8) is simply
a variable and can represent anything. So, a quick rewrite of g(x) gives,

g(x) =
1

1− (−x3)

Notes:
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and so the −x3 holds the same place as the x in EquaƟon (9.8). Therefore, all
we need to do is replace the x in EquaƟon (9.9) and we’ve got a power series
representaƟon for g(x).

g(x) =
∞∑
n=0

(
−x3

)n provided
∣∣−x3∣∣ < 1

NoƟce that we replaced both the x in the power series and in the interval of
convergence. All we need to do now is a liƩle simplificaƟon.

g(x) =
∞∑
n=0

(−1)n x3n provided |x| < 1

So, in this case the interval of convergence is the same as the original power
series. This usually won’t happen. More oŌen than not the new interval of
convergence will be different from the original interval of convergence.

Example 6 Finding a Power Series

Find a power series representaƟon for h(x) =
2x2

1+ x3
and determine its interval

of convergence.

SÊ½çã®ÊÄ This funcƟon is similar to the previous funcƟon, however the
numerator is different. Since EquaƟon (9.8) doesn’t have an x in the numerator it
appears that we can’t relate this funcƟon back to that. However, now that we’ve
worked the first example this one is actually very simple since we can use the
result of the answer from that example. To see how to do this let’s first rewrite
the funcƟon a liƩle.

h(x) = 2x2
1

1+ x3
.

Now, from the first example we’ve already got a power series for the second
term so let’s use that to write the funcƟon as,

h(x) = 2x2
∞∑
n=0

(−1)n x3n provided |x| < 1

NoƟce that the presence of x’s outside of the series will NOT affect its con-
vergence and so the interval of convergence remains the same. The last step is
to bring the coefficient into the series and we’ll be done. When we do this make
sure and combine the x’s as well. We typically only want a single x in a power
series.

h(x) =
∞∑
n=0

2 (−1)n x3n+2 provided |x| < 1.

Notes:
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As we saw in the previous example we can oŌen use previous results to help us
out. This is an important idea to remember as it can oŌen greatly simplify our
work.

Example 7 Finding a Power Series
Find a power series representaƟon for f(x) =

x
5− x

and determine its interval
of convergence.

SÊ½çã®ÊÄ So again, we have an x in the numerator. As with the last
example factor x out and we have f(x) = x

1
5− x

. If we had a power series

representaƟon for g(x) =
1

5− x
we could get a power series representaƟon for

f(x). We need the number in the denominator to be a one so we rewrite the
denominator.

g(x) =
1
5

1
1− x

5

Now all we need to do to get a power series representaƟon is to replace the
x in EquaƟon (9.9) with

x
5
. Doing this gives

g(x) =
1
5

∞∑
n=0

( x
5

)n
provided

∣∣∣ x5 ∣∣∣ < 1.

Now simplify the series.

g(x) =
1
5

∞∑
n=0

xn

5n

=

∞∑
n=0

xn

5n+1

The interval of convergence for this series is∣∣∣ x5 ∣∣∣ < 1 ⇒ 1
5
|x| < 1 ⇒ |x| < 5

We now have a power series representaƟon for g(x) but we need to find a
power series representaƟon for the original funcƟon. All we need to do for this

Notes:
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9.8 Power Series

is to mulƟply the power series representaƟve for g(x) by x and we’ll have it.

f(x) = x
1

5− x

= x
∞∑
n=0

xn

5n+1

=

∞∑
n=0

xn+1

5n+1

The interval of convergence doesn’t change and so it will be |x| < 5.

We now consider several examples where differenƟaƟon and integraƟon of
power series from Theorem 80 are used to write the power series for a funcƟon.

Example 8 DifferenƟaƟng a Power Series
Find a power series representaƟon for g(x) =

1
(1− x)2

and determine its radius

of convergence.

SÊ½çã®ÊÄ We know that

1
(1− x)2

=
d
dx

(
1

1− x

)
.

Since we have a power series representaƟon for
1

1− x
, we can differenƟate that

power series to get a power series representaƟon for g(x).

g(x) =
1

1− x

=
d
dx

(
1

1− x

)
=

d
dx

( ∞∑
n=0

xn
)

=

∞∑
n=1

nxn−1

Since the original power series had a radius of convergence of R = 1 the
derivaƟve, and hence g(x), will also have a radius of convergence of R = 1.

Notes:
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Example 9 IntegraƟng a Power Series
Find a power series representaƟon for h(x) = ln(5−x) and determine its radius
of convergence.

SÊ½çã®ÊÄ In this case we need the fact thatˆ
1

5− x
dx = − ln(5− x).

Recall that we found a power series representaƟon for
1

5− x
in Example 7. We

now have

ln(5− x) = −
ˆ

1
5− x

dx

= −
ˆ ∞∑

n=0

xn

5n+1 dx where |x| < 5

= C−
∞∑
n=0

xn+1

(n+ 1)5n+1 where |x| < 5

We can find the constant of integraƟon, C, by subsƟtuƟng in a value of x. A
good choice is x = 0 as the series is usually easy to evaluate there.

ln(5− 0) = C−
∞∑
n=0

0n+1

(n+ 1)5n+1

ln(5− 0) = C

So, the final answer is,

ln(5− x) = ln(5)−
∞∑
n=0

xn+1

(n+ 1)5n+1 ,

and the radius of convergence is 5. NoƟce that x = −5 allows for convergence
so the interval of convergence is [−5, 5).

Notes:
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Exercises 9.8
Terms and Concepts
1. We adopt the convenƟon that x0 = , regardless of

the value of x.
2. What is the difference between the radius of convergence

and the interval of convergence?

3. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the

radius of convergence of
∞∑
n=1

n · anxn−1?

4. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the

radius of convergence of
∞∑
n=0

(−1)nanxn?

Problems
In Exercises 5–8, write out the sum of the first 5 terms of the
given power series.

5.
∞∑
n=0

2nxn

6.
∞∑
n=1

1
n2

xn

7.
∞∑
n=0

1
n!
xn

8.
∞∑
n=0

(−1)n

(2n)!
x2n

In Exercises 9–28, a power series is given.

(a) Find the radius of convergence.

(b) Find the interval of convergence.

9.
∞∑
n=0

(−1)n+1

n!
xn

10.
∞∑
n=0

nxn

11.
∞∑
n=1

(−1)n(x− 3)n

n

12.
∞∑
n=0

(x+ 4)n

n!

13.
∞∑
n=0

xn

2n

14.
∞∑
n=0

(−1)n(x− 5)n

10n

15.
∞∑
n=0

5n(x− 1)n

16.
∞∑
n=0

(−2)nxn

17.
∞∑
n=0

√
nxn

18.
∞∑
n=0

n
3n

xn

19.
∞∑
n=0

3n

n!
(x− 5)n

20.
∞∑
n=0

(−1)nn!(x− 10)n

21.
∞∑
n=1

xn

n2

22.
∞∑
n=1

(x+ 2)n

n3

23.
∞∑
n=0

n!
( x
10

)n

24.
∞∑
n=0

n2
(
x+ 4
4

)n

25.
∞∑
n=1

(3x− 2)n

n3n

26.
∞∑
n=1

xn

5nn5

27.
∞∑
n=2

xn

(ln n)n

28.
∞∑
n=1

(−1)n x2n+1

(2n+ 1)!

In Exercises 29–33, write the following funcƟons as a power
series and give the radius of convergence.

29. f(x) = x
1− 8x

30. f(x) = x7

8+ x3

31. f(x) = 6
1+ 7x4

32. f(x) = x3

3− x2

33. f(x) = 3x2

5− 2 3
√
x

34. (a) Use differenƟaƟon to find a power series represen-
taƟon for f(x) =

1
(1+ x)2

. What is the radius of

convergence?

(b) Use part (a) to find a power series for f(x) =
1

(1+ x)3
.

(c) Use part (b) to find a power series for f(x) =
x2

(1+ x)3
.
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In Exercises 35–41, find a power series representaƟon for the
funcƟon and determine the radius of convergence.
35. f(x) = ln(3− x)

36. f(x) = x
(1+ 9x)2

37. f(x) = ln
(
1+ x
1− x

)

38. f(x) = tan−1 x

39. f(x) = x2 tan−1(x3)

40. f(x) = 1+ x
(1− x)2

41. f(x) =
(

x
2− x

)3
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9.9 Taylor Polynomials

9.9 Taylor Polynomials
Consider a funcƟon y = f(x) and a point

(
c, f(c)

)
. The derivaƟve, f ′(c), gives

the instantaneous rate of change of f at x = c. Of all lines that pass through the
point

(
c, f(c)

)
, the line that best approximates f at this point is the tangent line;

that is, the line whose slope (rate of change) is f ′(c).

y = f(x)

y = p1(x)
−4 −2 2 4

−5

5

x

y

f(0) = 2 f ′′′(0) = −1
f ′(0) = 1 f (4)(0) = −12
f ′′(0) = 2 f (5)(0) = −19

Figure 9.18: Ploƫng y = f(x) and a table
of derivaƟves of f evaluated at 0.

In Figure 9.18, we see a funcƟon y = f(x) graphed. The table below the
graph shows that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at
x = 0 is p1(x) = 1(x−0)+2 = x+2. The tangent line is also given in the figure.
Note that “near” x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f
well.

One shortcoming of this approximaƟon is that the tangent line only matches
the slope of f; it does not, for instance, match the concavity of f. We can find a
polynomial, p2(x), that doesmatch the concavitywithoutmuchdifficulty, though.
The table in Figure 9.18 gives the following informaƟon:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same properƟes. That
is, we need

p2(0) = 2 p′2(0) = 1 p′′2 (0) = 2.

This is simply an iniƟal–value problem. We can solve this using the tech-
niques first described in SecƟon 5.1. To keep p2(x) as simple as possible, we’ll
assume that not only p′′2 (0) = 2, but that p′′2 (x) = 2. That is, the second deriva-
Ɵve of p2 is constant.

y = p2(x)

y = p4(x)
−4 −2 2 4

−5

5

x

y

Figure 9.19: Ploƫng f, p2, and p4.

y = p13(x)

−4 −2 2 4

−5

5

x

y

Figure 9.20: Ploƫng f and p13.

If p′′2 (x) = 2, then p′2(x) = 2x + C for some constant C. Since we have
determined that p′2(0) = 1, we find that C = 1 and so p′2(x) = 2x + 1. Finally,
we can compute p2(x) = x2+x+C. Using our iniƟal values, we know p2(0) = 2
so C = 2.We conclude that p2(x) = x2 + x+ 2. This funcƟon is ploƩed with f in
Figure 9.19.

We can repeat this approximaƟon process by creaƟng polynomials of higher
degree that matchmore of the derivaƟves of f at x = 0. In general, a polynomial
of degree n can be created to match the first n derivaƟves of f. Figure 9.19 also
shows p4(x) = −x4/2−x3/6+x2+x+2, whose first four derivaƟves at 0match
those of f. (Using the table in Figure 9.18, start with p(4)4 (x) = −12 and solve
the related iniƟal–value problem.)

As we use more and more derivaƟves, our polynomial approximaƟon to f
gets beƩer and beƩer. In this example, the interval on which the approximaƟon
is “good” gets bigger and bigger. Figure 9.20 shows p13(x); we can visually affirm
that this polynomial approximates f very well on [−2, 3]. The polynomial p13(x)
is fairly complicated:

Notes:
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16901x13
6227020800+

13x12
1209600−

1321x11
39916800−

779x10
1814400−

359x9
362880+

x8
240+

139x7
5040 + 11x6

360 − 19x5
120 − x4

2 − x3
6 +x2+x+2.

Thepolynomialswehave created are examples of Taylor polynomials, named
aŌer the BriƟsh mathemaƟcian Brook Taylor who made important discoveries
about such funcƟons. While we created the above Taylor polynomials by solving
iniƟal–value problems, it can be shown that Taylor polynomials follow a general
paƩern that make their formaƟon much more direct. This is described in the
following definiƟon.

DefiniƟon 42 Taylor Polynomial, Maclaurin Polynomial
Let f be a funcƟon whose first n derivaƟves exist at x = c.

1. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + · · ·+ f (n)(c)
n!

(x− c)n

=

n∑
k=0

f (k)(c)
k!

(x− c)k.

2. A special case of the Taylor polynomial is the Maclaurin polynomial, where c = 0. That is,
theMaclaurin polynomial of degree n of f is

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn

=

n∑
k=0

f (k)(0)
k!

xk.

Note: The summaƟons in this defini-
Ɵon use the convenƟon that x0 = 1
even when x = 0 and that f(0) = f.
They also use the definiƟon that 0! =
1.

Generally, we order the terms of a polynomial to have decreasing degrees,
and that is how we began this secƟon. This definiƟon, and the rest of this chap-
ter, reverses this order to reflect the greater importance of the lower degree
terms in the polynomials that we will be finding.

Watch the video:
Taylor Polynomial to Approximate a FuncƟon, Ex 3 at
https://youtu.be/UINFWG0ErSA

Notes:
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9.9 Taylor Polynomials

We will pracƟce creaƟng Taylor and Maclaurin polynomials in the following
examples.

Example 1 Finding and using Maclaurin polynomials

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

SÊ½çã®ÊÄ

1. We start with creaƟng a table of the derivaƟves of ex evaluated at x = 0.
In this parƟcular case, this is relaƟvely simple, as shown in Figure 9.21. By

f(x) = ex ⇒ f(0) = 1
f ′(x) = ex ⇒ f ′(0) = 1
f ′′(x) = ex ⇒ f ′′(0) = 1
...

...
f (n)(x) = ex ⇒ f (n)(0) = 1

Figure 9.21: The derivaƟves of f(x) = ex

evaluated at x = 0.

the definiƟon of the Maclaurin series, we have

pn(x) =
n∑

k=0

f (k)(0)
k!

xk =
n∑

k=0

1
k!
xk.

2. Using our answer from part 1, we have

p5(x) = 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5.

To approximate the value of e, note that e = e1 = f(1) ≈ p5(1). It is very
straighƞorward to evaluate p5(1):

y = p5(x)
−2 2

5

10

x

y

Figure 9.22: A plot of f(x) = ex and its 5th
degree Maclaurin polynomial p5(x).

p5(1) = 1+ 1+
1
2
+

1
6
+

1
24

+
1

120
=

163
60
≈ 2.71667.

This is an error of about 0.0016, or 0.06%.

A plot of f(x) = ex and p5(x) is given in Figure 9.22.

Example 2 Finding and using Taylor polynomials

1. Find the nth Taylor polynomial of y = ln x at x = 1.

2. Use p6(x) to approximate the value of ln 1.5.

3. Use p6(x) to approximate the value of ln 2.

Notes:
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1. We begin by creaƟng a table of derivaƟves of ln x evaluated at x = 1.
While this is not as straighƞorward as it was in the previous example, a
paƩern does emerge, as shown in Figure 9.23.
Using DefiniƟon 42, we have

pn(x) =
n∑

k=0

f (k)(c)
k!

(x− c)k =
n∑

k=1

1
k
(x− 1)k.

2. We can compute p6(x) using our work above:

f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 9.23: DerivaƟves of ln x evaluated
at x = 1.

p6(x) = (x−1)− 1
2
(x−1)2+ 1

3
(x−1)3− 1

4
(x−1)4+ 1

5
(x−1)5− 1

6
(x−1)6.

Since p6(x) approximates ln x well near x = 1, we approximate ln 1.5 ≈
p6(1.5):

y = ln x

y = p6(x)

1 2 3

−4

−2

2

x

y

Figure 9.24: A plot of y = ln x and its 6th
degree Taylor polynomial at x = 1.

p6(1.5) = (1.5− 1)− 1
2
(1.5− 1)2 +

1
3
(1.5− 1)3

− 1
4
(1.5− 1)4 +

1
5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259
640

≈ 0.404688.

This is a good approximaƟon as a calculator shows that ln 1.5 ≈ 0.4055.
Figure 9.24 plots y = ln x with y = p6(x). We can see that ln 1.5 ≈
p6(1.5).

3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1
2
(2− 1)2 +

1
3
(2− 1)3

− 1
4
(2− 1)4 +

1
5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6

=
37
60

≈ 0.616667.

This approximaƟon is not terribly impressive: a handheld calculator shows

y = ln x

y = p20(x)

1 2 3

−4

−2

2

x

y

Figure 9.25: A plot of y = ln x and its 20th
degree Taylor polynomial at x = 1.

Notes:
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that ln 2 ≈ 0.693147. The graph in Figure 9.24 shows that p6(x) provides
less accurate approximaƟons of ln x as x gets close to 0 or 2.

Surprisingly enough, even the 20th degree Taylor polynomial fails to ap-
proximate ln x for x > 2, as shown in Figure 9.25. We’ll soon discuss why
this is.

Taylor polynomials are used to approximate funcƟons f(x) in mainly two sit-
uaƟons:

1. When f(x) is known, but perhaps “hard” to compute directly. For instance,
we can define y = cos x as either the raƟo of sides of a right triangle
(“adjacent over hypotenuse”) or with the unit circle. However, neither of
these provides a convenient way of compuƟng cos 2. A Taylor polynomial
of sufficiently high degree can provide a reasonablemethod of compuƟng
such values using only operaƟons usually hard–wired into a computer (+,
−,× and÷).

2. When f(x) is not known, but informaƟon about its derivaƟves is known.
This occurs more oŌen than one might think, especially in the study of
differenƟal equaƟons.

Note: Even though Taylor polyno-
mials could be used in calculators
and computers to calculate values of
trigonometric funcƟons, in pracƟce
they generally aren’t. Other more
efficient and accurate methods have
been developed, such as the CORDIC
algorithm.

In both situaƟons, a criƟcal piece of informaƟon to have is “How good is my
approximaƟon?” If we use a Taylor polynomial to compute cos 2, how do we
know how accurate the approximaƟon is?

Wehad the sameproblemwhen studyingNumerical IntegraƟon. Theorem57
provided bounds on the error when using, say, Simpson’s Rule to approximate a
definite integral. These bounds allowed us to determine that, for example, us-
ing 10 subintervals provided an approximaƟon within ±.01 of the exact value.
The following theorem gives similar bounds for Taylor (and hence Maclaurin)
polynomials.

Notes:
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Theorem 81 Taylor’s Theorem

1. Let f be a funcƟon whose (n+1)th derivaƟve exists on an interval
I and let c be in I. Then, for each x in I, there exists zx between x
and c such that

f(x) =
n∑

k=0

f (k)(x− c)
k!

+ Rn(x),

where Rn(x) =
f (n+1)(zx)
(n+ 1)!

(x− c)n+1.

2. |Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
|x− c|n+1.

The first part of Taylor’s Theorem states that f(x) = pn(x) + Rn(x), where
pn(x) is the nth order Taylor polynomial and Rn(x) is the remainder, or error, in
the Taylor approximaƟon. The second part gives bounds on how big that error
can be. If the (n+ 1)th derivaƟve is large, the error may be large; if x is far from
c, the error may also be large. However, the (n + 1)! term in the denominator
tends to ensure that the error gets smaller as n increases.

The following example computes error esƟmates for the approximaƟons of
ln 1.5 and ln 2 made in Example 2.

Example 3 Finding error bounds of a Taylor polynomial
Use Theorem 81 to find error bounds when approximaƟng ln 1.5 and ln 2 with
p6(x), the Taylor polynomial of degree 6 of f(x) = ln x at x = 1, as calculated in
Example 2.

SÊ½çã®ÊÄ

1. We start with the approximaƟon of ln 1.5 with p6(1.5). The theorem ref-
erences an open interval I that contains both x and c. The smaller the
interval we use the beƩer; it will give us a more accurate (and smaller)
approximaƟon of the error. We let I = (0.9, 1.6), as this interval contains
both c = 1 and x = 1.5.

The theorem references max
∣∣f (n+1)(z)

∣∣. In our situaƟon, this is asking
“How big can the 7th derivaƟve of y = ln x be on the interval (0.9, 1.6)?”
The seventh derivaƟve is y = −6!/x7. The largest value it aƩains on I is

Notes:
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about 1506. Thus we can bound the error as:

|R6(1.5)| ≤
max

∣∣f (7)(z)∣∣
7!

|1.5− 1|7

≤ 1506
5040

· 1
27

≈ 0.0023.

We computed p6(1.5) = 0.404688; using a calculator, we find ln 1.5 ≈
0.405465, so the actual error is about 0.000778 (or 0.2%), which is less
than our bound of 0.0023. This affirms Taylor’s Theorem; the theorem
states that our approximaƟon would be within about 2 thousandths of
the actual value, whereas the approximaƟon was actually closer.

2. We again find an interval I that contains both c = 1 and x = 2; we choose
I = (0.9, 2.1). The maximum value of the seventh derivaƟve of f on this
interval is again about 1506 (as the largest values come near x = 0.9).
Thus

|R6(2)| ≤
max

∣∣f (7)(z)∣∣
7!

|2− 1|7

≤ 1506
5040

· 17

≈ 0.30.

This bound is not as nearly as good as before. Using the degree 6 Taylor
polynomial at x = 1 will bring us within 0.3 of the correct answer. As
p6(2) ≈ 0.61667, our error esƟmate guarantees that the actual value of
ln 2 is somewhere between 0.31667 and 0.91667. These bounds are not
parƟcularly useful.

In reality, our approximaƟon was only off by about 0.07 (or 11%). How-
ever, we are approximaƟng ostensibly because we do not know the real
answer. In order to be assured that we have a good approximaƟon, we
would have to resort to using a polynomial of higher degree.

We pracƟce again. This Ɵme, we use Taylor’s theorem to find n that guaran-
tees our approximaƟon is within a certain amount.

Example 4 Finding sufficiently accurate Taylor polynomials
Find n such that the nth Taylor polynomial of f(x) = cos x at x = 0 approximates
cos 2 to within 0.001 of the actual answer. What is pn(2)?

Notes:
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SÊ½çã®ÊÄ Following Taylor’s theorem, we need bounds on the size of
the derivaƟves of f(x) = cos x. In the case of this trigonometric funcƟon, this is
easy. All derivaƟves of cosine are± sin x or± cos x. In all cases, these funcƟons
are never greater than 1 in absolute value. We want the error to be less than
0.001. To find the appropriate n, consider the following inequaliƟes:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

|2− 0|n+1 ≤ 0.001

1
(n+ 1)!

· 2n+1 ≤ 0.001

We find an n that saƟsfies this last inequality with trial–and–error. When n = 8,

we have
28+1

(8+ 1)!
≈ 0.0014; when n = 9, we have

29+1

(9+ 1)!
≈ 0.000282 <

0.001. Thus we want to approximate cos 2 with p9(2).

We now set out to compute p9(x). We again need a table of the derivaƟves
of f(x) = cos x evaluated at x = 0. A table of these values is given in Figure 9.26.
NoƟce how the derivaƟves, evaluated at x = 0, follow a certain paƩern. All the
odd powers of x in the Taylor polynomial will disappear as their coefficient is 0.
While our error bounds state that we need p9(x), our work shows that this will
be the same as p8(x).

f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 9.26: A table of the derivaƟves of
f(x) = cos x evaluated at x = 0.

Since we are forming our polynomial at x = 0, we are creaƟng a Maclaurin
polynomial, and:

p8(x) =
8∑

k=0

f (k)(0)
k!

xk = 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 +

1
8!
x8

We finally approximate cos 2:

cos 2 ≈ p8(2) = −
131
315
≈ −0.41587.

Our error bound guarantee that this approximaƟon is within 0.001 of the correct
answer. Technology shows us that our approximaƟon is actually within about
0.0003 (or 0.07%) of the correct answer.

y = p8(x)

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1

x

y

f(x) = cos x

Figure 9.27: A graph of f(x) = cos x and
its degree 8 Maclaurin polynomial.

Figure 9.27 shows a graph of y = p8(x) and y = cos x. Note how well the
two funcƟons agree on about (−π, π).

Example 5 Finding and using Taylor polynomials
1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =

√
x at x = 4.

2. Use p4(x) to approximate
√
3.

3. Find bounds on the error when approximaƟng
√
3 with p4(3).

Notes:

544



9.9 Taylor Polynomials

SÊ½çã®ÊÄ
f(x) =

√
x ⇒ f(4) = 2

f ′(x) = 1
2
√
x

⇒ f ′(4) = 1
4

f ′′(x) = −1
4x3/2

⇒ f ′′(4) = −1
32

f ′′′(x) = 3
8x5/2

⇒ f ′′′(4) = 3
256

f (4)(x) = −15
16x7/2

⇒ f (4)(4) = −15
2048

Figure 9.28: A table of the derivaƟves of
f(x) =

√
x evaluated at x = 4.

1. We begin by evaluaƟng the derivaƟves of f at x = 4. This is done in
Figure 9.28. These values allow us to form the Taylor polynomial p4(x):

p4(x) = 2+
1
4
(x−4)+

−1/32
2!

(x−4)2+
3/256
3!

(x−4)3+
−15/2048

4!
(x−4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) = 1.73212.

3. To find a bound on the error, we need an open interval that contains x = 3
and x = 4. We set I = (2.9, 4.1). The largest value the fiŌh derivaƟve of
f(x) =

√
x takes on this interval is near x = 2.9, at about 0.0273. Thus

y =
√
x

y = p4(x)

5 10

1

2

3

x

y

Figure 9.29: A graph of f(x) =
√
x and its

degree 4 Taylor polynomial at x = 4.

|R4(3)| ≤
0.0273

5!
|3− 4|5 ≈ 0.00023.

This shows our approximaƟon is accurate to at least the first 2 places aŌer
the decimal. It turns out that our approximaƟon has an error of 0.00007,
or 0.004%. A graph of f(x) =

√
x and p4(x) is given in Figure 9.29. Note

how the two funcƟons are nearly indisƟnguishable on (2, 7).

Most of this chapter has been devoted to the study of infinite series. This
secƟon has stepped aside from this study, focusing instead on finite summaƟon
of terms. In the next secƟon, we will combine power series and Taylor polyno-
mials into Taylor Series, where we represent a funcƟon with an infinite series.

Notes:
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Exercises 9.9
Terms and Concepts
1. What is the difference between a Taylor polynomial and a

Maclaurin polynomial?
2. T/F: In general, pn(x) approximates f(x) beƩer and beƩer

as n gets larger.
3. For some funcƟon f(x), the Maclaurin polynomial of de-

gree 4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is p2(x)?
4. For some funcƟon f(x), the Maclaurin polynomial of de-

gree 4 is p4(x) = 6+3x−4x2+5x3−7x4. What is f ′′′(0)?

Problems
In Exercises 5–12, find the Maclaurin polynomial of degree n
for the given funcƟon.

5. f(x) = e−x, n = 3
6. f(x) = sin x, n = 8
7. f(x) = x · ex, n = 5
8. f(x) = tan x, n = 6
9. f(x) = e2x, n = 4

10. f(x) = 1
1− x

, n = 4

11. f(x) = 1
1+ x

, n = 4

12. f(x) = 1
1+ x

, n = 7

In Exercises 13–20, find the Taylor polynomial of degree n, at
x = c, for the given funcƟon.

13. f(x) =
√
x, n = 4, c = 1

14. f(x) = ln(x+ 1), n = 4, c = 1
15. f(x) = cos x, n = 6, c = π/4
16. f(x) = sin x, n = 5, c = π/6

17. f(x) = 1
x
, n = 5, c = 2

18. f(x) = 1
x2
, n = 8, c = 1

19. f(x) = 1
x2 + 1

, n = 3, c = −1

20. f(x) = x2 cos x, n = 2, c = π

In Exercises 21–24, approximate the funcƟon value with the
indicated Taylor polynomial and give approximate bounds on
the error.

21. Approximate sin 0.1 with the Maclaurin polynomial of de-
gree 3.

22. Approximate cos 1 with the Maclaurin polynomial of de-
gree 4.

23. Approximate
√
10 with the Taylor polynomial of degree 2

centered at x = 9.
24. Approximate ln 1.5 with the Taylor polynomial of degree 3

centered at x = 1.

Exercises 25–28 ask for an n to be found such that pn(x) ap-
proximates f(x) within a certain bound of accuracy.

25. Find n such that the Maclaurin polynomial of degree n of
f(x) = ex approximates ewithin 0.0001 of the actual value.

26. Find n such that the Taylor polynomial of degree n of f(x) =√
x, centered at x = 4, approximates

√
3 within 0.0001 of

the actual value.
27. Find n such that the Maclaurin polynomial of degree n of

f(x) = cos x approximates cos π/3 within 0.0001 of the
actual value.

28. Find n such that the Maclaurin polynomial of degree n of
f(x) = sin x approximates cos πwithin 0.0001 of the actual
value.

In Exercises 29–33, find the nth term of the indicated Taylor
polynomial.

29. Find a formula for the nth termof theMaclaurin polynomial
for f(x) = ex.

30. Find a formula for the nth termof theMaclaurin polynomial
for f(x) = cos x.

31. Find a formula for the nth termof theMaclaurin polynomial
for f(x) = 1

1− x
.

32. Find a formula for the nth termof theMaclaurin polynomial
for f(x) = 1

1+ x
.

33. Find a formula for the nth term of the Taylor polynomial for
f(x) = ln x.

In Exercises 34–36, approximate the soluƟon to the given dif-
ferenƟal equaƟon with a degree 4 Maclaurin polynomial.

34. y′ = y, y(0) = 1

35. y′ = 5y, y(0) = 3

36. y′ = 2
y
, y(0) = 1
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9.10 Taylor Series
In SecƟon 9.8, we showed how certain funcƟons can be represented by a power
series funcƟon. In SecƟon 9.9, we showed how we can approximate funcƟons
with polynomials, given that enough derivaƟve informaƟon is available. In this
secƟon we combine these concepts: if a funcƟon f(x) is infinitely differenƟable,
we show how to represent it with a power series funcƟon.

DefiniƟon 43 Taylor and Maclaurin Series
Let f(x) have derivaƟves of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

∞∑
n=0

f (n)(c)
n!

(x− c)n.

2. Seƫng c = 0 gives theMaclaurin Series of f(x):

∞∑
n=0

f (n)(0)
n!

xn.

Watch the video:
Taylor and Maclaurin Series — Example 2 at
https://youtu.be/Os8OtXFBLkY

The difference between a Taylor polynomial and a Taylor series is the former
is a polynomial, containing only a finite number of terms, whereas the laƩer
is a series, a summaƟon of an infinite set of terms. When creaƟng the Taylor
polynomial of degree n for a funcƟon f(x) at x = c, we needed to evaluate f, and
the first n derivaƟves of f, at x = c. When creaƟng the Taylor series of f, we need
to find a paƩern that describes the nth derivaƟve of f at x = c. We demonstrate
this in the next two examples.

Example 1 The Maclaurin series of f(x) = cos x
Find the Maclaurin series of f(x) = cos x.

Notes:
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SÊ½çã®ÊÄ In Example 9.9.4 we found the 8th degreeMaclaurin polyno-
mial of cos x. In doing so, we created the table shown in Figure 9.30. NoƟce how

f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 9.30: A table of the derivaƟves of
f(x) = cos x evaluated at x = 0.

f (n)(0) = 0when n is odd, f (n)(0) = 1when n is divisible by 4, and f (n)(0) = −1
when n is even but not divisible by 4. Thus the Maclaurin series of cos x is

1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

We can go further and write this as a summaƟon. Since we only need the terms
where the power of x is even, we write the power series in terms of x2n:

∞∑
n=0

(−1)n x2n

(2n)!
.

Example 2 The Taylor series of f(x) = ln x at x = 1
Find the Taylor series of f(x) = ln x centered at x = 1.

SÊ½çã®ÊÄ Figure 9.31 shows the nth derivaƟve of ln x evaluated at x =
1 for n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what disƟnguishes Taylor series from Taylor polynomials;
we are very interested in finding a paƩern for the nth term, not just finding a
finite set of coefficients for a polynomial. Since f(1) = ln 1 = 0, we skip the

f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
f (5)(x) = 24/x5 ⇒ f (5)(1) = 24
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 9.31: DerivaƟves of ln x evaluated
at x = 1.

first term and start the summaƟon with n = 1, giving the Taylor series for ln x,
centered at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1
n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

It is important to note that DefiniƟon 43 defines a Taylor series given a func-
Ɵon f(x); however, we cannot yet state that f(x) is equal to its Taylor series. We
will find that “most of the Ɵme” they are equal, but we need to consider the
condiƟons that allow us to conclude this.

Theorem 81 states that the error between a funcƟon f(x) and its nth–degree
Taylor polynomial pn(x) is Rn(x), where

|Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
|x− c|n+1

.

If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we con-
clude that the funcƟon is equal to its Taylor series expansion.

Notes:
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Theorem 82 FuncƟon and Taylor Series Equality
Let f(x) have derivaƟves of all orders at x = c, let Rn(x) be as stated in
Theorem 81, and let I be an interval on which the Taylor series of f(x)
converges. If lim

n→∞
Rn(x) = 0 for all x in I, then

f(x) =
∞∑
n=0

f (n)(c)
n!

(x− c)n on I.

We demonstrate the use of this theorem in an example.

Example 3 Establishing equality of a funcƟon and its Taylor series
Show that f(x) = cos x is equal to its Maclaurin series, as found in Example 1,
for all x.

SÊ½çã®ÊÄ Given a value x, the magnitude of the error term Rn(x) is
bounded by

|Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
|x|n+1

.

Since all derivaƟves of cos x are± sin xor± cos x, whosemagnitudes are bounded
by 1, we can state

|Rn(x)| ≤
1

(n+ 1)!
|x|n+1

which implies

− |x|n+1

(n+ 1)!
≤ Rn(x) ≤

|x|n+1

(n+ 1)!
. (9.10)

For any x, lim
n→∞

xn+1

(n+ 1)!
= 0. Applying the Squeeze Theorem to EquaƟon (9.10),

we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

cos x =
∞∑
n=0

(−1)n x2n

(2n)!
for all x.

It is natural to assume that a funcƟon is equal to its Taylor series on the
series’ interval of convergence, but this is not the case. In order to properly
establish equality, one must use Theorem 82. This is a bit disappoinƟng, as we
developed beauƟful techniques for determining the interval of convergence of
a power series, and proving that Rn(x)→ 0 can be cumbersome as it deals with
high order derivaƟves of the funcƟon.
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There is good news. A funcƟon f(x) that is equal to its Taylor series, centered
at any point the domain of f(x), is said to be an analyƟc funcƟon, andmost, if not
all, funcƟons that we encounterwithin this course are analyƟc funcƟons. Gener-
ally speaking, any funcƟon that one creates with elementary funcƟons (polyno-
mials, exponenƟals, trigonometric funcƟons, etc.) that is not piecewise defined
is probably analyƟc. For most funcƟons, we assume the funcƟon is equal to its
Taylor series on the series’ interval of convergence and only use Theorem 82
when we suspect something may not work as expected.

We develop the Taylor series for one more important funcƟon, then give a
table of the Taylor series for a number of common funcƟons.

Example 4 The Binomial Series
Find the Maclaurin series of f(x) = (1+ x)k, k ̸= 0.

SÊ½çã®ÊÄ When k is a posiƟve integer, the Maclaurin series is finite.
For instance, when k = 4, we have

f(x) = (1+ x)4 = 1+ 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a posiƟve integer are known as the binomial co-
efficients, giving the series we are developing its name.

When k = 1/2, we have f(x) =
√
1+ x. Knowing a series representaƟon of

this funcƟon would give a useful way of approximaƟng
√
1.3, for instance.

To develop the Maclaurin series for f(x) = (1 + x)k for any value of k ̸= 0,
we consider the derivaƟves of f evaluated at x = 0:

f(x) = (1+ x)k f(0) = 1
f ′(x) = k(1+ x)k−1 f ′(0) = k

f ′′(x) = k(k− 1)(1+ x)k−2 f ′′(0) = k(k− 1)
f ′′′(x) = k(k− 1)(k− 2)(1+ x)k−3 f ′′′(0) = k(k− 1)(k− 2)

...
...

f (n)(x) = k(k− 1) · · ·
(
k− (n− 1)

)
(1+ x)k−n f (n)(0) = k(k− 1) · · ·

(
k− (n− 1)

)
Thus the Maclaurin series for f(x) = (1+ x)k is

1+ k+
k(k− 1)

2!
+

k(k− 1)(k− 2)
3!

+ · · ·+
k(k− 1) · · ·

(
k− (n− 1)

)
n!

+ · · ·

It is important to determine the interval of convergence of this series. With

an =
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn,
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we apply the RaƟo Test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣ k(k−1)···(k−n)
(n+1)! xn+1

∣∣∣∣∣∣∣ k(k−1)···
(
k−(n−1)

)
n! xn

∣∣∣∣
= lim

n→∞

∣∣∣∣k− n
n

x
∣∣∣∣

= |x| .

The series converges absolutely when the limit of the RaƟo Test is less than
1; therefore, we have absolute convergence when |x| < 1.

While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [−1, 1]. When
−1 < k < 0, the interval of convergence is [−1, 1). If k ≤ −1, the interval of
convergence is (−1, 1).

We learned that Taylor polynomials offer a way of approximaƟng a “difficult
to compute” funcƟon with a polynomial. Taylor series offer a way of exactly
represenƟng a funcƟon with a series. One probably can see the use of a good
approximaƟon; is there any use of represenƟng a funcƟon exactly as a series?

Whilewe should not overlook themathemaƟcal beauty of Taylor series (which
is reason enough to study them), there are pracƟcal uses as well. They provide
a valuable tool for solving a variety of problems, including problems relaƟng to
integraƟon and differenƟal equaƟons.

In Key Idea 33 (on the following page) we give a table of theMaclaurin series
of a number of common funcƟons. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new funcƟons. This allows us to find the Taylor series of funcƟons like
f(x) = ex cos x by knowing the Taylor series of ex and cos x.

Before we invesƟgate combining funcƟons, consider the Taylor series for the
arctangent funcƟon (see Key Idea 33). Knowing that tan−1(1) = π/4, we can
use this series to approximate the value of π:

π

4
= tan−1(1) = 1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

π = 4
(
1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

)
Unfortunately, this parƟcular expansion of π converges very slowly. The first 100
terms approximate π as 3.13159, which is not parƟcularly good.
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Key Idea 33 Important Maclaurin Series Expansions
FuncƟon and Series First Few Terms Interval of

Convergence

ex =
∞∑
n=0

xn

n!
1+ x+

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin x =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
x− x3

3!
+

x5

5!
− x7

7!
+ · · · (−∞,∞)

cos x =
∞∑
n=0

(−1)n x2n

(2n)!
1− x2

2!
+

x4

4!
− x6

6!
+ · · · (−∞,∞)

ln(x+ 1) =
∞∑
n=1

(−1)n+1 xn

n
x− x2

2
+

x3

3
− · · · (−1, 1]

1
1− x

=

∞∑
n=0

xn 1+ x+ x2 + x3 + · · · (−1, 1)

(1+ x)k =
∞∑
n=0

k(k− 1) · · ·
(
k− (n− 1)

)
n!

xn 1+ kx+
k(k− 1)

2!
x2 + · · ·


(−1, 1) k ≤ −1
[−1, 1) −1 < k < 0
[−1, 1] 0 < k

tan−1 x =
∞∑
n=0

(−1)n x2n+1

2n+ 1
x− x3

3
+

x5

5
− x7

7
+ · · · [−1, 1]
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Theorem 83 Algebra of Power Series

Let f(x) =
∞∑
n=0

anxn and g(x) =
∞∑
n=0

bnxn converge absolutely for |x| <

R, and let h(x) be conƟnuous.

1. f(x)± g(x) =
∞∑
n=0

(an ± bn)xn for |x| < R.

2. f(x)g(x) =

( ∞∑
n=0

anxn
)( ∞∑

n=0
bnxn

)
=

∞∑
n=0

(
a0bn + a1bn−1 + · · ·+ anb0

)
xn for |x| < R.

3. f
(
h(x)

)
=

∞∑
n=0

an
(
h(x)

)n for |h(x)| < R.

Example 5 Combining Taylor series
Write out the first 3 terms of the Maclaurin Series for f(x) = ex cos x using Key
Idea 33 and Theorem 83.

SÊ½çã®ÊÄ Key Idea 33 informs us that

ex = 1+ x+
x2

2!
+

x3

3!
+ · · · and cos x = 1− x2

2!
+

x4

4!
+ · · · .

Applying Theorem 83, we find that

ex cos x =
(
1+ x+

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
+ · · ·

)
.

Distribute the right hand expression across the leŌ:

= 1
(
1− x2

2!
+

x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x2

2!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x3

3!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x4

4!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ · · ·
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Distribute again and collect like terms.

= 1+ x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · ·

While this process is a bit tedious, it is much faster than evaluaƟng all the nec-
essary derivaƟves of ex cos x and compuƟng the Taylor series directly.

Because the series for ex and cos x both converge on (−∞,∞), so does the
series expansion for ex cos x.

Example 6 CreaƟng new Taylor series
Use Theorem 83 to create the Taylor series for y = sin(x2) centered at x = 0
and a series for y = ln(

√
x) centered at c = 1.

SÊ½çã®ÊÄ Given that

sin x =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

we simply subsƟtute x2 for x in the series, giving

sin(x2) =
∞∑
n=0

(−1)n (x2)2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)n x4n+2

(2n+ 1)!
= x2− x6

3!
+
x10

5!
− x14

7!
· · · .

Since the Taylor series for sin x has an infinite radius of convergence, so does the
Taylor series for sin(x2).

The Taylor expansion for ln x given in Key Idea 33 is centered at x = 1, so we
will center the series for ln(

√
x) at x = 1 as well. With

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · ,

we subsƟtute
√
x for x to obtain

Note: In Example 6, one could cre-
ate a series for ln(

√
x) by simply rec-

ognizing that ln(
√
x) = ln(x1/2) =

1/2 ln x, and hence mulƟplying the
Taylor series for ln x by 1/2. This
example was chosen to demonstrate
other aspects of series, such as the
fact that the interval of convergence
changes.

ln(
√
x) =

∞∑
n=1

(−1)n+1 (
√
x− 1)n

n
= (
√
x−1)− (

√
x− 1)2

2
+

(
√
x− 1)3

3
−· · · .

While this is not strictly a power series because of the
√
x, it is a series that

allows us to study the funcƟon ln(
√
x). Since the interval of convergence of ln x

is (0, 2], and the range of
√
x on (0, 4] is (0, 2], the interval of convergence of

this series expansion of ln(
√
x) is (0, 4].
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Example 7 Using Taylor series to evaluate definite integrals

Use the Taylor series of e−x2 to evaluate
ˆ 1

0
e−x2 dx.

SÊ½çã®ÊÄ We learned, when studying Numerical IntegraƟon, that e−x2

does not have an anƟderivaƟve expressible in terms of elementary funcƟons.
This means any definite integral of this funcƟon must have its value approxi-
mated, and not computed exactly.

We can quickly write out the Taylor series for e−x2 using the Taylor series of
ex:

ex =
∞∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ · · ·

and so

e−x2 =

∞∑
n=0

(−x2)n

n!

=

∞∑
n=0

(−1)n x
2n

n!

= 1− x2 +
x4

2!
− x6

3!
+ · · · .

We use Theorem 80 to integrate:
ˆ

e−x2 dx = C+ x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·+ (−1)n x2n+1

(2n+ 1)n!
+ · · ·

This is the anƟderivaƟve of e−x2 ; while we can write it out as a series, we can-
not write it out in terms of elementary funcƟons. We can evaluate the definite

integral
ˆ 1

0
e−x2 dx using this anƟderivaƟve; subsƟtuƟng 1 and 0 for x and sub-

tracƟng gives
ˆ 1

0
e−x2 dx = 1− 1

3
+

1
5 · 2!

− 1
7 · 3!

+
1

9 · 4!
− · · · .

Summing the 5 terms shownabove give the approximaƟonof 0.74749. Since this
is an alternaƟng series, we can use the AlternaƟng Series ApproximaƟon Theo-
rem, (Theorem 75), to determine how accurate this approximaƟon is. The next
termof the series is 1/(11·5!) ≈ 0.00075758. Thuswe knowour approximaƟon
is within 0.00075758 of the actual value of the integral. This is arguably much
less work than using Simpson’s Rule to approximate the value of the integral.
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Another advantage to using Taylor series instead of Simpson’s Rule is for
making subsequent approximaƟons. We found in Example 8.7.7 that the er-

ror in using Simpson’s Rule for
ˆ 1

0
e−x2 dx with four intervals was 0.00026. If

we wanted to decrease that error, we would need to use more intervals, es-
senƟally starƟng the problem over. Using a Taylor series, if we wanted a more
accurate approximaƟon, we can just subtract the next term 1/(11 · 5!) to get an
approximaƟon of 0.7467, with an error of at most 1/(13 · 6!) ≈ 0.0001.

Finding a paƩern in the coefficients that match the series expansion of a
known funcƟon, such as those shown in Key Idea 33, can be difficult. What if
the coefficients are given in their reduced form; how could we sƟll recover the
funcƟon?

Suppose that all we know is that

a0 = 1, a1 = 2, a2 = 2, a3 =
4
3
, a4 =

2
3
.

DefiniƟon 43 states that each term of the Taylor expansion of a funcƟon includes
an n!. This allows us to say that

a2 = 2 =
b2
2!
, a3 =

4
3
=

b3
3!
, and a4 =

2
3
=

b4
4!

for some values b2, b3 and b4. Solving for these values, we see that b2 = 4,
b3 = 8 and b4 = 16. That is, we are recovering the paƩern bn = 2n, allowing us
to write

f(x) =
∞∑
n=0

anxn =
∞∑
n=0

bn
n!

xn

= 1+ 2x+
4
2!
x2 +

8
3!
x3 +

16
4!

x4 + · · ·

From here it is easier to recognize that the series is describing an exponenƟal
funcƟon.

This chapter introduced sequences, which are ordered lists of numbers, fol-
lowed by series, wherein we add up the terms of a sequence. We quickly saw
that such sums do not always add up to “infinity,” but rather converge. We stud-
ied tests for convergence, then ended the chapter with a formal way of defining
funcƟons based on series. Such “series–defined funcƟons” are a valuable tool
in solving a number of different problems throughout science and engineering.

Coming in the next chapters are new ways of defining curves in the plane
apart from using funcƟons of the form y = f(x). Curves created by these new
methods can be beauƟful, useful, and important.
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Exercises 9.10
Terms and Concepts
1. What is the difference between a Taylor polynomial and a

Taylor series?
2. What theoremmustweuse to show that a funcƟon is equal

to its Taylor series?

Problems
Key Idea 33 gives the nth term of the Taylor series of common
funcƟons. In Exercises 3–6, verify the formula given in the Key
Idea by finding the first few terms of the Taylor series of the
given funcƟon and idenƟfying a paƩern.

3. f(x) = ex; c = 0
4. f(x) = sin x; c = 0
5. f(x) = 1/(1− x); c = 0
6. f(x) = tan−1 x; c = 0

In Exercises 7–12, find a formula for the nth term of the Taylor
series of f(x), centered at c, by finding the coefficients of the
first few powers of x and looking for a paƩern. (The formu-
las for several of these are found in Key Idea 33; show work
verifying these formula.)

7. f(x) = cos x; c = π/2
8. f(x) = 1/x; c = 1
9. f(x) = e−x; c = 0

10. f(x) = ln(1+ x); c = 0
11. f(x) = x/(x+ 1); c = 1
12. f(x) = sin x; c = π/4

In Exercises 13–16, show that the Taylor series for f(x), as given
in Key Idea 33, is equal to f(x) by applying Theorem 82; that is,
show lim

n→∞
Rn(x) = 0.

13. f(x) = ex

14. f(x) = sin x

15. f(x) = ln(x+ 1) (show equality only on (0, 1)).

16. f(x) = 1/(1− x) (show equality only on (−1, 0))

In Exercises 17–20, use the Taylor series given in Key Idea 33
to verify the given idenƟty.

17. cos(−x) = cos x

18. sin(−x) = − sin x

19. d
dx

(
sin x

)
= cos x

20. d
dx

(
cos x

)
= − sin x

In Exercises 21–24, write out the first 5 terms of the Binomial
series with the given k-value.

21. k = 1/2

22. k = −1/2

23. k = 1/3

24. k = 4

In Exercises 25–30, use the Taylor series given in Key Idea 33
to create the Taylor series of the given funcƟons.

25. f(x) = cos
(
x2
)

26. f(x) = e−x

27. f(x) = sin
(
2x+ 3

)
28. f(x) = tan−1 (x/2)
29. f(x) = ex sin x (only find the first non-zero 4 terms)

30. f(x) = (1 + x)1/2 cos x (only find the first non-zero 4
terms)

In Exercises 31–32, approximate the value of the given definite
integral by using the first 4 nonzero terms of the integrand’s
Taylor series.

31.
ˆ √

π

0
sin
(
x2
)
dx

32.
ˆ π2/4

0
cos
(√

x
)
dx
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10.0 Chapter Prerequisites — Conic SecƟons

10.0 Chapter Prerequisites — Conic SecƟons
The material in this secƟon provides a basic review of and pracƟce problems for
pre-calculus skills essenƟal to your success in Calculus. You should take Ɵme to
review this secƟon and work the suggested problems (checking your answers
against those in the back of the book). Since this content is a pre-requisite for
Calculus, reviewing andmastering these skills are considered your responsibility.
Thismeans thatminimal, and in some cases no, class Ɵmewill be devoted to this
secƟon. When you idenƟfy areas that you need help with we strongly urge you
to seek assistance outside of class from your instructor or other student tutoring
service.

The ancient Greeks recognized that interesƟng shapes can be formed by in-
tersecƟng a plane with a double napped cone (i.e., two idenƟcal cones placed
Ɵp–to–Ɵp as shown in the following figures). As these shapes are formed as
secƟons of conics, they have earned the official name “conic secƟons.”

The three “most interesƟng” conic secƟons are given in the top row of Fig-
ure 10.1. They are the parabola, the ellipse (which includes circles) and the hy-
perbola. In each of these cases, the plane does not intersect the Ɵps of the cones
(usually taken to be the origin).

Parabola Ellipse Circle Hyperbola

Point Line Crossed Lines

Figure 10.1: Conic SecƟons
When the plane does contain the origin, three degenerate cones can be

formed as shown the boƩom row of Figure 10.1: a point, a line, and crossed
lines. We focus here on the nondegenerate cases.

While the above geometric constructs define the conics in an intuiƟve, visual
way, these constructs are not very helpful when trying to analyze the shapes
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algebraically or consider them as the graph of a funcƟon. It can be shown that
all conics can be defined by the general second–degree equaƟon

Ax2 + Bxy+ Cy2 + Dx+ Ey+ F = 0.

While this algebraic definiƟon has its uses, most find another geometric per-
specƟve of the conics more beneficial.

Each nondegenerate conic can be defined as the locus, or set, of points that
saƟsfy a certain distance property. These distance properƟes can be used to
generate an algebraic formula, allowing us to study each conic as the graph of a
funcƟon.

Parabolas

DefiniƟon 44 Parabola
A parabola is the locus of all points equidistant from a point (called a
focus) and a line (called the directrix) that does not contain the focus.

Directrix

Focus

Vertex

}
p}
p

(x, y)d

d

Ax
is
of

Sy
m
m
et
ry

Figure 10.2: IllustraƟng the definiƟon of
the parabola and establishing an alge-
braic formula.

Figure 10.2 illustrates this definiƟon. The point halfway between the focus
and the directrix is the vertex. The line through the focus, perpendicular to the
directrix, is the axis of symmetry, as the porƟon of the parabola on one side of
this line is the mirror–image of the porƟon on the opposite side.

The geometric definiƟon of the parabola and distance formula can be used
to derive the quadraƟc funcƟon whose graph is a parabola with vertex at the
origin.

y =
1
4p

x2.

Applying transformaƟons of funcƟons we get the following standard form of the
parabola.
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Key Idea 34 General EquaƟon of a Parabola

1. VerƟcal Axis of Symmetry: The equaƟon of the parabola with
vertex at (h, k), directrix y = k − p, and focus at (h, k + p) in
standard form is

y =
1
4p

(x− h)2 + k.

2. Horizontal Axis of Symmetry: The equaƟon of the parabola with
vertex at (h, k), directrix x = h − p, and focus at (h + p, k) in
standard form is

x =
1
4p

(y− k)2 + h.

Note: p is not necessarily a posiƟve number.

Example 1 Finding the equaƟon of a parabola
Give the equaƟon of the parabola with focus at (1, 2) and directrix at y = 3.

SÊ½çã®ÊÄ The vertex is located halfway between the focus and direc-
trix, so (h, k) = (1, 2.5). This gives p = −0.5. Using Key Idea 34 we have the
equaƟon of the parabola as

5

−6

−4

−2

2

x

y

Figure 10.3: The parabola described in Ex-
ample 1.

y =
1

4(−0.5)
(x− 1)2 + 2.5 = −1

2
(x− 1)2 + 2.5.

The parabola is sketched in Figure 10.3.

Ellipses

DefiniƟon 45 Ellipse
An ellipse is the locus of all points whose sum of distances from two
fixed points, each a focus of the ellipse, is constant.

An easy way to visualize this construcƟon of an ellipse is to pin both ends of
a string to a board. The pins become the foci. Holding a pencil Ɵght against the
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string places the pencil on the ellipse; the sum of distances from the pencil to
the pins is constant: the length of the string. See Figure 10.4.

As shown in Figure 10.5, the values of a and b have meaning. In general,
the two foci of an ellipse lie on the major axis of the ellipse, and the midpoint
of the segment joining the two foci is the center. The major axis intersects the
ellipse at two points, each of which is a vertex. The line segment through the
center and perpendicular to the major axis is theminor axis. The “constant sum
of distances” that defines the ellipse is the length of the major axis, i.e., 2a.

d1
d2

d1 + d2 = constant

Figure 10.4: IllustraƟng the construcƟon
of an ellipse with pins, pencil and string.

Major axis Minor axis

VerƟces Foci

︸ ︷︷ ︸
a

︸ ︷︷ ︸
c

b



Figure 10.5: Labeling the significant fea-
tures of an ellipse.

Allowing for the shiŌing of the ellipse gives the following standard equaƟons.

Key Idea 35 Standard EquaƟon of the Ellipse
The equaƟon of an ellipse centered at (h, k) with major axis of length
2a and minor axis of length 2b in standard form is:

1. Horizontal major axis:
(x− h)2

a2
+

(y− k)2

b2
= 1.

2. VerƟcal major axis:
(x− h)2

b2
+

(y− k)2

a2
= 1.

The foci lie along the major axis, c units from the center, where c2 =
a2 − b2.

Example 2 Finding the equaƟon of an ellipse
Find the general equaƟon of the ellipse graphed in Figure 10.6.

−6 −4 −2 2 4 6

−4

−2

2

4

6

x

y

Figure 10.6: The ellipse used in Exam-
ple 2.

SÊ½çã®ÊÄ The center is located at (−3, 1). The distance from the cen-
ter to a vertex is 5 units, hence a = 5. The minor axis seems to have length 4,
so b = 2. Thus the equaƟon of the ellipse is

(x+ 3)2

4
+

(y− 1)2

25
= 1.

Example 3 Graphing an ellipse
Graph the ellipse defined by 4x2 + 9y2 − 8x− 36y = −4.

SÊ½çã®ÊÄ It is simple to graph an ellipse once it is in standard form. In
order to put the given equaƟon in standard form, we must complete the square
with both the x and y terms. We first rewrite the equaƟon by regrouping:

4x2 + 9y2 − 8x− 36y = −4 ⇒ (4x2 − 8x) + (9y2 − 36y) = −4.

Notes:
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Now we complete the squares.

(4x2 − 8x) + (9y2 − 36y) = −4
4(x2 − 2x) + 9(y2 − 4y) = −4

4(x2 − 2x+ 1− 1) + 9(y2 − 4y+ 4− 4) = −4
4
(
(x− 1)2 − 1

)
+ 9
(
(y− 2)2 − 4

)
= −4

4(x− 1)2 − 4+ 9(y− 2)2 − 36 = −4
4(x− 1)2 + 9(y− 2)2 = 36
(x− 1)2

9
+

(y− 2)2

4
= 1.

We see the center of the ellipse is at (1, 2). We have a = 3 and b = 2; the

−2 −1 1 2 3 4
−1

1

2

3

4

x

y

Figure 10.7: Graphing the ellipse in Exam-
ple 3.

major axis is horizontal, so the verƟces are located at (−2, 2) and (4, 2). We
find c =

√
9− 4 =

√
5 ≈ 2.24. The foci are located along the major axis,

approximately 2.24 units from the center, at (1± 2.24, 2). This is all graphed in
Figure 10.7.

Hyperbolas
The definiƟon of a hyperbola is very similar to the definiƟon of an ellipse; we
essenƟally just change the word “sum” to “difference.”

DefiniƟon 46 Hyperbola
A hyperbola is the locus of all points where the absolute value of the
difference of distances from two fixed points, each a focus of the hy-
perbola, is constant.

We do not have a convenient way of visualizing the construcƟon of a hyper-
bola as we did for the ellipse. The geometric definiƟon does allow us to find an
algebraic expression that describes it. It will be useful to define some terms first.

Transverse
axis

ax
is

Co
nj
ug
at
e

FociVerƟces

a︷ ︸︸ ︷ c︷ ︸︸ ︷

Figure 10.8: Labeling the significant fea-
tures of a hyperbola.

The two foci lie on the transverse axis of the hyperbola; the midpoint of
the line segment joining the foci is the center of the hyperbola. The transverse
axis intersects the hyperbola at two points, each a vertex of the hyperbola. The
line through the center and perpendicular to the transverse axis is the conju-
gate axis. This is illustrated in Figure 10.8. It is easy to show that the constant
difference of distances used in the definiƟon of the hyperbola is the distance
between the verƟces, i.e., 2a.

Notes:
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Key Idea 36 Standard EquaƟon of a Hyperbola
The equaƟon of a hyperbola centered at (h, k) in standard form is:

1. Horizontal Transverse Axis:
(x− h)2

a2
− (y− k)2

b2
= 1.

2. VerƟcal Transverse Axis:
(y− k)2

a2
− (x− h)2

b2
= 1.

The verƟces are located a units from the center and the foci are located
c units from the center, where c2 = a2 + b2.

Graphing Hyperbolas
−5 5

−2

2

x

y

Figure 10.9: Graphing the hyperbola x2
9 −

y2
1 = 1 along with its asymptotes, y =
±x/3.

Consider the hyperbola x2
9 −

y2
1 = 1. Solving for y, we find y = ±

√
x2/9− 1. As

x grows large, the “−1” part of the equaƟon for y becomes less significant and
y ≈ ±

√
x2/9 = ±x/3. That is, as x gets large, the graph of the hyperbola looks

verymuch like the lines y = ±x/3. These lines are asymptotes of the hyperbola,
as shown in Figure 10.9.

h − a h + ah

k − b

k

k + b

x

y

Figure 10.10: Using the asymptotes of a
hyperbola as a graphing aid.

This is a valuable tool in sketching. Given the equaƟon of a hyperbola in
general form, draw a rectangle centered at (h, k)with sides of length 2a parallel
to the transverse axis and sides of length 2b parallel to the conjugate axis. (See
Figure 10.10 for an example with a horizontal transverse axis.) The diagonals of
the rectangle lie on the asymptotes.

These lines pass through (h, k). When the transverse axis is horizontal, the
slopes are±b/a; when the transverse axis is verƟcal, their slopes are±a/b. This
gives equaƟons:

Horizontal
Transverse Axis

VerƟcal
Transverse Axis

y = ±b
a
(x− h) + k y = ±a

b
(x− h) + k.

−5 5

−5

5

10

x

y

Figure 10.11: Graphing the hyperbola in
Example 4.

Example 4 Graphing a hyperbola

Sketch the hyperbola given by
(y− 2)2

25
− (x− 1)2

4
= 1.

SÊ½çã®ÊÄ The hyperbola is centered at (1, 2); a = 5 and b = 2. In
Figure 10.11 we draw the prescribed rectangle centered at (1, 2) along with the
asymptotes defined by its diagonals. The hyperbola has a verƟcal transverse

Notes:
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axis, so the verƟces are located at (1, 7) and (1,−3). This is enough to make a
good sketch.

We also find the locaƟon of the foci: as c2 = a2 + b2, we have c =
√
29 ≈

5.4. Thus the foci are located at (1, 2± 5.4) as shown in the figure.

−4 −2 2 4

−10

10

x

y

Figure 10.12: Graphing the hyperbola in
Example 5.

Example 5 Graphing a hyperbola
Sketch the hyperbola given by 9x2 − y2 + 2y = 10.

SÊ½çã®ÊÄ Wemust complete the square to put the equaƟon in general
form. (We recognize this as a hyperbola since it is a general quadraƟc equaƟon
and the x2 and y2 terms have opposite signs.)

9x2 − y2 + 2y = 10
9x2 − (y2 − 2y) = 10

9x2 − (y2 − 2y+ 1− 1) = 10
9x2 −

(
(y− 1)2 − 1

)
= 10

9x2 − (y− 1)2 = 9

x2 − (y− 1)2

9
= 1

We see the hyperbola is centered at (0, 1), with a horizontal transverse axis,
where a = 1 and b = 3. The appropriate rectangle is sketched in Figure 10.12
along with the asymptotes of the hyperbola. The verƟces are located at (±1, 1).
We have c =

√
10 ≈ 3.2, so the foci are located at (±3.2, 1) as shown in Fig-

ure 10.12.

This chapter explores curves in the plane, in parƟcular curves that cannot
be described by funcƟons of the form y = f(x). In this secƟon, we learned of
ellipses and hyperbolas that are defined implicitly, not explicitly. In the following
secƟons, we will learn completely new ways of describing curves in the plane,
using parametric equaƟons and polar coordinates, then study these curves using
calculus techniques.

Notes:
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Exercises 10.0
Problems
In Exercises 1–8, find the equaƟon of the parabola defined by
the given informaƟon. Sketch the parabola.

1. Focus: (3, 2); directrix: y = 1
2. Focus: (−1,−4); directrix: y = 2
3. Focus: (1, 5); directrix: x = 3
4. Focus: (1/4, 0); directrix: x = −1/4
5. Focus: (1, 1); vertex: (1, 2)
6. Focus: (−3, 0); vertex: (0, 0)
7. Vertex: (0, 0); directrix: y = −1/16
8. Vertex: (2, 3); directrix: x = 4

In Exercises 9–10, sketch the ellipse defined by the given equa-
Ɵon. Label the center, foci and verƟces.

9. (x− 1)2

3
+

(y− 2)2

5
= 1

10. 1
25

x2 + 1
9
(y+ 3)2 = 1

In Exercises 11–12, find the equaƟon of the ellipse shown in
the graph.

11.

−4 −2 2

2

4

x

y

12.
−1 1 2

−2

2

x

y

In Exercises 13–16, write the equaƟon of the given ellipse in
standard form.

13. x2 − 2x+ 2y2 − 8y = −7
14. 5x2 + 3y2 = 15
15. 3x2 + 2y2 − 12y+ 6 = 0
16. x2 + y2 − 4x− 4y+ 4 = 0

In Exercises 17–20, find the equaƟon of the hyperbola shown
in the graph.

17.
−1 1 2−2

−2

2

x

y

18.
−5 5

−5

5

x

y

19.

5

2

4

6

x

y

20.

5

2

4

6

x

y

In Exercises 21–22, sketch the hyperbola defined by the given
equaƟon. Label the center.

21. (x− 1)2

16
− (y+ 2)2

9
= 1

22. (y− 4)2 − (x+ 1)2

25
= 1

In Exercises 23–26, write the equaƟon of the hyperbola in stan-
dard form.

23. 3x2 − 4y2 = 12

24. 3x2 − y2 + 2y = 10

25. x2 − 10y2 + 40y = 30

26. (4y− x)(4y+ x) = 4
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10: CçÙò�Ý ®Ä ã«� P½�Ä�
We have explored funcƟons of the form y = f(x) closely throughout this text.
We have explored their limits, their derivaƟves and their anƟderivaƟves; we
have learned to idenƟfy key features of their graphs, such as relaƟve maxima
andminima, inflecƟon points and asymptotes; we have found equaƟons of their
tangent lines, the areas between porƟons of their graphs and the x-axis, and the
volumes of solids generated by revolving porƟons of their graphs about a hori-
zontal or verƟcal axis.

Despite all this, the graphs created by funcƟons of the form y = f(x) are
limited. Since each x-value can correspond to only 1 y-value, common shapes
like circles cannot be fully described by a funcƟon in this form. Fiƫngly, the
“verƟcal line test” excludes verƟcal lines from being funcƟons of x, even though
these lines are important in mathemaƟcs.

In this chapter we’ll explore new ways of drawing curves in the plane. We’ll
sƟll workwithin the framework of funcƟons, as an inputwill sƟll only correspond
to one output. However, our new techniques of drawing curves will render the
verƟcal line test pointless, and allow us to create important — and beauƟful —
new curves. Once these curves are defined, we’ll apply the concepts of calculus
to them, conƟnuing to find equaƟons of tangent lines and the areas of enclosed
regions.

One aspect that we’ll be interested in is “how long is this curve?” Before
we explore that idea for these new ways to draw curves, we’ll start by exploring
how long a curve is when we’ve goƩen it from a regular y = f(x) funcƟon.

10.1 Arc Length and Surface Area

π
4

π
2

3π
4

π

1

x

y

(a)

π
4

π
2

3π
4

π

1√
2

1

x

y

(b)

Figure 10.13: Graphing y = sin x on
[0, π] and approximaƟng the curve with
line segments.

In previous secƟonswe have used integraƟon to answer the following quesƟons:

1. Given a region, what is its area?

2. Given a solid, what is its volume?

In this secƟon, we address a related quesƟon: Given a curve, what is its
length? This is oŌen referred to as arc length.

Consider the graph of y = sin x on [0, π] given in Figure 10.13 (a). How long
is this curve? That is, if we were to use a piece of string to exactly match the
shape of this curve, how long would the string be?

As we have done in the past, we start by approximaƟng; later, we will refine
our answer using limits to get an exact soluƟon.



Chapter 10 Curves in the Plane

The length of straight–line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approximaƟng
the curve with straight lines and measuring their lengths.

In Figure 10.13 (b), the curve y = sin x has been approximated with 4 line
segments (the interval [0, π] has been divided into 4 equally–lengthed subinter-
vals). It is clear that these four line segments approximate y = sin x very well
on the first and last subinterval, though not so well in the middle. Regardless,
the sum of the lengths of the line segments is 3.79, so we approximate the arc
length of y = sin x on [0, π] to be 3.79.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Let a = x0 < x1 < . . . < xn−1 < xn = b be a parƟƟon
of [a, b] into n subintervals. Let ∆xi represent the length of the i th subinterval
[xi−1, xi].

∆yi

∆xi

xi−1 xi

yi−1

yi

x

y

Figure 10.14: Zooming in on the ith subin-
terval [xi−1, xi] of a parƟƟon of [a, b].

Figure 10.14 zooms in on the ith subinterval where y = f(x) is approxi-
mated by a straight line segment. The dashed lines show that we can view this
line segment as the hypotenuse of a right triangle whose sides have length∆xi
and ∆yi. Using the Pythagorean Theorem, the length of this line segment is√
(∆xi)2 + (∆yi)2. Summing over all subintervals gives an arc length approxi-

maƟon

L ≈
n∑

i=1

√
(∆xi)2 + (∆yi)2.

As it is wriƩen, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a liƩle algebra.

In the above expression factor out a∆x2i term:
n∑

i=1

√
(∆xi)2 + (∆yi)2 =

n∑
i=1

√
(∆xi)2

(
1+

(∆yi)2

(∆xi)2

)
.

Now pull the (∆xi)2 term out of the square root:

L ≈
n∑

i=1

√
1+

(∆yi)2

(∆xi)2
∆xi.

This is nearly a Riemann Sum. Consider the (∆yi)2/(∆xi)2 term. The expression
∆yi/∆xi measures the “change in y/change in x,” that is, the “rise over run” of f
on the i th subinterval. TheMean Value Theoremof DifferenƟaƟon (Theorem24)
states that there is a ci in the i th subinterval where f ′(ci) = ∆yi/∆xi. Thus we
can rewrite our above expression as:

L ≈
n∑

i=1

√
1+ [f ′(ci)]2 ∆xi.

Notes:
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10.1 Arc Length and Surface Area

This is a Riemann Sum. As long as f ′ is conƟnuous on [a, b], we can invoke The-
orem 36 and conclude

L =
ˆ b

a

√
1+ [f ′(x)]2 dx.

Key Idea 37 Arc Length
Let f be differenƟable on an open interval containing [a, b], where f ′ is
also conƟnuous on [a, b]. Then the arc length of f from x = a to x = b
is

L =
ˆ b

a

√
1+ [f ′(x)]2 dx.

Watch the video:
Arc Length at
https://youtu.be/PwmCZAWeRNE

As the integrand contains a square root, it is oŌen difficult to use the for-
mula in Key Idea 37 to find the length exactly. When exact answers are difficult
to come by, we resort to using numerical methods of approximaƟng definite
integrals. The following examples will demonstrate this.

2 4

2

4

6

8

x

y

Figure 10.15: A graph of f(x) = x3/2 from
Example 1.

Example 1 Finding arc length
Find the arc length of f(x) = x3/2 from x = 0 to x = 4.

SÊ½çã®ÊÄ A graph of f is given in Figure 10.15. We begin by finding

Notes:
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f ′(x) = 3
2x

1/2. Using the formula, we find the arc length L as

L =
ˆ 4

0

√
1+

(
3
2
x1/2

)2

dx

=

ˆ 4

0

√
1+

9
4
x dx

=

ˆ 4

0

(
1+

9
4
x
)1/2

dx

=
2
3
4
9

(
1+

9
4
x
)3/2 ∣∣∣4

0

=
8
27

(
103/2 − 1

)
units.

Example 2 Finding arc length
Find the arc length of f(x) =

1
8
x2 − ln x from x = 1 to x = 2.

SÊ½çã®ÊÄ A graph of f is given in Figure 10.16; the porƟon of the curve
measured in this problem is in bold. This funcƟon was chosen specifically be-

1 2 3

0.5

1

x

y

Figure 10.16: A graph of f(x) = 1
8 x

2− ln x
from Example 2.

cause the resulƟng integral canbe evaluated exactly. Webegin byfinding f ′(x) =
x/4− 1/x. The arc length is

L =
ˆ 2

1

√
1+

(
x
4
− 1

x

)2

dx

=

ˆ 2

1

√
1+

x2

16
− 1

2
+

1
x2

dx

=

ˆ 2

1

√
x2

16
+

1
2
+

1
x2

dx

=

ˆ 2

1

√(
x
4
+

1
x

)2

dx

=

ˆ 2

1

(
x
4
+

1
x

)
dx

=

(
x2

8
+ ln x

) ∣∣∣∣∣
2

1

=
3
8
+ ln 2 units.
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The previous examples found the arc length exactly through careful choice
of the funcƟons. In general, exact answers are much more difficult to come by
and numerical approximaƟons are necessary.

Example 3 ApproximaƟng arc length numerically
Find the length of the sine curve from x = 0 to x = π.

SÊ½çã®ÊÄ This is somewhat of amathemaƟcal curiosity; in Example 5.4.3
we found the area under one “hump” of the sine curve is 2 square units; now
we are measuring its arc length.

x
√
1+ cos2 x

0
√
2

π/4
√

3/2
π/2 1
3π/4

√
3/2

π
√
2

Figure 10.17: A table of values of y =√
1+ cos2 x to evaluate a definite inte-

gral in Example 3.

The setup is straighƞorward: f(x) = sin x and f ′(x) = cos x. Thus

L =
ˆ π

0

√
1+ cos2 x dx.

This integral cannot be evaluated in terms of elementary funcƟons sowewill ap-
proximate it with Simpson’s Method with n = 4. Figure 10.17 gives

√
1+ cos2 x

evaluated at 5 evenly spaced points in [0, π]. Simpson’s Rule then states thatˆ π

0

√
1+ cos2 x dx ≈ π − 0

4 · 3

(√
2+ 4

√
3/2+ 2(1) + 4

√
3/2+

√
2
)

≈ 3.82918.

Using a computer with n = 100 the approximaƟon is L ≈ 3.8202; our approxi-
maƟon with n = 4 is quite good. Our approximaƟon of 3.79 from the beginning
of this secƟon isn’t as close.

Surface Area of Solids of RevoluƟon

(a)

(b)

Figure 10.18: Establishing the formula for
surface area.

We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of compuƟng its volume, we now consider its
surface area.

We begin as we have in the previous secƟons: we parƟƟon the interval [a, b]
with n subintervals, where the i th subinterval is [xi, xi+1]. On each subinter-
val, we can approximate the curve y = f(x) with a straight line that connects
f(xi) and f(xi+1) as shown in Figure 10.18(a). Revolving this line segment about
the x-axis creates part of a cone (called a frustum of a cone) as shown in Fig-
ure 10.18(b). The surface area of a frustum of a cone is

A = 2πravgL,

where ravg is the average of R1 and R2. The length is given by L; we use the
material just covered by arc length to state that

L ≈
√
1+ [f ′(ci)]2∆xi

Notes:
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for some ci in the i th subinterval. The radii are just the funcƟon evaluated at the
endpoints of the interval: f(xi−1) and f(xi). Thus the surface area of this sample
frustum of the cone is approximately

2π
f(xi−1) + f(xi)

2
√
1+ [f ′(ci)]2∆xi.

Since f is a conƟnuous funcƟon, the IntermediateValue Theoremstates there

is some di in [xi−1, xi] such that f(di) =
f(xi−1) + f(xi)

2
; we can use this to rewrite

the above equaƟon as

2πf(di)
√
1+ [f ′(ci)]2∆xi.

Summing over all the subintervals we get the total surface area to be approxi-
mately

Surface Area ≈
n∑

i=1

2πf(di)
√
1+ [f ′(ci)]2∆xi,

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the upcoming Key Idea.

If instead we revolve y = f(x) about the y-axis, the radii of the resulƟng
frustumare xi−1 and xi; their average value is simply themidpoint of the interval.
In the limit, this midpoint is just x. This gives the second part of Key Idea 38.

Key Idea 38 Surface Area of a Solid of RevoluƟon
Let f be differenƟable on an open interval containing [a, b] where f ′ is
also conƟnuous on [a, b].

1. The surface area of the solid formed by revolving the graph of
y = f(x), where f(x) ≥ 0, about the x-axis is

Surface Area = 2π
ˆ b

a
f(x)
√
1+ [f ′(x)]2 dx.

2. The surface area of the solid formed by revolving the graph of
y = f(x) about the y-axis, where a, b ≥ 0, is

Surface Area = 2π
ˆ b

a
x
√
1+ [f ′(x)]2 dx.

Notes:
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Example 4 Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving y = sin x on [0, π] around
the x-axis, as shown in Figure 10.19.

SÊ½çã®ÊÄ The setup turns out to be easier than the resulƟng integral.
Using Key Idea 38, we have the surface area SA is:

Figure 10.19: Revolving y = sin x on [0, π]
about the x-axis.

SA = 2π
ˆ π

0
sin x

√
1+ cos2 x dx

= −2π
ˆ −1

1

√
1+ u2 du subsƟtute u = cos x

= 2π
ˆ π/4

−π/4
sec3 θ dθ subsƟtute u = tan θ

= π (sec θ tan θ + ln |sec θ + tan θ|)|π/4−π/4 by Example 8.2.6

= π
(√

2+ ln
(√

2+ 1
)
−
(
−
√
2+ ln

(√
2− 1

)))
= π

(
2
√
2+ ln

(√
2+ 1√
2− 1

))
= 2π

(√
2+ ln

(√
2+ 1

))
units2 raƟonalize the denominator.

It is interesƟng to see that the surface area of a solid, whose shape is defined
by a trigonometric funcƟon, involves both a square root and a natural logarithm.

(a)

(b)

Figure 10.20: The solids used in Exam-
ple 5.

Example 5 Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving the curve y = x2 on [0, 1]
about:

1. the x-axis 2. the y-axis.

SÊ½çã®ÊÄ

1. The solid formed by revolving y = x2 around the x-axis is graphed in Fig-
ure 10.20(a). Like the integral in Example 4, this integral is easier to setup
than to actually integrate. While it is possible to use a trigonometric sub-
sƟtuƟon to evaluate this integral, it is significantly more difficult than a
soluƟon employing the hyperbolic sine:

SA = 2π
ˆ 1

0
x2
√
1+ (2x)2 dx.

=
π

32

(
2(8x3 + x)

√
1+ 4x2 − sinh−1(2x)

)∣∣∣1
0

=
π

32

(
18
√
5− sinh−1 2

)
units2.

Notes:
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2. Since we are revolving around the y-axis, the “radius” of the solid is not
f(x) but rather x. Thus the integral to compute the surface area is:

SA = 2π
ˆ 1

0
x
√
1+ (2x)2 dx

=
π

4

ˆ 5

1

√
u du subsƟtute u = 1+ 4x2

=
π

4
2
3
u3/2

∣∣∣∣5
1

=
π

6

(
5
√
5− 1

)
units2.

The solid formed by revolving y = x2 about the y-axis is graphed in Fig-
ure 10.20 (b).

Our final example is a famous mathemaƟcal “paradox.”

Example 6 The surface area and volume of Gabriel’s Horn
Consider the solid formed by revolving y = 1/x about the x-axis on [1,∞). Find
the volumeand surface area of this solid. (This shape, as graphed in Figure 10.21,
is known as “Gabriel’s Horn” since it looks like a very long horn that only a su-
pernatural person, such as an angel, could play.)

Figure 10.21: A graph of Gabriel’s Horn.

SÊ½çã®ÊÄ To compute the volume it is natural to use the Disk Method.
We have:

V = π

ˆ ∞

1

1
x2

dx

= lim
b→∞

π

ˆ b

1

1
x2

dx

= lim
b→∞

π

(
−1
x

)∣∣∣∣b
1

= lim
b→∞

π

(
1− 1

b

)
= π units3.

Gabriel’s Horn has a finite volume of π cubic units. Since we have already seen
that regions with infinite length can have a finite area, this is not too difficult to
accept.

Notes:
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We now consider its surface area. The integral is straighƞorward to setup:

SA = 2π
ˆ ∞

1

1
x
√
1+ 1/x4 dx.

IntegraƟng this expression is not trivial. We can, however, compare it to other
improper integrals. Since 1 <

√
1+ 1/x4 on [1,∞), we can state that

2π
ˆ ∞

1

1
x
dx < 2π

ˆ ∞

1

1
x
√
1+ 1/x4 dx.

By Key Idea 31, the improper integral on the leŌ diverges. Since the integral
on the right is larger, we conclude it also diverges, meaning Gabriel’s Horn has
infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Hornwith a finite amount of paint,
but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of volume
and area. However, we have seen a similar paradox before, as referenced above.
We know that the area under the curve y = 1/x2 on [1,∞) is finite, yet the
shape has an infinite perimeter. Strange things can occur when we deal with
the infinite.

Notes:
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Exercises 10.1
Terms and Concepts
1. T/F: The integral formula for compuƟng Arc Length was

found by first approximaƟng arc length with straight line
segments.

2. T/F: The integral formula for compuƟngArc Length includes
a square–root, meaning the integraƟon is probably easy.

Problems
In Exercises 3–12, find the arc length of the funcƟon on the
given interval.

3. f(x) = x on [0, 1].
4. f(x) =

√
8x on [−1, 1].

5. f(x) = 1
3
x3/2 − x1/2 on [0, 1].

6. f(x) = 1
12

x3 + 1
x
on [1, 4].

7. f(x) = 2x3/2 − 1
6
√
x on [0, 9].

8. f(x) = cosh x on [− ln 2, ln 2].

9. f(x) = 1
2
(
ex + e−x) on [0, ln 5].

10. f(x) = 1
12

x5 + 1
5x3

on [.1, 1].

11. f(x) = ln
(
sin x

)
on [π/6, π/2].

12. f(x) = ln
(
cos x

)
on [0, π/4].

In Exercises 13–20, set up the integral to compute the arc
length of the funcƟon on the given interval. Do not evaluate
the integral.

13. f(x) = x2 on [0, 1].
14. f(x) = x10 on [0, 1].
15. f(x) =

√
x on [0, 1].

16. f(x) = ln x on [1, e].
17. f(x) =

√
1− x2 on [−1, 1]. (Note: this describes the top

half of a circle with radius 1.)

18. f(x) =
√

1− x2/9 on [−3, 3]. (Note: this describes the
top half of an ellipse with a major axis of length 6 and a
minor axis of length 2.)

19. f(x) = 1
x
on [1, 2].

20. f(x) = sec x on [−π/4, π/4].

In Exercises 21–28, use Simpson’s Rule, with n = 4, to approxi-
mate the arc length of the funcƟon on the given interval. Note:
these are the same problems as in Exercises 13–20.

21. f(x) = x2 on [0, 1].

22. f(x) = x10 on [0, 1].

23. f(x) =
√
x on [0, 1]. (Note: f ′(x) is not defined at x = 0.)

24. f(x) = ln x on [1, e].

25. f(x) =
√
1− x2 on [−1, 1]. (Note: f ′(x) is not defined at

the endpoints.)

26. f(x) =
√

1− x2/9 on [−3, 3]. (Note: f ′(x) is not defined
at the endpoints.)

27. f(x) = 1
x
on [1, 2].

28. f(x) = sec x on [−π/4, π/4].

In Exercises 29–33, find the surface area of the described solid
of revoluƟon.

29. The solid formed by revolving y = 2x on [0, 1] about the
x-axis.

30. The solid formed by revolving y = x2 on [0, 1] about the
y-axis.

31. The solid formed by revolving y = x3 on [0, 1] about the
x-axis.

32. The solid formed by revolving y =
√
x on [0, 1] about the

x-axis.
33. The sphere formed by revolving y =

√
1− x2 on [−1, 1]

about the x-axis.
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10.2 Parametric EquaƟons

We are familiar with sketching shapes, such as parabolas, by following this basic
procedure:

Choose
x
−→

Use a funcƟon
f to find y(
y = f(x)

) −→
Plot point
(x, y)

In the rectangular coordinate system, the rectangular equaƟon y = f(x)
works well for some shapes like a parabola with a verƟcal axis of symmetry, but
in precalculus and the review of conic secƟons in SecƟon 10.0, we encountered
several shapes that could not be sketched in thismanner. (To plot an ellipse using
the above procedure, we need to plot the “top” and “boƩom” separately.)

In this secƟon we introduce a new sketching procedure:

Choose
t

Use a funcƟon
f to find x(
x = f(t)

)
Use a funcƟon
g to find y(
y = g(t)

)
Plot point
(x, y)

Here, x and y are found separately but then ploƩed together. This leads us
to a definiƟon.

DefiniƟon 47 Parametric EquaƟons and Curves
Let f and g be conƟnuous funcƟons on an interval I. The graph of the
parametric equaƟons x = f(t) and y = g(t) is the set of all points(
x, y
)
=
(
f(t), g(t)

)
in the Cartesian plane, as the parameter t varies

over I. A curve is a graph along with the parametric equaƟons that de-
fine it.

Notes:
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Chapter 10 Curves in the Plane

Watch the video:
Parametric EquaƟons — Some basic quesƟons at
https://youtu.be/9kKZHQtYP7g

This is a formal definiƟon of the word curve. When a curve lies in a plane
(such as the Cartesian plane), it is oŌen referred to as a plane curve. Examples
will help us understand the concepts introduced in the definiƟon.

t x y

−2 4 −1
−1 1 0
0 0 1
1 1 2
2 4 3

(a)

2 4

−2

2

4

t = −2

t = −1

t = 0

t = 1

t = 2

x

y

(b)

Figure 10.22: A table of values of the
parametric equaƟons in Example 1 along
with a sketch of their graph.

Example 1 Ploƫng parametric funcƟons
Plot the graph of the parametric equaƟons x = t2, y = t+ 1 for t in [−2, 2].

SÊ½çã®ÊÄ We plot the graphs of parametric equaƟons in much the
samemanner as we ploƩed graphs of funcƟons like y = f(x): wemake a table of
values, plot points, then connect these pointswith a “reasonable” looking curve.
Figure 10.22(a) shows such a table of values; note how we have 3 columns.

The points (x, y) from the table are ploƩed in Figure 10.22(b). The points
have been connected with a smooth curve. Each point has been labeled with its
corresponding t-value. These values, alongwith the two arrows along the curve,
are used to indicate the orientaƟon of the graph. This informaƟon describes the
path of a parƟcle traveling along the curve.

We oŌen use the leƩer t as the parameter as we oŌen regard t as represent-
ing Ɵme. Certainly there are many contexts in which the parameter is not Ɵme,
but it can be helpful to think in terms of Ɵme as one makes sense of parametric
plots and their orientaƟon (for instance, “At Ɵme t = 0 the posiƟon is (1, 2) and
at Ɵme t = 3 the posiƟon is (5, 1).”).

t x y
0 1 2

π/4 1/2 1+
√
2/2

π/2 0 1
3π/4 1/2 1−

√
2/2

π 1 0
(a)

0.5 1 1.5

0.5

1

1.5

2 t = 0

t = π/4

t = π/2

t = 3π/4

t = π
x

y

(b)

Figure 10.23: A table of values of the
parametric equaƟons in Example 2 along
with a sketch of their graph.

Example 2 Ploƫng parametric funcƟons
Sketch the graph of the parametric equaƟons x = cos2 t, y = cos t + 1 for t in
[0, π].

SÊ½çã®ÊÄ Weagain start bymaking a table of values in Figure 10.23(a),
then plot the points (x, y) on the Cartesian plane in Figure 10.23(b).

The curves in Examples 1 and 2 are porƟons of the same parabola (y−1)2+
x = 1. While the parabola is the same, the curves are different. In Example 1,
if we let t vary over all real numbers, we’d obtain the enƟre parabola. In this
example, leƫng t vary over all real numbers would sƟll produce the same graph;
this porƟon of the parabola would be traced, and re–traced, infinitely oŌen.
The orientaƟon shown in Figure 10.23 shows the orientaƟon on [0, π], but this
orientaƟon is reversed on [π, 2π].

Notes:
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10.2 Parametric EquaƟons

ConverƟng between rectangular and parametric equaƟons
It is someƟmes useful to transform rectangular form equaƟons (i.e., y = f(x))
into parametric form equaƟons, and vice–versa. ConverƟng from rectangular to
parametric can be very simple: given y = f(x), the parametric equaƟons x = t,
y = f(t) produce the same graph. As an example, given y = x2 − x − 6, the
parametric equaƟons x = t, y = t2−t−6 produce the same parabola. However,
other parameterizaƟons can be used. The following example demonstrates one
possible alternaƟve.

−2 2 4

−5

5

t = −1

t = 1

t = 3

t = 4
x

y

(a)

−2 2 4

−5

5

t = 5

t = 3

t = 1

t = 0
x

y

(b)

−2 2 4

−5

5

t = −5

t = −1

t = 3

t = 5
x

y

(c)

Figure 10.24: The equaƟon f(x) = x2 −
x− 6 with different parameterizaƟons.

Example 3 ConverƟng from rectangular to parametric
Find parametric equaƟons for f(x) = x2 − x− 6.

SÊ½çã®ÊÄ SoluƟon 1: For any choice for xwe can determine the corre-
sponding y by subsƟtuƟon. If we choose x = t−1 then y = (t−1)2−(t−1)−6 =
t2 − 3t− 4. Thus f(x) can be represented by the parametric equaƟons

x = t− 1 y = t2 − 3t− 4.

On the graph of this parameterizaƟon (Figure 10.24(a)) the points have been la-
beled with the corresponding t-values and arrows indicate the path of a parƟcle
traveling on this curve. The parƟcle would move from the upper leŌ, down to
the vertex at (.5,−5.75) and then up to the right.

SoluƟon 2: If we choose x = 3− t then y = (3− t)2− (3− t)− 6 = t2− 5t.
Thus f(x) can also be represented by the parametric equaƟons

x = 3− t y = t2 − 5t.

On the graph of this parameterizaƟon (Figure 10.24(b)) the points have been la-
beledwith the corresponding t−values and arrows indicate the path of a parƟcle
traveling on this curve. The parƟcle would move down from the upper right, to
the vertex at (.5,−5.75) and then up to the leŌ.

SoluƟon 3: We can also parameterize any y = f(x) by seƫng t = dy
dx . That is,

t = a corresponds to the point on the graph whose tangent line has a slope a.
CompuƟng dy

dx , f
′(x) = 2x−1we set t = 2x−1. Solving for xwefind x = t+1

2 and
by subsƟtuƟon y = 1

4 t
2 − 25

4 . Thus f(x) can be represented by the parametric
equaƟons

x =
t+ 1
2

y =
1
4
t2 − 25

4
.

The graph of this parameterizaƟon is shown in Figure 10.24(c). To find the
point where the tangent line has a slope of 0, we set t = 0. This gives us the
point (−.5,−5.75) which is the vertex of f(x).

Notes:
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Example 4 ConverƟng from rectangular to parametric
Find parametric equaƟons for the circle x2 + y2 = 4.

SÊ½çã®ÊÄ We will present three different approaches:

SoluƟon 1: Consider the equivalent equaƟon
(
x
2

)2

+

(
y
2

)2

= 1 and the

Pythagorean IdenƟty, sin2 t + cos2 t = 1. We set cos t = x
2 and sin t = y

2 ,
which gives x = 2 cos t and y = 2 sin t. To trace the circle once, we must have
0 ≤ t ≤ 2π. Note that when t = 0 a parƟcle tracing the curve would be at the
point (2, 0) and would move in a counterclockwise direcƟon.

SoluƟon 2: Another parameterizaƟon of the same circle would be x = 2 sin t
and y = 2 cos t for 0 ≤ t ≤ 2π. When t = 0 a parƟcle would be at the point
(0, 2) and would move in a clockwise direcƟon.

SoluƟon 3: We could let x = −2 sin t and y = 2 cos t for 0 ≤ t ≤ 2π. Also
note that we could use x = 2 cos 2t and y = 2 sin 2t for 0 ≤ t ≤ π.

As we have shown in the previous examples, there are many different ways
to parameterize any given curve. We someƟmes choose the parameter to accu-
rately model physical behavior.

Example 5 ConverƟng from rectangular to parametric

Find a parameterizaƟon that traces the ellipse
(x− 2)2

9
+

(y+ 3)2

4
= 1 starƟng

at the point (−1,−3) in a clockwise direcƟon.

SÊ½çã®ÊÄ Applying the Pythagorean IdenƟty, cos2 t + sin2 t = 1, we

set cos2 t =
(x− 2)2

9
and sin2 t =

(y+ 3)2

4
. Solving these equaƟons for x and

y we set x = −3 cos t+ 2 and y = 2 sin t− 3 for 0 ≤ t ≤ 2π.

Example 6 ConverƟng from rectangular to parametric

Find a parameterizaƟon for the hyperbola
(x− 2)2

9
− (y− 3)2

4
= 1.

SÊ½çã®ÊÄ Weuse an alternaƟve formof the Pythagorean IdenƟty, sec2 t−

tan2 t = 1. We let sec2 t =
(x− 2)2

9
and tan2 t =

(y− 3)2

4
. Solving these equa-

Ɵons for x and y we have x = 3 sec t+ 2 and y = 2 tan t+ 3 for 0 ≤ t ≤ 2π.

Notes:
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Example 7 ConverƟng from rectangular to parametric
An object is fired from a height of 0Ō and lands 6 seconds later, 192Ō away. As-
suming ideal projecƟlemoƟon, the height, in feet, of the object can be described
by h(x) = −x2/64+ 3x, where x is the distance in feet from the iniƟal locaƟon.
(Thus h(0) = h(192) = 0Ō.) Find parametric equaƟons x = f(t), y = g(t)
for the path of the projecƟle where x is the horizontal distance the object has
traveled at Ɵme t (in seconds) and y is the height at Ɵme t.

SÊ½çã®ÊÄ Physics tells us that the horizontal moƟon of the projecƟle
is linear; that is, the horizontal speed of the projecƟle is constant. Since the
object travels 192Ō in 6s, we deduce that the object is moving horizontally at
a rate of 32Ō/s, giving the equaƟon x = 32t. As y = −x2/64 + 3x, we find
y = −16t2 + 96t. We can quickly verify that y ′′ = −32Ō/s2, the acceleraƟon
due to gravity, and that the projecƟle reaches its maximum at t = 3, halfway
along its path.

50 100 150 200

50

100

150
t = 2

x = 32t
y = −16t2 + 96t

x

y

Figure 10.25: Graphing projecƟle moƟon
in Example 7.

These parametric equaƟonsmake certain determinaƟons about the object’s
locaƟon easy: 2 seconds into the flight the object is at the point

(
x(2), y(2)

)
=(

64, 128
)
. That is, it has traveled horizontally 64Ō and is at a height of 128Ō, as

shown in Figure 10.25.

It is someƟmes necessary to convert given parametric equaƟons into rect-
angular form. This can be decidedly more difficult, as some “simple” looking
parametric equaƟons can have very “complicated” rectangular equaƟons. This
conversion is oŌen referred to as “eliminaƟng the parameter,” as we are looking
for a relaƟonship between x and y that does not involve the parameter t.

Example 8 EliminaƟng the parameter
Find a rectangular equaƟon for the curve described by

x =
1

t2 + 1
and y =

t2

t2 + 1
.

SÊ½çã®ÊÄ There is not a setway to eliminate a parameter. Onemethod
is to solve for t in one equaƟon and then subsƟtute that value in the second. We
use that technique here, then show a second, simpler method.

StarƟng with x = 1/(t2 + 1), solve for t: t = ±
√
1/x− 1. SubsƟtute this

Notes:
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value for t in the equaƟon for y:

y =
t2

t2 + 1

=
1/x− 1

1/x− 1+ 1

=
1/x− 1
1/x

=

(
1
x
− 1
)
· x

= 1− x.

−2 −1 1 2

−1

1

2

x =
1

t2 + 1

y =
t2

t2 + 1

y = 1 − x

x

y

Figure 10.26: Graphing parametric and
rectangular equaƟons for a graph in Ex-
ample 8.

Thus y = 1 − x. One may have recognized this earlier by manipulaƟng the
equaƟon for y:

y =
t2

t2 + 1
= 1− 1

t2 + 1
= 1− x.

This is a shortcut that is very specific to this problem; someƟmes shortcuts exist
and are worth looking for.

We should be careful to limit the domain of the funcƟon y = 1 − x. The
parametric equaƟons limit x to values in (0, 1], thus to produce the same graph
we should limit the domain of y = 1− x to the same.

The graphs of these funcƟons are given in Figure 10.26. The porƟon of the
graph defined by the parametric equaƟons is given in a thick line; the graph
defined by y = 1− x with unrestricted domain is given in a thin line.

Example 9 EliminaƟng the parameter
Eliminate the parameter in x = 4 cos t+ 3, y = 2 sin t+ 1

SÊ½çã®ÊÄ We should not try to solve for t in this situaƟon as the re-
sulƟng algebra/trig would be messy. Rather, we solve for cos t and sin t in each
equaƟon, respecƟvely. This gives

cos t =
x− 3
4

and sin t =
y− 1
2

.

The Pythagorean Theorem gives cos2 t+ sin2 t = 1, so:

cos2 t+ sin2 t = 1(
x− 3
4

)2

+

(
y− 1
2

)2

= 1

(x− 3)2

16
+

(y− 1)2

4
= 1

Notes:
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10.2 Parametric EquaƟons

This final equaƟon should look familiar — it is the equaƟon of an ellipse. Fig-
ure 10.27 plots the parametric equaƟons, demonstraƟng that the graph is in-
deed of an ellipse with a horizontal major axis and center at (3, 1).

2 4 6 8

−2

2

4

x

y

Figure 10.27: Graphing the parametric
equaƟons x = 4 cos t+ 3, y = 2 sin t+ 1
in Example 9.

Graphs of Parametric EquaƟons

These examples begin to illustrate the powerful nature of parametric equaƟons.
Their graphs are far more diverse than the graphs of funcƟons produced by “y =
f(x)” funcƟons.

Onenice feature of parametric equaƟons is that their graphs are easy to shiŌ.
While this is not too difficult in the “y = f(x)” context, the resulƟng funcƟon can
look rather messy. (Plus, to shiŌ to the right by two, we replace x with x − 2,
which is counterintuiƟve.) The following example demonstrates this.

2 4 6 8 10

−2

2

4

6
x = t2 + t
y = t2 − t

x

y

(a)

2 4 6 8 10

−2

2

4

6
x = t2 + t + 3
y = t2 − t − 2

x

y

(b)

Figure 10.28: IllustraƟng how to shiŌ
graphs in Example 10.

Example 10 ShiŌing the graph of parametric funcƟons
Sketch the graph of the parametric equaƟons x = t2 + t, y = t2 − t. Find new
parametric equaƟons that shiŌ this graph to the right 3 units and down 2.

SÊ½çã®ÊÄ The graphof the parametric equaƟons is given in Figure 10.28
(a). It is a parabola with an axis of symmetry along the line y = x; the vertex is
at (0, 0). It should be noted that finding the vertex is not a trivial maƩer and not
something you will be asked to do in this text.

In order to shiŌ the graph to the right 3 units, we need to increase the x-
value by 3 for every point. The straighƞorward way to accomplish this is simply
to add 3 to the funcƟon defining x: x = t2 + t+ 3. To shiŌ the graph down by 2
units, we wish to decrease each y-value by 2, so we subtract 2 from the funcƟon
defining y: y = t2 − t− 2. Thus our parametric equaƟons for the shiŌed graph
are x = t2 + t + 3, y = t2 − t − 2. This is graphed in Figure 10.28 (b). NoƟce
how the vertex is now at (3,−2).

Because the x- and y-values of a graph are determined independently, the
graphs of parametric funcƟons oŌen possess features not seen on “y = f(x)”
type graphs. The next example demonstrates how such graphs can arrive at the
same point more than once.

Example 11 Graphs that cross themselves
Plot the parametric funcƟons x = t3 − 5t2 + 3t + 11 and y = t2 − 2t + 3 and
determine the t-values where the graph crosses itself.

Notes:
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SÊ½çã®ÊÄ Using the methods developed in this secƟon, we again plot
points and graph the parametric equaƟons as shown in Figure 10.29. It appears
that the graph crosses itself at the point (2, 6), but we’ll need to analyƟcally
determine this.

We are looking for two different values, say, s and t, where x(s) = x(t) and
y(s) = y(t). That is, the x-values are the same precisely when the y-values are
the same. This gives us a system of 2 equaƟons with 2 unknowns:

−5 5 10 15

5

10

15 x = t3 − 5t2 + 3t + 11
y = t2 − 2t + 3

x

y

Figure 10.29: A graph of the parametric
equaƟons from Example 11.

s3 − 5s2 + 3s+ 11 = t3 − 5t2 + 3t+ 11
s2 − 2s+ 3 = t2 − 2t+ 3

Solving this system is not trivial but involves only algebra. Using the qua-
draƟc formula, one can solve for t in the second equaƟon and find that t =

1±
√

s2 − 2s+ 1. This can be subsƟtuted into the first equaƟon, revealing that
the graph crosses itself at t = −1 and t = 3. We confirmour result by compuƟng
x(−1) = x(3) = 2 and y(−1) = y(3) = 6.

We now present a small gallery of “interesƟng” and “famous” curves along
with parametric equaƟons that produce them.

Notes:

584
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y

Astroid
x = cos3 t
y = sin3 t

Cycloid
x = r(t− sin t)
y = r(1− cos t)

Witch of Agnesi
x = 2at

y = 2a/(1+ t2)
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−5

5

x

y
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−5

5

x

y

−2 2

−2

−1

1

2

x

y

Hypotrochoid
x = 2 cos(t) + 5 cos(2t/3)
y = 2 sin(t)− 5 sin(2t/3)

Epicycloid
x = 4 cos(t)− cos(4t)
y = 4 sin(t)− sin(4t)

Folium of Descartes
x = 3at/(1+ t3)
y = 3at2/(1+ t3)

One might note a feature shared by three of these graphs: “sharp corners,”
or cusps. We have seen graphs with cusps before and determined that such
funcƟons are not differenƟable at these points. This leads us to a definiƟon.

DefiniƟon 48 Smooth
A curveCdefinedby x = f(t), y = g(t) is smoothon an interval I if f ′ and
g ′ are conƟnuous on I and not simultaneously 0 (except possibly at the
endpoints of I). A curve is piecewise smooth on I if I can be parƟƟoned
into subintervals where C is smooth on each subinterval.

Consider the astroid, given by x = cos3 t, y = sin3 t. Taking derivaƟves, we
have:

x ′ = −3 cos2 t sin t and y ′ = 3 sin2 t cos t.

Notes:
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Chapter 10 Curves in the Plane

It is clear that each is 0 when t = 0, π/2, π, . . .. Thus the astroid is not smooth
at these points, corresponding to the cusps seen in the figure. However, by re-
stricƟng the domain of the astroid to all reals except t = kπ

2 for k ∈ Z we have
a piecewise smooth curve.

We demonstrate this once more.

Example 12 Determine where a curve is not smooth
Let a curve C be defined by the parametric equaƟons x = t3 − 12t + 17 and
y = t2 − 4t+ 8. Determine the points, if any, where it is not smooth.

SÊ½çã®ÊÄ We begin by taking derivaƟves.

5 10

2

4

6

8

x

y

Figure 10.30: Graphing the curve in Exam-
ple 12; note it is not smooth at (1, 4).

x ′ = 3t2 − 12, y ′ = 2t− 4.

We set each equal to 0:

x ′ = 0⇒ 3t2 − 12 = 0⇒ t = ±2
y ′ = 0⇒ 2t− 4 = 0⇒ t = 2

We consider only the value of t = 2 since both x′ and y′ must be 0. Thus C is
not smooth at t = 2, corresponding to the point (1, 4). The curve is graphed in
Figure 10.30, illustraƟng the cusp at (1, 4).

If a curve is not smooth at t = t0, it means that x ′(t0) = y ′(t0) = 0 as
defined. This, in turn, means that rate of change of x (and y) is 0; that is, at
that instant, neither x nor y is changing. If the parametric equaƟons describe
the path of some object, this means the object is at rest at t0. An object at rest
canmake a “sharp” change in direcƟon, whereas moving objects tend to change
direcƟon in a “smooth” fashion.

Example 13 The Cycloid
A well-known parametric curve is the cycloid. Fix r, and let x = r(t − sin t),
y = r(1 − cos t). This represents the path traced out by a point on a wheel of
radius r as starts rolling to the right. We can think of t as the angle throughwhich
the point has rotated.

t = 0 t = 2π t = 4πt = 2π
3 t = 4π

3 t = 8π
3 t = 10π

3

Figure 10.31: A cycloid traced through two revoluƟons.

Notes:
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10.2 Parametric EquaƟons

Figure 10.31 shows a cycloid sketched out with the wheel shown at various
places. The dot on the rim is the point on the wheel that we’re using to trace
out the curve.

From this sketch we can see that one arch of the cycloid is traced out in the
range 0 ≤ t ≤ 2π. This makes sense when you consider that the point will be
back on the ground aŌer it has rotated through an angle of 2π.

One should be careful to note that a “sharp corner” does not have to occur
when a curve is not smooth. For instance, one can verify that x = t3, y = t6
produce the familiar y = x2 parabola. However, in this parametrizaƟon, the
curve is not smooth. A parƟcle traveling along the parabola according to the
given parametric equaƟons comes to rest at t = 0, though no sharp point is
created.

Our previous experience with cusps taught us that a funcƟon was not differ-
enƟable at a cusp. This can lead us to wonder about derivaƟves in the context
of parametric equaƟons and the applicaƟon of other calculus concepts. Given a
curve defined parametrically, how do we find the slopes of tangent lines? Can
we determine concavity? We explore these concepts and more in the next sec-
Ɵon.

Notes:
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Exercises 10.2
Terms and Concepts
1. T/F: When sketching the graph of parametric equaƟons,

the x and y values are found separately, then ploƩed to-
gether.

2. The direcƟon inwhich a graph is “moving” is called the
of the graph.

3. An equaƟon wriƩen as y = f(x) is wriƩen in form.
4. Create parametric equaƟons x = f(t), y = g(t) and sketch

their graph. Explain any interesƟng features of your graph
based on the funcƟons f and g.

Problems
In Exercises 5–8, sketch the graph of the given parametric
equaƟons by hand, making a table of points to plot. Be sure to
indicate the orientaƟon of the graph.

5. x = t2 + t, y = 1− t2, −3 ≤ t ≤ 3
6. x = 1, y = 5 sin t, −π/2 ≤ t ≤ π/2
7. x = t2, y = 2, −2 ≤ t ≤ 2
8. x = t3 − t+ 3, y = t2 + 1, −2 ≤ t ≤ 2

In Exercises 9–17, sketch the graph of the given parametric
equaƟons; using a graphing uƟlity is advisable. Be sure to in-
dicate the orientaƟon of the graph.

9. x = t3 − 2t2, y = t2, −2 ≤ t ≤ 3
10. x = 1/t, y = sin t, 0 < t ≤ 10
11. x = 3 cos t, y = 5 sin t, 0 ≤ t ≤ 2π
12. x = 3 cos t+ 2, y = 5 sin t+ 3, 0 ≤ t ≤ 2π
13. x = cos t, y = cos(2t), 0 ≤ t ≤ π

14. x = cos t, y = sin(2t), 0 ≤ t ≤ 2π
15. x = 2 sec t, y = 3 tan t, −π/2 < t < π/2
16. x = cos t+ 1

4 cos(8t), y = sin t+ 1
4 sin(8t), 0 ≤ t ≤ 2π

17. x = cos t+ 1
4 sin(8t), y = sin t+ 1

4 cos(8t), 0 ≤ t ≤ 2π

In Exercises 18–19, four sets of parametric equaƟons are given.
Describe how their graphs are similar and different. Be sure to
discuss orientaƟon and ranges.

18.
(a) x = t y = t2, −∞ < t < ∞
(b) x = sin t y = sin2 t, −∞ < t < ∞
(c) x = et y = e2t, −∞ < t < ∞
(d) x = −t y = t2, −∞ < t < ∞

19.
(a) x = cos t y = sin t, 0 ≤ t ≤ 2π

(b) x = cos(t2) y = sin(t2), 0 ≤ t ≤ 2π

(c) x = cos(1/t) y = sin(1/t), 0 < t < 1

(d) x = cos(cos t) y = sin(cos t), 0 ≤ t ≤ 2π

In Exercises 20–22, find a parameterizaƟon for the curve.

20. y = 9− 4x
21. 4x− y2 = 5
22. (x+ 9)2 + (y− 4)2 = 49

In Exercises 23–26, find a parametric equaƟon and a parame-
ter interval.

23. The line segment with endpoints (−1,−3) and (4, 1)
24. The line segment with endpoints (−1, 3) and (3,−2)
25. The leŌ half of the parabola y = x2 + 2x
26. The lower half of the parabola x = 1− y2

In Exercises 27–30, find parametric equaƟons for the given
rectangular equaƟon using the parameter t = dy

dx
. Verify that

at t = 1, the point on the graph has a tangent line with slope
of 1.

27. y = 3x2 − 11x+ 2
28. y = ex

29. y = sin x on [0, π]
30. y =

√
x on [0,∞)

31. Find parametric equaƟons and a parameter interval for the
moƟon of a parƟcle that starts at (1, 0) and traces the cir-
cle x2 + y2 = 1

(a) once clockwise

(b) once
counter-clockwise

(c) twice clockwise

(d) twice
counter-clockwise

32. Find parametric equaƟons and a parameter interval for the
moƟon of a parƟcle that starts at (a, 0) and traces the el-
lipse x2

a2 + y2
b2 = 1

(a) once clockwise

(b) once
counter-clockwise

(c) twice clockwise

(d) twice
counter-clockwise

In Exercises 33–41, find parametric equaƟons that describe the
given situaƟon.

33. A projecƟle is fired from a height of 0Ō, landing 16Ō away
in 4s.

34. A projecƟle is fired from a height of 0Ō, landing 200Ō away
in 4s.

35. A projecƟle is fired from a height of 0Ō, landing 200Ō away
in 20s.

36. A circle of radius 2, centered at the origin, that is traced
clockwise once on [0, 2π].

37. A circle of radius 3, centered at (1, 1), that is traced once
counter–clockwise on [0, 1].

38. An ellipse centered at (1, 3) with verƟcal major axis of
length 6 and minor axis of length 2.

39. An ellipse with foci at (±1, 0) and verƟces at (±5, 0).
40. A hyperbola with foci at (5,−3) and (−1,−3), and with

verƟces at (1,−3) and (3,−3).
41. A hyperbola with verƟces at (0,±6) and asymptotes y =

±3x.
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In Exercises 42–51, eliminate the parameter in the given para-
metric equaƟons.

42. x = 2t+ 5, y = −3t+ 1

43. x = sec t, y = tan t

44. x = 4 sin t+ 1, y = 3 cos t− 2

45. x = t2, y = t3

46. x = 1
t+ 1

, y = 3t+ 5
t+ 1

47. x = et, y = e3t − 3

48. x = ln t, y = t2 − 1

49. x = cot t, y = csc t

50. x = cosh t, y = sinh t

51. x = cos(2t), y = sin t

In Exercises 52–55, eliminate the parameter in the given para-
metric equaƟons. Describe the curve defined by the paramet-
ric equaƟons based on its rectangular form.

52. x = at+ x0, y = bt+ y0

53. x = r cos t, y = r sin t

54. x = a cos t+ h, y = b sin t+ k

55. x = a sec t+ h, y = b tan t+ k

In Exercises 56–59, find the values of t where the graph of the
parametric equaƟons crosses itself.

56. x = t3 − t+ 3, y = t2 − 3

57. x = t3 − 4t2 + t+ 7, y = t2 − t

58. x = cos t, y = sin(2t) on [0, 2π]

59. x = cos t cos(3t), y = sin t cos(3t) on [0, π]

In Exercises 60–63, find the value(s) of t where the curve de-
fined by the parametric equaƟons is not smooth.

60. x = t3 + t2 − t, y = t2 + 2t+ 3

61. x = t2 − 4t, y = t3 − 2t2 − 4t

62. x = cos t, y = 2 cos t

63. x = 2 cos t− cos(2t), y = 2 sin t− sin(2t)
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Chapter 10 Curves in the Plane

10.3 Calculus and Parametric EquaƟons
The previous secƟon defined curves based on parametric equaƟons. In this sec-
Ɵon we’ll employ the techniques of calculus to study these curves.

We are sƟll interested in lines tangent to points on a curve. They describe
how the y-values are changing with respect to the x-values, they are useful in
making approximaƟons, and they indicate instantaneous direcƟon of travel.

The slope of the tangent line is sƟll dy
dx , and the Chain Rule allows us to cal-

culate this in the context of parametric equaƟons. If x = f(t) and y = g(t), the
Chain Rule states that

dy
dt

=
dy
dx
· dx
dt

.

Solving for dy
dx , we get

dy
dx

=
dy/dt
dx/dt

=
g ′(t)
f ′(t)

,

provided that f ′(t) ̸= 0. This is important so we label it a Key Idea.

Key Idea 39 Finding dy
dx with Parametric EquaƟons.

Let x = f(t) and y = g(t), where f and g are differenƟable on some
open interval I and f ′(t) ̸= 0 on I. Then

dy
dx

=
dy/dt
dx/dt

=
g ′(t)
f ′(t)

.

We use this to define the tangent line.

DefiniƟon 49 Tangent Lines
Let a curve C be parameterized by x = f(t) and y = g(t), where f and
g are differenƟable funcƟons on some interval I containing t = t0. The
tangent line to C at t = t0 is the line through (f(t0), g(t0)) with slope
m = g′(t0)

f ′(t0) , provided f ′(t0) ̸= 0.

It is possible for parametric curves to have horizontal and verƟcal tangents.
As expected a horizontal tangent occurs whenever dy

dx = 0 or when dy
dt = 0

(provided dx
dt ̸= 0). Similarly, a verƟcal tangent occurs whenever dy

dx is undefined
or when dx

dt = 0 (provided dy
dt ̸= 0).

Notes:
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10.3 Calculus and Parametric EquaƟons

DefiniƟon 50 Normal Lines
The normal line to a curve C at a point P is the line through P and per-
pendicular to the tangent line at P. For t = t0 the normal line is the line
through (f(t0), g(t0)) with slopem = − f ′(t0)

g′(t0) , provided g′(t0) ̸= 0.

As with the tangent line we note that it is possible for a normal line to be
verƟcal or horizontal. A horizontal normal line occurs whenever dy

dx is undefined
or when dx

dt = 0 (provided dy
dt ̸= 0). Similarly, a verƟcal normal line occurs

whenever dy
dx = 0 or when dy

dt = 0 (provided dx
dt ̸= 0). In other words, if the

curve C has a verƟcal tangent at (f(t0), g(t0)) the normal line will be horizontal
and if the tangent is horizontal the normal line will be a verƟcal line.

Watch the video:
DerivaƟves of Parametric FuncƟons at
https://youtu.be/k5QnaGVk1JI

Example 1 Tangent and Normal Lines to Curves
Let x = 5t2−6t+4 and y = t2+6t−1, and let C be the curve defined by these
equaƟons.

1. Find the equaƟons of the tangent and normal lines to C at t = 3.

2. Find where C has verƟcal and horizontal tangent lines.

SÊ½çã®ÊÄ

1. We start by compuƟng f ′(t) = 10t− 6 and g ′(t) = 2t+ 6. Thus

dy
dx

=
2t+ 6
10t− 6

.

Make note of something that might seem unusual: dy
dx is a funcƟon of t,

not x. Just as points on the curve are found in terms of t, so are the slopes
of the tangent lines.
The point onC at t = 3 is (31, 26). The slope of the tangent line ism = 1/2
and the slope of the normal line ism = −2. Thus,

Notes:
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Chapter 10 Curves in the Plane

• the equaƟon of the tangent line is y =
1
2
(x− 31) + 26, and

• the equaƟon of the normal line is y = −2(x− 31) + 26.

This is illustrated in Figure 10.32.

20 40 60 80

−20

20

40
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y

Figure 10.32: Graphing tangent and nor-
mal lines in Example 1.

2. To find where C has a horizontal tangent line, we set dy
dx = 0 and solve for

t. In this case, this amounts to seƫng g ′(t) = 0 and solving for t (and
making sure that f ′(t) ̸= 0).

g ′(t) = 0 ⇒ 2t+ 6 = 0 ⇒ t = −3.

The point on C corresponding to t = −3 is (67,−10); the tangent line at
that point is horizontal (hence with equaƟon y = −10).
To findwhereChas a verƟcal tangent line, wefindwhere it has a horizontal
normal line, and set − f ′(t)

g ′(t) = 0. This amounts to seƫng f ′(t) = 0 and
solving for t (and making sure that g ′(t) ̸= 0).

f ′(t) = 0 ⇒ 10t− 6 = 0 ⇒ t = 0.6.

The point on C corresponding to t = 0.6 is (2.2, 2.96). The tangent line at
that point is x = 2.2.
The points where the tangent lines are verƟcal and horizontal are indi-
cated on the graph in Figure 10.32.

Example 2 Tangent and Normal Lines to a Circle

1. Find where the unit circle, defined by x = cos t and y = sin t on [0, 2π],
has verƟcal and horizontal tangent lines.

2. Find the equaƟon of the normal line at t = t0.

SÊ½çã®ÊÄ

1. We compute the derivaƟve following Key Idea 39:

dy
dx

=
g ′(t)
f ′(t)

= −cos t
sin t

.

The derivaƟve is 0 when cos t = 0; that is, when t = π/2, 3π/2. These
are the points (0, 1) and (0,−1) on the circle.
The normal line is horizontal (and hence, the tangent line is verƟcal) when
sin t = 0; that is, when t = 0, π, 2π, corresponding to the points (−1, 0)
and (0, 1) on the circle. These results should make intuiƟve sense.

Notes:
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10.3 Calculus and Parametric EquaƟons

2. The slope of the normal line at t = t0 ism =
sin t0
cos t0

= tan t0. This normal

line goes through the point (cos t0, sin t0), giving the line

y =
sin t0
cos t0

(x− cos t0) + sin t0

= (tan t0)x,

as long as cos t0 ̸= 0. It is an important fact to recognize that the nor-

−1 1

−1

1

x

y

Figure 10.33: IllustraƟng how a circle’s
normal lines pass through its center.

mal lines to a circle pass through its center, as illustrated in Figure 10.33.
Stated in another way, any line that passes through the center of a circle
intersects the circle at right angles.

Example 3 Tangent lines when dy
dx is not defined

Find the equaƟon of the tangent line to the astroid x = cos3 t, y = sin3 t at
t = 0, shown in Figure 10.34.

−1 1
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1

x

y

Figure 10.34: A graph of an astroid.

SÊ½çã®ÊÄ We start by finding x ′(t) and y ′(t):

x ′(t) = −3 sin t cos2 t, y ′(t) = 3 cos t sin2 t.

Note that both of these are 0 at t = 0; the curve is not smooth at t = 0 forming
a cusp on the graph. EvaluaƟng dy

dx at this point returns the indeterminate form
of “0/0”.

We can, however, examine the slopes of tangent lines near t = 0, and take
the limit as t→ 0.

lim
t→0

y ′(t)
x ′(t)

= lim
t→0

3 cos t sin2 t
−3 sin t cos2 t

(We can reduce as t ̸= 0.)

= lim
t→0
− sin t
cos t

= 0.

Wehave accomplished something significant. When the derivaƟve dy
dx returns an

indeterminate form at t = t0, we can define its value by seƫng it to be lim
t→t0

dy
dx

,
if that limit exists. This allows us to find slopes of tangent lines at cusps, which
can be very beneficial.

We found the slope of the tangent line at t = 0 to be 0; therefore the tangent
line is y = 0, the x-axis.

Notes:
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Chapter 10 Curves in the Plane

Concavity

We conƟnue to analyze curves in the plane by considering their concavity; that
is, we are interested in d2y

dx2 , “the second derivaƟve of ywith respect to x.” To find
this, we need to find the derivaƟve of dy

dx with respect to x; that is,

d2y
dx2

=
d
dx

[
dy
dx

]
,

but recall that dy
dx is a funcƟon of t, not x, making this computaƟon not straight-

forward.
To make the upcoming notaƟon a bit simpler, let h(t) = dy

dx . We want
d
dx [h(t)]; that is, we want

dh
dx . We again appeal to the Chain Rule. Note:

dh
dt

=
dh
dx
· dx
dt

⇒ dh
dx

=
dh/dt
dx/dt

.

In words, to find
d2y
dx2

, we first take the derivaƟve of
dy
dx

with respect to t,
then divide by x ′(t). We restate this as a Key Idea.

Key Idea 40 Finding d2y
dx2 with Parametric EquaƟons

Let x = f(t) and y = g(t) be twice differenƟable funcƟons on an open
interval I, where f ′(t) ̸= 0 on I. Then

d2y
dx2

=

d
dt

[
dy
dx

]
dx
dt

=

d
dt

[
dy
dx

]
f ′(t)

.

Examples will help us understand this Key Idea.

Example 4 Concavity of Plane Curves
Let x = 5t2−6t+4 and y = t2+6t−1 as in Example 1. Determine the t-intervals
on which the graph is concave up/down.

SÊ½çã®ÊÄ Concavity is determined by the second derivaƟve of y with
respect to x, d2y

dx2 , so we compute that here following Key Idea 40.

Notes:
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10.3 Calculus and Parametric EquaƟons

In Example 1, we found
dy
dx

=
2t+ 6
10t− 6

and f ′(t) = 10t− 6. So:

d2y
dx2

=

d
dt

[
2t+6
10t−6

]
10t− 6

=
− 72

(10t−6)2

10t− 6

= − 72
(10t− 6)3

= − 9
(5t− 3)3

20 40 60 80
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3/5

; con
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Figure 10.35: Graphing the parametric
equaƟons in Example 4 to demonstrate
concavity.

The graph of the parametric funcƟons is concave up when d2y
dx2 > 0 and con-

cave down when d2y
dx2 < 0. We determine the intervals when the second deriva-

Ɵve is greater/less than 0 by first finding when it is 0 or undefined.
As the numerator of − 9

(5t− 3)3
is never 0, d2y

dx2 ̸= 0 for all t. It is undefined

when 5t − 3 = 0; that is, when t = 3/5. Following the work established in
SecƟon 3.4, we look at values of t greater or less than 3/5 on a number line:

3
5

x
f ′′ + −

f CU CD

Reviewing Example 1, we see that when t = 3/5 = 0.6, the graph of the
parametric equaƟons has a verƟcal tangent line. This point is also a point of
inflecƟon for the graph, illustrated in Figure 10.35.

Example 5 Concavity of Plane Curves
Find the points of inflecƟon of the graph of the parametric equaƟons x =

√
t,

y = sin t, for 0 ≤ t ≤ 16.

SÊ½çã®ÊÄ We need to compute dy
dx and

d2y
dx2 .

dy
dx

=
y ′(t)
x ′(t)

=
cos t

1/(2
√
t)

= 2
√
t cos t.

d2y
dx2

=
d
dt

[ dy
dx

]
x ′(t)

=
cos t/

√
t− 2

√
t sin t

1/(2
√
t)

= 2 cos t− 4t sin t.

Notes:
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Chapter 10 Curves in the Plane

The possible points of inflecƟon are found by seƫng d2y
dx2 = 0. This is not trivial,

as equaƟons that mix polynomials and trigonometric funcƟons generally do not
have “nice” soluƟons.

5 10 15
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y = 2 cos t − 4t sin t

t

y

(a)

31 2 4

−1

−0.5
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(b)

Figure 10.36: In (a), a graph of d2y
dx2 , show-

ing where it is approximately 0. In (b),
graph of the parametric equaƟons in Ex-
ample 5 along with the points of inflec-
Ɵon.

In Figure 10.36(a) we see a plot of the second derivaƟve. It shows that it has
zeros at approximately t = 0.5, 3.5, 6.5, 9.5, 12.5 and 16. These approxima-
Ɵons are not very good, made only by looking at the graph. Newton’s Method
provides more accurate approximaƟons. Accurate to 2 decimal places, we have:

t = 0.65, 3.29, 6.36, 9.48, 12.61 and 15.74.

The corresponding points have been ploƩed on the graph of the parametric
equaƟons in Figure 10.36(b). Note how most occur near the x-axis, but not ex-
actly on the axis.

Area with Parametric EquaƟons
We will now find a formula for determining the area under a parametric curve
given by the parametric equaƟons

x = f(t) y = g(t).

We will also need to further add in the assumpƟon that the curve is traced out
exactly once as t increases from α to β. First, recall how to find the area under
y = F(x) on a ≤ x ≤ b:

A =

ˆ b

a
F(x) dx.

Now think of the parametric equaƟon x = f(t) as a subsƟtuƟon in the integral,
assuming that a = f(α) and b = f(β) for the purposes of this formula. (There is
actually no reason to assume that this will always be the case and so we’ll give
a corresponding formula later if it’s the opposite case (b = f(α) and a = f(β)).)

In order to subsƟtute, we’ll need dx = f ′(t) dt. Plugging this into the area
formula above and making sure to change the limits to their corresponding t
values gives us

A =

ˆ β

α

F(f(t))f ′(t) dt.

Since we don’t know what F(x) is, we’ll use the fact that

y = F(x) = F(f(t)) = g(t)

and arrive at the formula that we want.

Notes:
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10.3 Calculus and Parametric EquaƟons

Key Idea 41 Area Under a Parametric Curve
The area under the parametric curve given by x = f(t), y = g(t), for
f(α) = a < x < b = f(β) is

A =

ˆ β

α

g(t)f ′(t) dt.

On the other hand, if we should happen to have b = f(α) and a = f(β),
then the formula would be

A =

ˆ α

β

g(t)f ′(t) dt.

Let’s work an example.

Example 6 Finding the area under a parametric curve
Determine the area under the cycloid given by the parametric equaƟons

x = 6(θ − sin θ) y = 6(1− cos θ) 0 ≤ θ ≤ 2π.

SÊ½çã®ÊÄ First, noƟce that we’ve switched the parameter to θ for this
problem. This is to make sure that we don’t get too locked into always having t
as the parameter.

Now, we could graph this to verify that the curve is traced out exactly once
for the given range if we wanted to.

There really isn’t toomuch to this example other than plugging the paramet-
ric equaƟons into the formula. We’ll first need the derivaƟve of the parametric
equaƟon for x however.

dx
dθ

= 6(1− cos θ).

The area is then

A =

ˆ 2π

0
36(1− cos θ)2 dθ

= 36
ˆ 2π

0
1− 2 cos θ + cos2 θ dθ

= 36
ˆ 2π

0

3
2
− 2 cos θ +

1
2
cos(2θ) dθ

= 36
[
3
2
θ − 2 sin θ +

1
4
sin(2θ)

]2π
0

= 108π.

Notes:
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Chapter 10 Curves in the Plane

Arc Length
We conƟnue our study of the features of the graphs of parametric equaƟons by
compuƟng their arc length.

Recall in SecƟon 10.1 we found the arc length of the graph of a funcƟon,
from x = a to x = b, to be

L =
ˆ b

a

√
1+

(
dy
dx

)2

dx.

We can use this equaƟon and convert it to the parametric equaƟon context.
Leƫng x = f(t) and y = g(t), we know that dy

dx = g ′(t)/f ′(t). It will also be
useful to calculate the differenƟal of x:

dx = f ′(t)dt ⇒ dt =
1

f ′(t)
· dx.

StarƟng with the arc length formula above, consider:

L =
ˆ b

a

√
1+

(
dy
dx

)2

dx

=

ˆ b

a

√
1+

[g ′(t)]2

[f ′(t)]2
dx

=

ˆ b

a

√
[f ′(t)]2 + [g ′(t)]2 · 1

f ′(t)
dx︸ ︷︷ ︸

=dt

Factor out the [f ′(t)]2

=

ˆ t2

t1

√
[f ′(t)]2 + [g ′(t)]2 dt.

Note the new bounds (no longer “x” bounds, but “t” bounds). They are found
by finding t1 and t2 such that a = f(t1) and b = f(t2). This formula is important,
so we restate it as a theorem.

Theorem 84 Arc Length of Parametric Curves
Let x = f(t) and y = g(t) be parametric equaƟons with f ′ and g ′ con-
Ɵnuous on some open interval I containing t1 and t2 onwhich the graph
traces itself only once. The arc length of the graph, from t = t1 to t = t2,
is

L =
ˆ t2

t1

√
[f ′(t)]2 + [g ′(t)]2 dt.

Notes:

598



10.3 Calculus and Parametric EquaƟons

As before, these integrals are oŌen not easy to compute. We start with a
simple example, then give another where we approximate the soluƟon.

Example 7 Arc Length of a Circle
Find the arc length of the circle parametrized by x = 3 cos t, y = 3 sin t on
[0, 3π/2].

SÊ½çã®ÊÄ By direct applicaƟon of Theorem 84, we have

L =
ˆ 3π/2

0

√
(−3 sin t)2 + (3 cos t)2 dt.

Apply the Pythagorean Theorem.

=

ˆ 3π/2

0
3 dt

= 3t
∣∣∣3π/2
0

= 9π/2.

This should make sense; we know from geometry that the circumference of
a circle with radius 3 is 6π; since we are finding the arc length of 3/4 of a circle,
the arc length is 3/4 · 6π = 9π/2.

Example 8 Arc Length of a Parametric Curve
The graph of the parametric equaƟons x = t(t2− 1), y = t2− 1 crosses itself as
shown in Figure 10.37, forming a “teardrop.” Find the arc length of the teardrop.

1−1

−1

1

t

y

Figure 10.37: A graph of the parametric
equaƟons in Example 8, where the arc
length of the teardrop is calculated.

SÊ½çã®ÊÄ We can see by the parameterizaƟons of x and y that when
t = ±1, x = 0 and y = 0. This means we’ll integrate from t = −1 to t = 1.
Applying Theorem 84, we have

L =
ˆ 1

−1

√
(3t2 − 1)2 + (2t)2 dt

=

ˆ 1

−1

√
9t4 − 2t2 + 1 dt.

Unfortunately, the integrand does not have an anƟderivaƟve expressible by el-
ementary funcƟons. We turn to numerical integraƟon to approximate its value.
Using 4 subintervals, Simpson’s Rule approximates the value of the integral as
2.65051. Using a computer, more subintervals are easy to employ, and n = 20
gives a value of 2.71559. Increasing n shows that this value is stable and a good
approximaƟon of the actual value.

Notes:
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Chapter 10 Curves in the Plane

Surface Area of a Solid of RevoluƟon
Related to the formula for finding arc length is the formula for finding surface
area. We can adapt the formula found in Key Idea 38 from SecƟon 10.1 in a
similar way as done to produce the formula for arc length done before.

Key Idea 42 Surface Area of a Solid of RevoluƟon
Consider the graph of the parametric equaƟons x = f(t) and y = g(t),
where f ′ and g ′ are conƟnuous on an open interval I containing t1 and
t2 on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about
the x-axis is (where g(t) ≥ 0 on [t1, t2]):

Surface Area = 2π
ˆ t2

t1
g(t)

√
[f ′(t)]2 + [g ′(t)]2 dt.

2. The surface area of the solid formed by revolving the graph about
the y-axis is (where f(t) ≥ 0 on [t1, t2]):

Surface Area = 2π
ˆ t2

t1
f(t)
√

[f ′(t)]2 + [g ′(t)]2 dt.

Figure 10.38: RotaƟng a teardrop shape
about the x-axis in Example 9.

Example 9 Surface Area of a Solid of RevoluƟon
Consider the teardrop shape formed by the parametric equaƟons x = t(t2− 1),
y = t2 − 1 as seen in Example 8. Find the surface area if this shape is rotated
about the x-axis, as shown in Figure 10.38.

SÊ½çã®ÊÄ The teardrop shape is formed between t = −1 and t = 1.
Using Key Idea 42, we see we need for g(t) ≥ 0 on [−1, 1], and this is not the
case. To fix this, we simplify replace g(t)with−g(t), which flips the whole graph
about the x-axis (and does not change the surface area of the resulƟng solid).
The surface area is:

Area S = 2π
ˆ 1

−1
(1− t2)

√
(3t2 − 1)2 + (2t)2 dt

= 2π
ˆ 1

−1
(1− t2)

√
9t4 − 2t2 + 1 dt.

Once again we arrive at an integral that we cannot compute in terms of ele-
mentary funcƟons. Using Simpson’s Rule with n = 20, we find the area to be

Notes:
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10.3 Calculus and Parametric EquaƟons

S = 9.44. Using larger values of n shows this is accurate to 2 places aŌer the
decimal.

AŌer defining a new way of creaƟng curves in the plane, in this secƟon
we have applied calculus techniques to the parametric equaƟon defining these
curves to study their properƟes. In the next secƟon, we define another way of
forming curves in the plane. To do so, we create a new coordinate system, called
polar coordinates, that idenƟfies points in the plane in a manner different than
from measuring distances from the y- and x- axes.

Notes:
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Exercises 10.3
Terms and Concepts
1. T/F: Given parametric equaƟons x = f(t) and y = g(t),

dy
dx = f ′(t)/g′(t), as long as g′(t) ̸= 0.

2. Given parametric equaƟons x = f(t) and y = g(t),
the derivaƟve dy

dx as given in Key Idea 39 is a funcƟon of
?

3. T/F: Given parametric equaƟons x = f(t) and y = g(t), to
find d2y

dx2 , one simply computes d
dt

(
dy
dx

)
.

4. T/F: If dy
dx = 0 at t = t0, then the normal line to the curve

at t = t0 is a verƟcal line.

Problems
In Exercises 5–12, parametric equaƟons for a curve are given.

(a) Find dy
dx

.

(b) Find the equaƟons of the tangent and normal line(s) at
the point(s) given.

(c) Sketch the graph of the parametric funcƟons along with
the found tangent and normal lines.

5. x = t, y = t2; t = 1
6. x =

√
t, y = 5t+ 2; t = 4

7. x = t2 − t, y = t2 + t; t = 1
8. x = t2 − 1, y = t3 − t; t = 0 and t = 1
9. x = sec t, y = tan t on (−π/2, π/2); t = π/4

10. x = cos t, y = sin(2t) on [0, 2π]; t = π/4
11. x = cos t sin(2t), y = sin t sin(2t) on [0, 2π]; t = 3π/4
12. x = et/10 cos t, y = et/10 sin t; t = π/2

In Exercises 13–20, find t-values where the curve defined by
the given parametric equaƟons has a horizontal tangent line.
Note: these are the same equaƟons as in Exercises 5 – 12.

13. x = t, y = t2

14. x =
√
t, y = 5t+ 2

15. x = t2 − t, y = t2 + t

16. x = t2 − 1, y = t3 − t

17. x = sec t, y = tan t on (−π/2, π/2)
18. x = cos t, y = sin(2t) on [0, 2π]
19. x = cos t sin(2t), y = sin t sin(2t) on [0, 2π]
20. x = et/10 cos t, y = et/10 sin t

In Exercises 21–24, find t = t0 where the graph of the given
parametric equaƟons is not smooth, then find lim

t→t0

dy
dx

.

21. x = 1
t2 + 1

, y = t3

22. x = −t3 + 7t2 − 16t+ 13, y = t3 − 5t2 + 8t− 2
23. x = t3 − 3t2 + 3t− 1, y = t2 − 2t+ 1

24. x = cos2 t, y = 1− sin2 t

In Exercises 25–32, parametric equaƟons for a curve are given.
Find d2y

dx2 , then determine the intervals on which the graph of
the curve is concave up/down. Note: these are the same equa-
Ɵons as in Exercises 5 – 12.

25. x = t, y = t2

26. x =
√
t, y = 5t+ 2

27. x = t2 − t, y = t2 + t
28. x = t2 − 1, y = t3 − t
29. x = sec t, y = tan t on (−π/2, π/2)
30. x = cos t, y = sin(2t) on [0, 2π]
31. x = cos t sin(2t), y = sin t sin(2t) on [−π/2, π/2]
32. x = et/10 cos t, y = et/10 sin t

In Exercises 33–40, find the arc length of the graph of the para-
metric equaƟons on the given interval(s).

33. x = −3 sin(2t), y = 3 cos(2t) on [0, π]
34. x = et/10 cos t, y = et/10 sin t on [0, 2π] and [2π, 4π]
35. x = 5t+ 2, y = 1− 3t on [−1, 1]
36. x = 2t3/2, y = 3t on [0, 1]
37. x = cos t, y = sin t on [0, 2π]
38. x = 1+ 3t2, y = 4+ 2t3 on [0, 1]

39. x = t
1+ t

, y = ln(1+ t) on [0, 2]

40. x = et − t, y = 4e−t/2 on [−8, 3]

In Exercises 41–44, numerically approximate the given arc
length.

41. Approximate the arc length of one petal of the rose curve
x = cos t cos(2t), y = sin t cos(2t) using Simpson’s Rule
and n = 4.

42. Approximate the arc length of the “bow Ɵe curve” x =
cos t, y = sin(2t) using Simpson’s Rule and n = 6.

43. Approximate the arc length of the parabola x = t2 − t,
y = t2 + t on [−1, 1] using Simpson’s Rule and n = 4.

44. A common approximate of the circumference of an ellipse

given by x = a cos t, y = b sin t is C ≈ 2π
√

a2 + b2
2

.
Use this formula to approximate the circumference of x =
5 cos t, y = 3 sin t and compare this to the approxima-
Ɵon given by Simpson’s Rule and n = 6.

In Exercises 45–51, a solid of revoluƟon is described. Find or
approximate its surface area as specified.

45. Find the surface area of the sphere formed by rotaƟng the
circle x = 2 cos t, y = 2 sin t about:

(a) the x-axis and

(b) the y-axis.

46. Find the surface area of the torus (or “donut”) formed by
rotaƟng the circle x = cos t + 2, y = sin t about the
y-axis.
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47. Find the surface area of the solid formed by rotaƟng the
curve x = a cos3 θ, y = a sin3 θ on [0, π/2] about the
x−axis

48. Find the surface area of the solid formed by rotaƟng the
curve x = t3, y = t2 on [0, 1] about the x−axis

49. Find the surface area of the solid formed by rotaƟng the
curve x = 3t2, y = 2t3 on [0, 5] about the y−axis

50. Approximate the surface area of the solid formed by rotat-
ing the “upper right half” of the bow Ɵe curve x = cos t,
y = sin(2t) on [0, π/2] about the x-axis, using Simpson’s
Rule and n = 4.

51. Approximate the surface area of the solid formed by ro-
taƟng the one petal of the rose curve x = cos t cos(2t),
y = sin t cos(2t) on [0, π/4] about the x-axis, using Simp-
son’s Rule and n = 4.
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Chapter 10 Curves in the Plane

10.4 IntroducƟon to Polar Coordinates
We are generally introduced to the idea of graphing curves by relaƟng x-values
to y-values through a funcƟon f. That is, we set y = f(x), and plot lots of point
pairs (x, y) to get a good noƟon of how the curve looks. This method is useful
but has limitaƟons, not least of which is that curves that “fail the verƟcal line
test” cannot be graphed without using mulƟple funcƟons.

The previous two secƟons introduced and studied a new way of ploƫng
points in the x, y-plane. Using parametric equaƟons, x and y values are com-
puted independently and then ploƩed together. This method allows us to graph
an extraordinary range of curves. This secƟon introduces yet anotherway to plot
points in the plane: using polar coordinates.

Polar Coordinates

O iniƟal ray

r

(r, θ)

θ

Figure 10.39: IllustraƟng polar coordi-
nates.

Start with a pointO in the plane called the pole (wewill always idenƟfy this point
with the origin). From the pole, draw a ray, called the iniƟal ray (we will always
draw this ray horizontally, idenƟfying it with the posiƟve x-axis). A point P in the
plane is determined by the distance r that P is from O, and the angle θ formed
between the iniƟal ray and the segment OP (measured counter-clockwise). We
record the distance and angle as an ordered pair (r, θ).

Watch the video:
Polar Coordinates — The Basics at
https://youtu.be/r0fv9V9GHdo

PracƟce will make this process more clear.

Example 1 Ploƫng Polar Coordinates
Plot the following polar coordinates:

A(1, π/4) B(1.5, π) C(2,−π/3) D(−1, π/4)

SÊ½çã®ÊÄ To aid in the drawing, a polar grid is provided

O 1 2 3

at the boƩom
of this page. To place the point A, go out 1 unit along the iniƟal ray (puƫng

O 1 2 3

A

B

C

D

Figure 10.40: Ploƫng polar points in Ex-
ample 1.

you on the inner circle shown on the grid), then rotate counter-clockwise π/4
radians (or 45◦). Alternately, one can consider the rotaƟon first: think about the
ray from O that forms an angle of π/4 with the iniƟal ray, then move out 1 unit
along this ray (again placing you on the inner circle of the grid).

Notes:
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10.4 IntroducƟon to Polar Coordinates

To plot B, go out 1.5 units along the iniƟal ray and rotate π radians (180◦).
To plot C, go out 2 units along the iniƟal ray then rotate clockwise π/3 radi-

ans, as the angle given is negaƟve.
To plot D, move along the iniƟal ray “−1” units – in other words, “back up” 1

unit, then rotate counter-clockwise by π/4. The results are given in Figure 10.40.

Consider the following two points: A(1, π) and B(−1, 0). To locate A, go out
1 unit on the iniƟal ray then rotate π radians; to locate B, go out−1 units on the
iniƟal ray and don’t rotate. One should see that A and B are located at the same
point in the plane. We can also consider C(1, 3π), or D(1,−π); all four of these
points share the same locaƟon.

This ability to idenƟfy a point in the plane with mulƟple polar coordinates is
both a “blessing” and a “curse.” We will see that it is beneficial as we can plot
beauƟful funcƟons that intersect themselves (much like we sawwith parametric
funcƟons). The unfortunate part of this is that it can be difficult to determine
when this happens. We’ll explore this more later in this secƟon.

Polar to Rectangular Conversion

x

yr

θ

O

P

Figure 10.41: ConverƟng between rect-
angular and polar coordinates.

It is useful to recognize both the rectangular (or, Cartesian) coordinates of a
point in the plane and its polar coordinates. Figure 10.41 shows a point P in
the plane with rectangular coordinates (x, y) and polar coordinates (r, θ). Using
trigonometry, we can make the idenƟƟes given in the following Key Idea.

Key Idea 43 ConverƟng Between Rectangular and Polar
Coordinates

Given the polar point P(r, θ), the rectangular coordinates are deter-
mined by

x = r cos θ y = r sin θ.

Given the rectangular coordinates (x, y), the polar coordinates are de-
termined by

r2 = x2 + y2 tan θ =
y
x
.

Example 2 ConverƟng Between Polar and Rectangular Coordinates
1. Convert the polar coordinates A(2, 2π/3) and B(−1, 5π/4) to rectangular

coordinates.

2. Convert the rectangular coordinates (1, 2) and (−1, 1) to polar coordi-
nates.

Notes:
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SÊ½çã®ÊÄ

1. (a) We start with A(2, 2π/3). Using Key Idea 43, we have

x = 2 cos(2π/3) = −1 y = 2 sin(2π/3) =
√
3.

So the rectangular coordinates are (−1,
√
3) ≈ (−1, 1.732).

(b) The polar point B(−1, 5π/4) is converted to rectangular with:

x = −1 cos(5π/4) =
√
2/2 y = −1 sin(5π/4) =

√
2/2.

So the rectangular coordinates are (
√
2/2,
√
2/2) ≈ (0.707, 0.707).

These points are ploƩed in Figure 10.42 (a). The rectangular coordinate
system is drawn lightly under the polar coordinate system so that the re-
laƟonship between the two can be seen.

O

A(2, 2π
3 )

B(−1, 5π
4 )

(a)

(0, 0)

(1, 2)

(−1, 1)

3π
4
3π
4

−π
4

1.11

(b)

Figure 10.42: Ploƫng rectangular and po-
lar points in Example 2.

2. (a) To convert the rectangular point (1, 2) to polar coordinates, we use
the Key Idea to form the following two equaƟons:

12 + 22 = r2 tan θ =
2
1
.

The first equaƟon tells us that r =
√
5. Using the inverse tangent

funcƟon, we find

tan θ = 2 ⇒ θ = tan−1 2 ≈ 1.11 radians ≈ 63.43◦.

Thus polar coordinates of (1, 2) are (
√
5, 1.11).

(b) To convert (−1, 1) to polar coordinates, we form the equaƟons

(−1)2 + 12 = r2 tan θ =
1
−1

.

Thus r =
√
2. We need to be careful in compuƟng θ: using the

inverse tangent funcƟon, we have

tan θ = −1 ⇒ θ = tan−1(−1) = −π/4.

This is not the angle we desire. The range of tan−1 x is (−π/2, π/2);
that is, it returns angles that lie in the 1st and 4th quadrants. To
find locaƟons in the 2nd and 3rd quadrants, add π to the result of
tan−1 x. So π + (−π/4) puts the angle at 3π/4. Thus the polar
point is (

√
2, 3π/4).

An alternate method is to use the angle θ given by arctangent, but
change the sign of r. Thus we could also refer to (−1, 1) as
(−
√
2,−π/4).

These points are ploƩed in Figure 10.42 (b). The polar system is drawn
lightly under the rectangular grid with rays to demonstrate the angles
used.

Notes:
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Polar FuncƟons and Polar Graphs
Defining a new coordinate system allows us to create a new kind of funcƟon, a
polar funcƟon. Rectangular coordinates lent themselves well to creaƟng func-
Ɵons that related x and y, such as y = x2. Polar coordinates allow us to create
funcƟons that relate r and θ. Normally these funcƟons look like r = f(θ), al-
though we can create funcƟons of the form θ = f(r). The following examples
introduce us to this concept.

Example 3 IntroducƟon to Graphing Polar FuncƟons
Describe the graphs of the following polar funcƟons.

1. r = 1.5

2. θ = π/4

SÊ½çã®ÊÄ

1. The equaƟon r = 1.5 describes all points that are 1.5 units from the pole;
as the angle is not specified, any θ is allowable. All points 1.5 units from
the pole describes a circle of radius 1.5.
We can consider the rectangular equivalent of this equaƟon; using r2 =
x2+y2, we see that 1.52 = x2+y2, which we recognize as the equaƟon of
a circle centered at (0, 0)with radius 1.5. This is sketched in Figure 10.43.

O 1 2

r = 1.5
θ = π

4

Figure 10.43: Ploƫng standard polar
plots.

2. The equaƟon θ = π/4 describes all points such that the line through them
and the polemake an angle of π/4with the iniƟal ray. As the radius r is not
specified, it can be any value (even negaƟve). Thus θ = π/4 describes the
line through the pole that makes an angle of π/4 = 45◦ with the iniƟal
ray.
We can again consider the rectangular equivalent of this equaƟon. Com-
bine tan θ = y/x and θ = π/4:

tan π/4 = y/x ⇒ x tan π/4 = y ⇒ y = x.

This graph is also ploƩed in Figure 10.43.

The basic rectangular equaƟons of the form x = h and y = k create verƟcal
and horizontal lines, respecƟvely; the basic polar equaƟons r = h and θ = α
create circles and lines through the pole, respecƟvely. With this as a foundaƟon,
we can create more complicated polar funcƟons of the form r = f(θ). The input
is an angle; the output is a length, how far in the direcƟon of the angle to go out.

We sketch these funcƟons much like we sketch rectangular and paramet-
ric funcƟons: we plot lots of points and “connect the dots” with curves. We
demonstrate this in the following example.

Notes:
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Chapter 10 Curves in the Plane

Example 4 Sketching Polar FuncƟons
Sketch the polar funcƟon r = 1+ cos θ on [0, 2π] by ploƫng points.

SÊ½çã®ÊÄ AcommonquesƟonwhen sketching curves by ploƫngpoints
θ r = 1+ cos θ

0 2
π/6 1+

√
3/2

π/4 1+ 1/
√
2

π/3 3/2
π/2 1
2π/3 1/2
3π/4 1− 1/

√
2

5π/6 1−
√
3/2

π 0
7π/6 1−

√
3/2

5π/4 1− 1/
√
2

4π/3 1/2
3π/2 1
5π/3 3/2
7π/4 1+ 1/

√
2

11π/6 1+
√
3/2

O 1 2

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

Figure 10.44: Graph of the polar funcƟon
in Example 4 by ploƫng points.

is “Which points should I plot?” With rectangular equaƟons, we oŌen chose
“easy” values — integers, then added more if needed. When ploƫng polar
equaƟons, start with the “common” angles — mulƟples of π/6 and π/4. Fig-
ure 10.44 gives a table of just a few values of θ in [0, π].

Consider the point (2, 0) determined by the first line of the table. The angle
is 0 radians – we do not rotate from the iniƟal ray – then we go out 2 units from
the pole. When θ = π/6, r = 1 +

√
3/2; so rotate by π/6 radians and go out

1+
√
3/2 units.

Example 5 Sketching Polar FuncƟons
Sketch the polar funcƟon r = cos(2θ) on [0, 2π] by ploƫng points.

SÊ½çã®ÊÄ We start by making a table of cos(2θ) evaluated at common
angles θ, as shown in Figure 10.46. These points are then ploƩed in Figure 10.45.
This parƟcular graph “moves” around quite a bit and one can easily forget which
points should be connected to each other. To help us with this, we numbered
each point in the table and on the graph.

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15 16 17

Figure 10.45: Polar plots from Example 5.

Pt. θ cos(2θ) Pt. θ cos(2θ)

1 0 1 10 7π/6 0.5
2 π/6 0.5 11 5π/4 0
3 π/4 0 12 4π/3 −0.5
4 π/3 −0.5 13 3π/2 −1
5 π/2 −1 14 5π/3 −0.5
6 2π/3 −0.5 15 7π/4 0
7 3π/4 0 16 11π/6 0.5
8 5π/6 0.5 17 2π 1
9 π 1

Figure 10.46: Tables of points for ploƫng a polar curve.
This plot is an example of a rose curve.

It is someƟmes desirable to refer to a graph via a polar equaƟon, and other
Ɵmes by a rectangular equaƟon. Therefore it is necessary to be able to convert
between polar and rectangular funcƟons, which we pracƟce in the following
example. We will make frequent use of the idenƟƟes found in Key Idea 43.

Notes:
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10.4 IntroducƟon to Polar Coordinates

Example 6 ConverƟng between rectangular and polar equaƟons.

Convert from rectangular to polar.

1. y = x2

2. xy = 1

Convert from polar to rectangular.

3. r =
2

sin θ − cos θ

4. r = 2 cos θ

SÊ½çã®ÊÄ

1. Replace y with r sin θ and replace x with r cos θ, giving:

y = x2

r sin θ = r2 cos2 θ
sin θ
cos2 θ

= r

We have found that r = sin θ/ cos2 θ = tan θ sec θ. The domain of this
polar funcƟon is (−π/2, π/2); plot a few points to see how the familiar
parabola is traced out by the polar equaƟon.

2. We again replace x and y using the standard idenƟƟes and work to solve
for r:

xy = 1
r cos θ · r sin θ = 1

r2 =
1

cos θ sin θ

r =
1√

cos θ sin θ

This funcƟon is valid only when the product of cos θ sin θ is posiƟve. This

−5 5

−5

5

x

y

Figure 10.47: Graphing xy = 1 from Ex-
ample 6.

occurs in the first and third quadrants, meaning the domain of this polar
funcƟon is (0, π/2) ∪ (π, 3π/2).

We can rewrite the original rectangular equaƟon xy = 1 as y = 1/x. This
is graphed in Figure 10.47; note how it only exists in the first and third
quadrants.

3. There is no set way to convert from polar to rectangular; in general, we
look to form the products r cos θ and r sin θ, and then replace these with
x and y, respecƟvely. We start in this problem by mulƟplying both sides

Notes:
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Chapter 10 Curves in the Plane

by sin θ − cos θ:

r =
2

sin θ − cos θ
r(sin θ − cos θ) = 2
r sin θ − r cos θ = 2. Now replace with y and x:

y− x = 2
y = x+ 2.

The original polar equaƟon, r = 2/(sin θ − cos θ) does not easily reveal
that its graph is simply a line. However, our conversion shows that it is.
The upcoming gallery of polar curves gives the general equaƟons of lines
in polar form.

4. By mulƟplying both sides by r, we obtain both an r2 term and an r cos θ
term, which we replace with x2 + y2 and x, respecƟvely.

r = 2 cos θ
r2 = 2r cos θ

x2 + y2 = 2x.

We recognize this as a circle; by compleƟng the square we can find its
radius and center.

x2 − 2x+ y2 = 0
(x− 1)2 + y2 = 1.

The circle is centered at (1, 0) and has radius 1. The upcoming gallery
of polar curves gives the equaƟons of some circles in polar form; circles
with arbitrary centers have a complicated polar equaƟon that we do not
consider here.

Some curves have very simple polar equaƟons but rather complicated rect-
angular ones. For instance, the equaƟon r = 1 + cos θ describes a cardioid (a
shape important to the sensiƟvity of microphones, among other things; one is
graphed in the gallery in the Limaçon secƟon). It’s rectangular form is not nearly
as simple; it is the implicit equaƟon x4 + y4 + 2x2y2 − 2xy2 − 2x3 − y2 = 0. The
conversion is not “hard,” but takes several steps, and is leŌ as an exercise.

Notes:
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10.4 IntroducƟon to Polar Coordinates

Gallery of Polar Curves
There are a number of basic and “classic” polar curves, famous for their beauty
and/or applicability to the sciences. This secƟon ends with a small gallery of
someof these graphs. Weencourage the reader to understandhow these graphs
are formed, and to invesƟgate with technology other types of polar funcƟons.

Lines
Through the origin: Horizontal line: VerƟcal line: Not through origin:

θ = α r = a csc θ r = a sec θ r =
b

sin θ −m cos θ

α a
{ ︷︸︸ ︷a

slo
pe
=
m

}
b

Notes:
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Circles Sprial
Centered on origin: (x− a

2 )
2 + y2 = a2

4 x2 + (y− a
2 )

2 = a2
4 Archimedean spiral

r = a r = a cos θ r = a sin θ r = θ

︷ ︸︸ ︷a ︷ ︸︸ ︷a

a



Limaçons
Symmetric about x-axis: r = a± b cos θ; Symmetric about y-axis: r = a± b sin θ; a, b > 0
With inner loop: Cardioid: Dimpled: Convex:
a
b
< 1

a
b
= 1 1 <

a
b
< 2

a
b
> 2

Rose Curves
Symmetric about x-axis: r = a cos(nθ); Symmetric about y-axis: r = a sin(nθ)
Curve contains 2n petals when n is even and n petals when n is odd.
r = a cos(2θ) r = a sin(2θ) r = a cos(3θ) r = a sin(3θ)

Special Curves
Rose curves Lemniscate: Eight Curve:
r = a sin(θ/5) r = a sin(2θ/5) r2 = a2 cos(2θ) r2 = a2 sec4 θ cos(2θ)



10.4 IntroducƟon to Polar Coordinates

Earlier we discussed how each point in the plane does not have a unique
representaƟon in polar form. This can be a “good” thing, as it allows for the
beauƟful and interesƟng curves seen in the preceding gallery. However, it can
also be a “bad” thing, as it can be difficult to determine where two curves inter-
sect.

Example 7 Finding points of intersecƟon with polar curves
Determinewhere the graphs of the polar equaƟons r = 1+3 cos θ and r = cos θ
intersect.

SÊ½çã®ÊÄ As technology is generally readily available, it is usually a
good idea to start with a graph. We have graphed the two funcƟons in Fig-
ure 10.48(a); to beƩer discern the intersecƟon points, part (b) of the figure
zooms in around the origin. We start by seƫng the two funcƟons equal to each

2 4

−2

2

0

π/2

(a)

−0.5 0.5

−0.5

0.5

0

π/2

(b)

Figure 10.48: Graphs to help determine
the points of intersecƟon of the polar
funcƟons given in Example 7.

other and solving for θ:

1+ 3 cos θ = cos θ
2 cos θ = −1

cos θ = −1
2

θ =
2π
3
,
4π
3
.

(There are, of course, infinite soluƟons to the equaƟon cos θ = −1/2; as the
limaçon is traced out once on [0, 2π], we restrict our soluƟons to this interval.)

We need to analyze this soluƟon. When θ = 2π/3 we obtain the point of
intersecƟon that lies in the 4th quadrant. When θ = 4π/3, we get the point of
intersecƟon that lies in the 2nd quadrant. There is more to say about this second
intersecƟon point, however. The circle defined by r = cos θ is traced out once on
[0, π], meaning that this point of intersecƟon occurs while tracing out the circle
a second Ɵme. It seems strange to pass by the point once and then recognize
it as a point of intersecƟon only when arriving there a “second Ɵme.” The first
Ɵme the circle arrives at this point is when θ = π/3. It is key to understand that
these two points are the same: (cos π/3, π/3) and (cos 4π/3, 4π/3).

To summarize what we have done so far, we have found two points of in-
tersecƟon: when θ = 2π/3 and when θ = 4π/3. When referencing the circle
r = cos θ, the laƩer point is beƩer referenced as when θ = π/3.

There is yet another point of intersecƟon: the pole (or, the origin). We did
not recognize this intersecƟon point using our work above as each graph arrives
at the pole at a different θ value.

A graph intersects the pole when r = 0. Considering the circle r = cos θ, r =
0 when θ = π/2 (and odd mulƟples thereof, as the circle is repeatedly traced).

Notes:

613



Chapter 10 Curves in the Plane

The limaçon intersects the pole when 1+ 3 cos θ = 0; this occurs when cos θ =
−1/3, or for θ = cos−1(−1/3). This is a nonstandard angle, approximately
θ = 1.9106 radians ≈ 109.47◦. The limaçon intersects the pole twice in [0, 2π];
the other angle at which the limaçon is at the pole is the reflecƟon of the first
angle across the x-axis. That is, θ = 4.3726 ≈ 250.53◦.

If all one is concernedwith is the (x, y) coordinates at which the graphs inter-
sect, much of the above work is extraneous. We know they intersect at (0, 0);
we might not care at what θ value. Likewise, using θ = 2π/3 and θ = 4π/3
can give us the needed rectangular coordinates. However, in the next secƟon
we apply calculus concepts to polar funcƟons. When compuƟng the area of a
region bounded by polar curves, understanding the nuances of the points of
intersecƟon becomes important.

Notes:
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Exercises 10.4
Terms and Concepts
1. In your own words, describe how to plot the polar point

P(r, θ).
2. T/F: When ploƫng a point with polar coordinate P(r, θ), r

must be posiƟve.
3. T/F: Every point in the Cartesian plane can be represented

by a polar coordinate.
4. T/F: Every point in the Cartesian plane can be represented

uniquely by a polar coordinate.

Problems
5. Plot the points with the given polar coordinates.

(a) A(2, 0)

(b) B(1, π)

(c) C(−2, π/2)

(d) D(1, π/4)
6. Plot the points with the given polar coordinates.

(a) A(2, 3π)

(b) B(1,−π)

(c) C(1, 2)

(d) D(1/2, 5π/6)
7. For each of the given points give two sets of polar coordi-

nates that idenƟfy it, where 0 ≤ θ ≤ 2π.

O 1 2 3

A

B

C

D

8. For each of the given points give two sets of polar coordi-
nates that idenƟfy it, where−π ≤ θ ≤ π.

O 1 2 3

A

B

C

D

9. Convert the polar coordinates A and B to rectangular, and
the rectangular coordinates C and D to polar.

(a) A(2, π/4)

(b) B(2,−π/4)

(c) C(2,−1)

(d) D(−2, 1)
10. Convert the polar coordinates A and B to rectangular, and

the rectangular coordinates C and D to polar.

(a) A(3, π)

(b) B(1, 2π/3)

(c) C(0, 4)

(d) D(1,−
√
3)

In Exercises 11–32, graph the polar funcƟon on the given in-
terval.

11. r = 2, 0 ≤ θ ≤ π/2

12. θ = π/6, −1 ≤ r ≤ 2
13. r = 1− cos θ, [0, 2π]
14. r = 2+ sin θ, [0, 2π]
15. r = 2− sin θ, [0, 2π]
16. r = 1− 2 sin θ, [0, 2π]
17. r = 1+ 2 sin θ, [0, 2π]
18. r = cos(2θ), [0, 2π]
19. r = sin(3θ), [0, π]
20. r = cos(θ/3), [0, 3π]
21. r = cos(2θ/3), [0, 6π]
22. r = θ/2, [0, 4π]
23. r = 3 sin(θ), [0, π]
24. r = −4 sin(θ), [0, π]
25. r = −2 cos(θ), [0, π]

26. r = 3
2
cos(θ), [0, π]

27. r = cos θ sin θ, [0, 2π]
28. r = θ2 − (π/2)2, [−π, π]

29. r = 3
5 sin θ − cos θ

, [0, 2π]

30. r = −2
3 cos θ − 2 sin θ

, [0, 2π]

31. r = 3 sec θ, (−π/2, π/2)
32. r = 3 csc θ, (0, π)

In Exercises 33–43, convert the polar equaƟon to a rectangular
equaƟon.

33. r = 2 cos θ
34. r = −4 sin θ
35. r = 3 sin(θ)

36. r = −3
2
cos(θ)

37. r = cos θ + sin θ

38. r = 7
5 sin θ − 2 cos θ

39. r = 3
cos θ

40. r = 4
sin θ

41. r = tan θ
42. r = 2
43. θ =

π

6
In Exercises 44–51, convert the rectangular equaƟon to a polar
equaƟon.

44. y = x
45. y = 4x+ 7
46. x = 5
47. y = 5
48. x = y2
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49. x2y = 1
50. x2 + y2 = 7
51. (x+ 1)2 + y2 = 1

In Exercises 52–59, find the points of intersecƟon of the polar
graphs.

52. r = sin(2θ) and r = cos θ on [0, π]
53. r = cos(2θ) and r = cos θ on [0, π]
54. r = 2 cos θ and r = 2 sin θ on [0, π]
55. r = sin θ and r =

√
3+ 3 sin θ on [0, 2π]

56. r = sin(3θ) and r = cos(3θ) on [0, π]

57. r = 3 cos θ and r = 1+ cos θ on [−π, π]

58. r = 1 and r = 2 sin(2θ) on [0, 2π]

59. r = 1− cos θ and r = 1+ sin θ on [0, 2π]

60. Pick a integer value for n, where n ̸= 2, 3, and use tech-
nology to plot r = sin

(m
n
θ
)
for three different integer

values of m. Sketch these and determine a minimal inter-
val on which the enƟre graph is shown.

61. Create your own polar funcƟon, r = f(θ) and sketch it. De-
scribe why the graph looks as it does.
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10.5 Calculus and Polar FuncƟons

10.5 Calculus and Polar FuncƟons
The previous secƟon defined polar coordinates, leading to polar funcƟons. We
invesƟgated ploƫng these funcƟons and solving a fundamental quesƟon about
their graphs, namely, where do two polar graphs intersect?

We now turn our aƩenƟon to answering other quesƟons, whose soluƟons
require the use of calculus. A basis for much of what is done in this secƟon is
the ability to turn a polar funcƟon r = f(θ) into a set of parametric equaƟons.
Using the idenƟƟes x = r cos θ and y = r sin θ, we can create the parametric
equaƟons x = f(θ) cos θ, y = f(θ) sin θ and apply the concepts of SecƟon 10.3.

Polar FuncƟons and
dy
dx

We are interested in the lines tangent to a given graph, regardless of whether
that graph is produced by rectangular, parametric, or polar equaƟons. In each
of these contexts, the slope of the tangent line is dy

dx . Given r = f(θ), we are
generally not concerned with r ′ = f ′(θ); that describes how fast r changes with
respect to θ. Instead, we will use x = f(θ) cos θ, y = f(θ) sin θ to compute dy

dx .
Using Key Idea 39 we have

dy
dx

=
dy
dθ

/dx
dθ

.

Each of the two derivaƟves on the right hand side of the equality requires the
use of the Product Rule. We state the important result as a Key Idea.

Key Idea 44 Finding dy
dx with Polar FuncƟons

Let r = f(θ) be a polar funcƟon. With x = f(θ) cos θ and y = f(θ) sin θ,

dy
dx

=
dy
dθ
dx
dθ

=
f ′(θ) sin θ + f(θ) cos θ
f ′(θ) cos θ − f(θ) sin θ

.

Watch the video:
The Slope of Tangent Lines to Polar Curves at
https://youtu.be/QTa9OZ4iGPo

Notes:
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Chapter 10 Curves in the Plane

Example 1 Finding dy
dx with polar funcƟons.

Consider the limaçon r = 1+ 2 sin θ on [0, 2π].

1. Find the rectangular equaƟons of the tangent and normal lines to the
graph at θ = π/4.

2. Find where the graph has verƟcal and horizontal tangent lines.

SÊ½çã®ÊÄ

1. We start by compuƟng dy
dx . With f ′(θ) = 2 cos θ, we have

dy
dx

=
2 cos θ sin θ + cos θ(1+ 2 sin θ)
2 cos2 θ − sin θ(1+ 2 sin θ)

=
cos θ(4 sin θ + 1)

2(cos2 θ − sin2 θ)− sin θ
.

When θ = π/4, dy
dx = −2

√
2 − 1 (this requires a bit of simplificaƟon).

In rectangular coordinates, the point on the graph at θ = π/4 is (1 +√
2/2, 1 +

√
2/2). Thus the rectangular equaƟon of the line tangent to

the limaçon at θ = π/4 is

y = (−2
√
2− 1)

(
x− (1+

√
2/2)

)
+ 1+

√
2/2 ≈ −3.83x+ 8.24.

The limaçon and the tangent line are graphed in Figure 10.49.
The normal line has the opposite–reciprocal slope as the tangent line, so
its equaƟon is

y ≈ 1
3.83

x+ 1.26.

2. To find the horizontal lines of tangency, we find where dy
dx = 0 (when the

denominator does not equal 0); thus we find where the numerator of our
equaƟon for dy

dx is 0.

cos θ(4 sin θ + 1) = 0 ⇒ cos θ = 0 or 4 sin θ + 1 = 0.

On [0, 2π], cos θ = 0 when θ = π/2, 3π/2.
Seƫng 4 sin θ + 1 = 0 gives θ = sin−1(−1/4) ≈ −0.2527 = −14.48◦.
We want the results in [0, 2π]; we also recognize there are two soluƟons,
one in the 3rd quadrant and one in the 4th. Using reference angles, we
have our two soluƟons as θ = 3.39 and 6.03 radians. The four points
we obtained where the limaçon has a horizontal tangent line are given in
Figure 10.49 with black–filled dots.

Notes:
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10.5 Calculus and Polar FuncƟons

To find the verƟcal lines of tangency, we determine where dy
dx is undefined

by seƫng the denominator of dy
dx = 0 (when the numerator does not equal

0).

2(cos2 θ − sin2 θ)− sin θ = 0.

Convert the cos2 θ term to 1− sin2 θ:

2(1− sin2 θ − sin2 θ)− sin θ = 0
4 sin2 θ + sin θ − 2 = 0.

Recognize this as a quadraƟc in the variable sin θ. Using the quadraƟc
formula, we have

sin θ =
−1±

√
33

8
.

We solve sin θ = −1+
√
33

8 and sin θ = −1−
√
33

8 :

−2 −1 1 2

1

2

3

0

π/2

Figure 10.49: The limaçon in Example 1
with its tangent line at θ = π/4 and
points of verƟcal and horizontal tangency.

sin θ =
−1+

√
33

8
sin θ =

−1−
√
33

8

θ = sin−1
(
−1+

√
33

8

)
θ = sin−1

(
−1−

√
33

8

)
θ ≈ 0.6349 θ ≈ −1.0030

In each of the soluƟons above, we only get one of the possible two so-
luƟons as sin−1 x only returns soluƟons in [−π/2, π/2], the 4th and 1st
quadrants. Again using reference angles, we have:

sin θ =
−1+

√
33

8
⇒ θ ≈ 0.6349, 2.5067 radians

and

sin θ =
−1−

√
33

8
⇒ θ ≈ 4.1446, 5.2802 radians.

These points are also shown in Figure 10.49 with white–filled dots.

When the graph of the polar funcƟon r = f(θ) intersects the pole, it means

that f(α) = 0 for some angle α. Making this subsƟtuƟon in the formula for
dy
dx

given in Key Idea 44 we see

dy
dx

=
f ′(α) sinα+ f(α) cosα
f ′(α) cosα+ f(α) sinα

=
sinα
cosα

= tanα.

Notes:
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Chapter 10 Curves in the Plane

This equaƟon makes an interesƟng point. It tells us the slope of the tangent
line at the pole is tanα; some of our previous work (see, for instance, Exam-
ple 10.4.3) shows us that the line through the pole with slope tanα has polar
equaƟon θ = α. Thus when a polar graph touches the pole at θ = α, the
equaƟon of the tangent line at the pole is θ = α.

Example 2 Finding tangent lines at the pole
Let r = 1 + 2 sin θ, a limaçon. Find the equaƟons of the lines tangent to the
graph at the pole.

−1 −0.5 0.5 1

−0.5

0.5

1

0

π/2

Figure 10.50: Graphing the tangent lines
at the pole in Example 2.

SÊ½çã®ÊÄ We need to know when r = 0.

1+ 2 sin θ = 0
sin θ = −1/2

θ =
7π
6
,
11π
6

.

Thus the equaƟons of the tangent lines, in polar, are θ = 7π/6 and θ = 11π/6.
In rectangular form, the tangent lines are y = tan(7π/6)x = x√

3 and y =

tan(11π/6)x = − x√
3 . The full limaçon can be seen in Figure 10.49; we zoom in

on the tangent lines in Figure 10.50.

Area
When using rectangular coordinates, the equaƟons x = h and y = k defined
verƟcal and horizontal lines, respecƟvely, and combinaƟons of these lines create
rectangles (hence the name “rectangular coordinates”). It is then somewhat
natural to use rectangles to approximate area as we did when learning about
the definite integral.

Note: Recall that the area of a sector
of a circle with radius r subtended by
an angle θ is A = 1

2θr
2.

r
θ

When using polar coordinates, the equaƟons θ = α and r = c form lines
through the origin and circles centered at the origin, respecƟvely, and combi-
naƟons of these curves form sectors of circles. It is then somewhat natural to
calculate the area of regions defined by polar funcƟons by first approximaƟng
with sectors of circles.

Consider Figure 10.51 (a) where a region defined by r = f(θ) on [α, β] is
given. (Note how the “sides” of the region are the lines θ = α and θ = β,
whereas in rectangular coordinates the “sides” of regionswere oŌen the verƟcal
lines x = a and x = b.)

ParƟƟon the interval [α, β] into n equally spaced subintervals as α = θ0 <
θ1 < . . . < θn = β. The radian of each subinterval is ∆θ = (β − α)/n,
represenƟng a small change in angle. The area of the region defined by the i th

Notes:
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10.5 Calculus and Polar FuncƟons

subinterval [θi−1, θi] can be approximated with a sector of a circle with radius
f(ci), for some ci in [θi−1, θi]. The area of this sector is 1

2 [f(ci)]
2∆θ. This is shown

in part (b) of the figure, where [α, β] has been divided into 4 subintervals. We
approximate the area of the whole region by summing the areas of all sectors:

0.5 1

0.5

1

θ = α

θ
=

β

r = f(θ)

0

π/2

(a)

0.5 1

0.5

1

θ
=

β

r = f(θ)

θ = α

0

π/2

(b)

Figure 10.51: CompuƟng the area of a po-
lar region.

Area ≈
n∑

i=1

1
2
[f(ci)]2∆θ.

This is a Riemann sum. By taking the limit of the sum as n → ∞, we find the
exact area of the region in the form of a definite integral.

Theorem 85 Area of a Polar Region
Let f be conƟnuous and non-negaƟve on [α, β], where 0 ≤ β−α ≤ 2π.
The area A of the region bounded by the curve r = f(θ) and the lines
θ = α and θ = β is

A =
1
2

ˆ β

α

[f(θ)]2 dθ =
1
2

ˆ β

α

r 2 dθ

The theorem states that 0 ≤ β−α ≤ 2π. This ensures that region does not
overlap itself, which would give a result that does not correspond directly to the
area.

Example 3 Area of a polar region
Find the area of the circle defined by r = cos θ. (Recall this circle has radius 1/2.)

SÊ½çã®ÊÄ This is a direct applicaƟonof Theorem85. The circle is traced
out on [0, π], leading to the integral

Note: Example 3 requires the use of
the integral

ˆ
cos2 θ dθ. This is han-

dled well by using the half angle for-
mula as found in the back of this text.
Due to the nature of the area for-
mula, integraƟng cos2 θ and sin2 θ is
required oŌen. We offer here these
indefinite integrals as a Ɵme–saving
measure.ˆ

cos2 θ dθ =
1
2
θ +

1
4
sin(2θ) + C

ˆ
sin2 θ dθ =

1
2
θ − 1

4
sin(2θ) + C

Area =
1
2

ˆ π

0
cos2 θ dθ

=
1
2

ˆ π

0

1+ cos(2θ)
2

dθ

=
1
4
(
θ +

1
2
sin(2θ)

)∣∣∣∣∣
π

0

=
π

4
.

Of course, we already knew the area of a circle with radius 1/2. We did this
example to demonstrate that the area formula is correct.

Notes:
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Example 4 Area of a polar region
Find the area of the cardioid r = 1+cos θ bound between θ = π/6 and θ = π/3,
as shown in Figure 10.52.

SÊ½çã®ÊÄ This is again a direct applicaƟon of Theorem 85.

1 2

1

θ =
π/

6θ
=

π
/
3

0

π/2

Figure 10.52: Finding the area of the
shaded region of a cardioid in Example 4.

Area =
1
2

ˆ π/3

π/6
(1+ cos θ)2 dθ

=
1
2

ˆ π/3

π/6
(1+ 2 cos θ + cos2 θ) dθ

=
1
2

[
θ + 2 sin θ +

1
2
θ +

1
4
sin(2θ)

]π/3
π/6

=
1
8
(
π + 4

√
3− 4

)
.

Area Between Curves

Our study of area in the context of rectangular funcƟons led naturally to finding
area bounded between curves. We consider the same in the context of polar
funcƟons.

0.5 1

0.5

1

r2 = f2(θ)r1 = f1(θ)

θ =
α

θ
=

β

0

π/2

Figure 10.53: IllustraƟng area bound be-
tween two polar curves.

Consider the shaded region shown in Figure 10.53. We can find the area of
this region by compuƟng the area bounded by r2 = f2(θ) and subtracƟng the
area bounded by r1 = f1(θ) on [α, β]. Thus

Area =
1
2

ˆ β

α

r 22 dθ − 1
2

ˆ β

α

r 21 dθ =
1
2

ˆ β

α

(
r 22 − r 21

)
dθ.

Key Idea 45 Area Between Polar Curves
The area A of the region bounded by r1 = f1(θ) and r2 = f2(θ), θ = α
and θ = β, where f1(θ) ≤ f2(θ) on [α, β], is

A =
1
2

ˆ β

α

[f2(θ)]2 − [f1(θ)]2 dθ =
1
2

ˆ β

α

(
r 22 − r 21

)
dθ.

1 2 3

−1

1

0

π/2

Figure 10.54: Finding the area between
polar curves in Example 5.

Example 5 Area between polar curves
Find the area bounded between the curves r = 1 + cos θ and r = 3 cos θ, as
shown in Figure 10.54.

Notes:
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10.5 Calculus and Polar FuncƟons

SÊ½çã®ÊÄ We need to find the points of intersecƟon between these
two funcƟons. Seƫng them equal to each other, we find:

1+ cos θ = 3 cos θ
cos θ = 1/2

θ = ±π/3

Thus we integrate 1
2
(
(3 cos θ)2 − (1+ cos θ)2

)
on [−π/3, π/3].

Area =
1
2

ˆ π/3

−π/3

(
(3 cos θ)2 − (1+ cos θ)2

)
dθ

=
1
2

ˆ π/3

−π/3

(
8 cos2 θ − 2 cos θ − 1

)
dθ

=
1
2
(
2 sin(2θ)− 2 sin θ + 3θ

)∣∣∣∣∣
π/3

−π/3

= π.

Amazingly enough, the area between these curves has a “nice” value.

1 2

−1

1

0

π/2

(a)

0.5 1

0.5

1

0

π/2

(b)

Figure 10.55: Graphing the region
bounded by the funcƟons in Example 6.

Example 6 Area defined by polar curves
Find the area bounded between the polar curves r = 1 and r = 2 cos(2θ), as
shown in Figure 10.55 (a).

SÊ½çã®ÊÄ We need to find the point of intersecƟon between the two
curves. Seƫng the two funcƟons equal to each other, we have

2 cos(2θ) = 1 ⇒ cos(2θ) =
1
2
⇒ 2θ = π/3 ⇒ θ = π/6.

In part (b) of the figure, we zoom in on the region and note that it is not really
bounded between two polar curves, but rather by two polar curves, along with
θ = 0. The dashed line breaks the region into its component parts. Below
the dashed line, the region is defined by r = 1, θ = 0 and θ = π/6. (Note:
the dashed line lies on the line θ = π/6.) Above the dashed line the region is
bounded by r = 2 cos(2θ) and θ = π/6. Since we have two separate regions,
we find the area using two separate integrals.

Call the area below the dashed line A1 and the area above the dashed line
A2. They are determined by the following integrals:

A1 =
1
2

ˆ π/6

0
(1)2 dθ A2 =

1
2

ˆ π/4

π/6

(
2 cos(2θ)

)2 dθ.

Notes:
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Chapter 10 Curves in the Plane

(The upper bound of the integral compuƟng A2 is π/4 as r = 2 cos(2θ) is at the
pole when θ = π/4.)

We omit the integraƟon details and let the reader verify that A1 = π/12 and
A2 = π/12−

√
3/8; the total area is A = π/6−

√
3/8.

Arc Length

As we have already considered the arc length of curves defined by rectangular
and parametric equaƟons, we now consider it in the context of polar equaƟons.
Recall that the arc length L of the graph defined by the parametric equaƟons
x = f(t), y = g(t) on [a, b] is

L =
ˆ b

a

√
[f ′(t)]2 + [g ′(t)]2 dt =

ˆ b

a

√
[x ′(t)]2 + [y ′(t)]2 dt. (10.1)

Now consider the polar funcƟon r = f(θ). We again use the idenƟƟes x =
f(θ) cos θ and y = f(θ) sin θ to create parametric equaƟons based on the polar
funcƟon. We compute x ′(θ) and y ′(θ) as done before when compuƟng dy

dx , then
apply EquaƟon (10.1).

The expression [x ′(θ)]2 + [y ′(θ)]2 can be simplified a great deal; we leave
this as an exercise and state that

[x ′(θ)]2 + [y ′(θ)]2 = [f ′(θ)]2 + [f(θ)]2.

This leads us to the arc length formula.

Key Idea 46 Arc Length of Polar Curves
Let r = f(θ) be a polar funcƟon with f ′ conƟnuous on an open interval
I containing [α, β], on which the graph traces itself only once. The arc
length L of the graph on [α, β] is

L =
ˆ β

α

√
[f ′(θ)]2 + [f(θ)]2 dθ =

ˆ β

α

√
(r ′)2 + r2 dθ.

Example 7 Arc Length of Polar Curves
Find the arc length of the cardioid r = 1+ cos θ.

Notes:
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SÊ½çã®ÊÄ With r = 1 + cos θ, we have r′ = − sin θ. The cardioid is
traced out once on [0, 2π], giving us our bounds of integraƟon. Applying Key
Idea 46 we have

L =
ˆ 2π

0

√
(− sin θ)2 + (1+ cos θ)2 dθ

=

ˆ 2π

0

√
sin2 θ + (1+ 2 cos θ + cos θ) dθ

=

ˆ 2π

0

√
2+ 2 cos θ dθ

=

ˆ 2π

0

√
2+ 2 cos θ

√
2− 2 cos θ√
2− 2 cos θ

dθ

=

ˆ 2π

0

√
4− 4 cos2 θ√
2− 2 cos θ

dθ

= 2
ˆ 2π

0

√
1− cos2 θ√
2− 2 cos θ

dθ

= 2
ˆ 2π

0

|sin θ|√
2− 2 cos θ

dθ

Since the sin θ > 0 on [0, π] and sin θ < 0 on [π, 2π] we separate the integral
into two parts

2
ˆ π

0

sin θ√
2− 2 cos θ

dθ − 2
ˆ 2π

π

sin θ√
2− 2 cos θ

dθ

Using the symmetry of the cardioid and u-subsƟtuƟon (u = 2 − 2 cos θ) we
simplify the integraƟon to

L = 4
ˆ π

0

sin θ√
2− 2 cos θ

dθ

= 2
ˆ 4

0

1√
u
du

= 4u1/2
∣∣∣∣4
0
= 8.

Example 8 Arc length of a limaçon
Find the arc length of the limaçon r = 1+ 2 sin t.

Notes:
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Chapter 10 Curves in the Plane

SÊ½çã®ÊÄ With r = 1 + 2 sin t, we have r ′ = 2 cos t. The limaçon is
traced out once on [0, 2π], giving us our bounds of integraƟon. Applying Key
Idea 46, we have

L =
ˆ 2π

0

√
(2 cos θ)2 + (1+ 2 sin θ)2 dθ

=

ˆ 2π

0

√
4 cos2 θ + 4 sin2 θ + 4 sin θ + 1 dθ

=

ˆ 2π

0

√
4 sin θ + 5 dθ

≈ 13.3649.

The final integral cannot be solved in terms of elementary funcƟons, so we

−2 −1 1 2

1

2

3

0

π/2

Figure 10.56: The limaçon in Example 8
whose arc length is measured.

resorted to a numerical approximaƟon. (Simpson’s Rule, with n = 4, approx-
imates the value with 13.0608. Using n = 22 gives the value above, which is
accurate to 4 places aŌer the decimal.)

Surface Area
The formula for arc length leads us to a formula for surface area. The following
Key Idea is based on Key Idea 42.

Key Idea 47 Surface Area of a Solid of RevoluƟon
Consider the graph of the polar equaƟon r = f(θ), where f ′ is conƟnu-
ous on an open interval containing [α, β] on which the graph does not
cross itself.

1. The surface area of the solid formed by revolving the graph about
the iniƟal ray (θ = 0) is:

Surface Area = 2π
ˆ β

α

f(θ) sin θ
√

[f ′(θ)]2 + [f(θ)]2 dθ.

2. The surface area of the solid formed by revolving the graph about
the line θ = π/2 is:

Surface Area = 2π
ˆ β

α

f(θ) cos θ
√
[f ′(θ)]2 + [f(θ)]2 dθ.

Notes:
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10.5 Calculus and Polar FuncƟons

Example 9 Surface area determined by a polar curve
Find the surface area formedby revolving onepetal of the rose curve r = cos(2θ)
about its central axis (see Figure 10.57).

SÊ½çã®ÊÄ We choose, as implied by the figure, to revolve the porƟon

−1 1

−1

1

0

π/2

(a)

(b)

Figure 10.57: Finding the surface area of
a rose–curve petal that is revolved around
its central axis.

of the curve that lies on [0, π/4] about the iniƟal ray. Using Key Idea 47 and the
fact that f ′(θ) = −2 sin(2θ), we have

Surface Area = 2π
ˆ π/4

0
cos(2θ) sin(θ)

√(
− 2 sin(2θ)

)2
+
(
cos(2θ)

)2 dθ
≈ 1.36707.

The integral is another that cannot be evaluated in terms of elementary func-
Ɵons. Simpson’s Rule, with n = 4, approximates the value at 1.36751.

This chapter has been about curves in the plane. While there is great math-
emaƟcs to be discovered in the two dimensions of a plane, we live in a three
dimensional world and hence we should also look to do mathemaƟcs in 3D —
that is, in space. The next chapter begins our exploraƟon into space by introduc-
ing the topic of vectors, which are incredibly useful and powerful mathemaƟcal
objects.

Notes:
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Exercises 10.5
Terms and Concepts

1. Given polar equaƟon r = f(θ), how can one create para-
metric equaƟons of the same curve?

2. With rectangular coordinates, it is natural to approximate
area with ; with polar coordinates, it is natural to
approximate area with .

Problems

In Exercises 3–10, find:

(a) dy
dx

(b) the equaƟon of the tangent and normal lines to the
curve at the indicated θ–value.

3. r = 1; θ = π/4

4. r = cos θ; θ = π/4

5. r = 1+ sin θ; θ = π/6

6. r = 1− 3 cos θ; θ = 3π/4

7. r = θ; θ = π/2

8. r = cos(3θ); θ = π/6

9. r = sin(4θ); θ = π/3

10. r = 1
sin θ − cos θ

; θ = π

In Exercises 11–14, find the values of θ in the given interval
where the graph of the polar funcƟon has horizontal and ver-
Ɵcal tangent lines.

11. r = 3; [0, 2π]

12. r = 2 sin θ; [0, π]

13. r = cos(2θ); [0, 2π]

14. r = 1+ cos θ; [0, 2π]

In Exercises 15–18, find the equaƟon of the lines tangent to
the graph at the pole.

15. r = sin θ; [0, π]

16. r = cos 3θ; [0, π]

17. r = cos 2θ; [0, 2π]

18. r = sin 2θ; [0, 2π]

In Exercises 19–29, find the area of the described region.

19. Enclosed by the circle: r = 4 sin θ, π
3 ≤ θ ≤ 2π

3

20. Enclosed by the circle r = 5

21. Enclosed by one petal of r = sin(3θ)

22. Enclosed by the cardioid r = 1− sin θ

23. Enclosed by the inner loop of the limaçon r = 1+ 2 cos θ

24. Enclosed by the outer loop of the limaçon r = 1 + 2 cos θ
(including area enclosed by the inner loop)

25. Enclosed between the inner and outer loop of the limaçon
r = 1+ 2 cos θ

26. Enclosed by r = 2 cos θ and r = 2 sin θ, as shown:

−1 1 2

−1

1

2

x

y

27. Enclosed by r = cos(3θ) and r = sin(3θ), as shown:

1

0.5

x

y

28. Enclosed by r = cos θ and r = sin(2θ), as shown:

1

1

x

y

29. Enclosed by r = cos θ and r = 1− cos θ, as shown:

−2 −1 1

−1

1

x

y

In Exercises 30–34, answer the quesƟons involving arc length.

30. Let x(θ) = f(θ) cos θ and y(θ) = f(θ) sin θ. Show, as sug-
gested by the text, that

x ′(θ)2 + y ′(θ)2 = f ′(θ)2 + f(θ)2.
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31. Use the arc length formula to compute the arc length of
the circle r = 2.

32. Use the arc length formula to compute the arc length of
the circle r = 4 sin θ.

33. Approximate the arc length of one petal of the rose curve
r = sin(3θ) with Simpson’s Rule and n = 4.

34. Approximate the arc length of the cardioid r = 1 + cos θ
with Simpson’s Rule and n = 6.

In Exercises 35–39, answer the quesƟons involving surface
area.
35. Use Key Idea 47 to find the surface area of the sphere

formed by revolving the circle r = 2 about the iniƟal ray.

36. Use Key Idea 47 to find the surface area of the sphere
formed by revolving the circle r = 2 cos θ about the iniƟal
ray.

37. Find the surface area of the solid formed by revolving the
cardioid r = 1+ cos θ about the iniƟal ray.

38. Find the surface area of the solid formed by revolving the
circle r = 2 cos θ about the line θ = π/2.

39. Find the surface area of the solid formed by revolving the
line r = 3 sec θ, −π/4 ≤ θ ≤ π/4, about the line
θ = π/2.
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Notes:
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11: V��ãÊÙÝ
This chapter introduces a new mathemaƟcal object, the vector. Defined in Sec-
Ɵon 11.2, we will see that vectors provide a powerful language for describing
quanƟƟes that havemagnitude and direcƟon. A simple example of such a quan-
Ɵty is force: when applying a force, one is generally interested in howmuch force
is applied (i.e., themagnitude of the force) and the direcƟon inwhich the force is
applied. Vectors will play an important role in many of the subsequent chapters
in this text.

This chapter begins with moving our mathemaƟcs out of the plane and into
“space.” That is, we begin to think mathemaƟcally not only in two dimensions,
but in three. With this foundaƟon, we can explore vectors both in the plane and
in space.

11.1 IntroducƟon to Cartesian Coordinates in Space
Up to this point in this text we have consideredmathemaƟcs in a 2–dimensional
world. We have ploƩed graphs on the x-y plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
properƟes of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rotaƟng it out of the plane.

While there is wonderful mathemaƟcs to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathemaƟcs involving this third di-
mension. In this secƟon we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundaƟon for much of what we do in the
remainder of the text.

EachpointP in space canbe representedwith anordered triple, P = (a, b, c),
where a, b and c represent the relaƟve posiƟon of P along the x-, y- and z-axes,
respecƟvely. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problemaƟc, as we are trying
to represent a 3-dimensional concept on a 2–dimensional medium. We cannot
draw three lines represenƟng the three axes in which each line is perpendicu-
lar to the other two. Despite this issue, standard convenƟons exist for ploƫng
shapes in space that we will discuss that are more than adequate.

Figure 11.1: IllustraƟng the right hand
rule. Figure courtesy of user:Schorschi2
/ Wikimedia Commons / Public Domain.

One convenƟon is that the axes must conform to the right hand rule. This
rule states that when the fingers of the right hand extend in the direcƟon of the
posiƟve x-axis and curve toward the posiƟve y-axis, then the extended thumb
will point in the direcƟon of the posiƟve z-axis. (It may take some thought to
verify this, but this system is inherently different from the one created by using

https://commons.wikimedia.org/wiki/File:Right_hand_rule_simple.png
http://commons.wikimedia.org/


Chapter 11 Vectors

the “leŌ hand rule.”) Another way to view the rule is that when the index finger
of the right hand extends in the direcƟon of the posiƟve x-axis, and the middle
finger (bent “inward” so it is perpendicular to the palm) points along the posiƟve
y-axis, then the extended thumb will point in the direcƟon of the posiƟve z-axis.

As long as the coordinate axes are posiƟoned so that they follow this rule,
it does not maƩer how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

Figure 11.2: Ploƫng the point P =
(2, 1, 3) in space.

In Figure 11.2 we see the point P = (2, 1, 3) ploƩed on a set of axes. The
basic convenƟon here is that the x-y plane is drawn in its standard way, with the
z-axis down to the leŌ. The perspecƟve is that the paper represents the x-y plane
and the posiƟve z axis is coming up, off the page. This method is preferred by
many engineers. Because it can behard to tell where a single point lies in relaƟon
to all the axes, dashed lines have been added to let one see how far along each
axis the point lies.

One can also consider the x-y plane as being a horizontal plane in, say, a
room, where the posiƟve z-axis is poinƟng up. When one steps back and looks
at this room, one might draw the axes as shown in Figure 11.3. The same point
P is drawn, again with dashed lines. This point of view is preferred by most
mathemaƟcians, and is the convenƟon adopted by this text.

Figure 11.3: Ploƫng the point P =
(2, 1, 3) in space with a perspecƟve used
in this text.

Measuring Distances
It is of criƟcal importance to know how to measure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

DefiniƟon 51 Distance In Space
Let P = (x1, y1, z1) andQ = (x2, y2, z2) be points in space. The distance
D between P and Q is

D =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We refer to the line segment that connects points P and Q in space as PQ,
and refer to the length of this segment as

∥∥PQ∥∥. The above distance formula
allows us to compute the length of this segment.

Example 1 Length of a line segment
Let P = (1, 4,−1) and let Q = (2, 1, 1). Draw the line segment PQ and find its
length.

Notes:
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SÊ½çã®ÊÄ The points P andQ are ploƩed in Figure 11.4; no special con-
sideraƟon needs to be made to draw the line segment connecƟng these two
points; simply connect them with a straight line. One cannot actually measure
this line on the page and deduce anything meaningful; its true length must be
measured analyƟcally. Applying DefiniƟon 51, we have

Figure 11.4: Ploƫng points P and Q in Ex-
ample 1.

∥∥PQ∥∥ =
√
(2− 1)2 + (1− 4)2 + (1− (−1))2 =

√
14.

Spheres
Just as a circle is the set of all points in the plane equidistant from a given point
(its center), a sphere is the set of all points in space that are equidistant from a
given point. DefiniƟon 51 allows us to write an equaƟon of the sphere.

We start with a point C = (a, b, c)which is to be the center of a sphere with
radius r. If a point P = (x, y, z) lies on the sphere, then P is r units from C; that
is, ∥∥PC∥∥ =

√
(x− a)2 + (y− b)2 + (z− c)2 = r.

Squaring both sides, we get the standard equaƟon of a sphere in space with
center at C = (a, b, c) with radius r, as given in the following Key Idea.

Key Idea 48 Standard EquaƟon of a Sphere in Space
The standard equaƟon of the sphere with radius r, centered at C =
(a, b, c), is

(x− a)2 + (y− b)2 + (z− c)2 = r2.

Watch the video:
Example of EquaƟon of a Sphere at
https://youtu.be/fE_PWxyohXQ

Example 2 EquaƟon of a sphere
Find the center and radius of the sphere defined by x2+2x+y2−4y+z2−6z = 2.

Notes:
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SÊ½çã®ÊÄ To determine the center and radius, we must put the equa-
Ɵon in standard form. This requires us to complete the square (three Ɵmes).

x2 + 2x+ y2 − 4y+ z2 − 6z = 2
(x2 + 2x+ 1) + (y2 − 4y+ 4) + (z2 − 6z+ 9)− 14 = 2

(x+ 1)2 + (y− 2)2 + (z− 3)2 = 16

The sphere is centered at (−1, 2, 3) and has a radius of 4.

The equaƟon of a sphere is an example of an implicit funcƟon defining a
surface in space. In the case of a sphere, the variables x, y and z are all used. We
now consider situaƟons where surfaces are defined where one or two of these
variables are absent.

IntroducƟon to Planes in Space
The coordinate axes naturally define three planes (shown in Figure 11.5), the
coordinate planes: the x-y plane, the y-z plane and the x-z plane. The x-y plane
is characterized as the set of all points in space where the z-value is 0. This,
in fact, gives us an equaƟon that describes this plane: z = 0. Likewise, the x-z
plane is all points where the y-value is 0, characterized by y = 0.

the x-y plane the y-z plane the x-z plane

Figure 11.5: The coordinate planes.

Figure 11.6: The plane x = 2.

Example 3 A plane in three dimensions
The equaƟon x = 2 describes all points in space where the x-value is 2. This is a
plane, parallel to the y-z coordinate plane, shown in Figure 11.6.

Example 4 Regions defined by planes
Sketch the region defined by the inequaliƟes−1 ≤ y ≤ 2.

Notes:
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SÊ½çã®ÊÄ The region is all points between the planes y = −1 and y =
2. These planes are sketched in Figure 11.7, which are parallel to the x-z plane.
Thus the region extends infinitely in the x and z direcƟons, and is bounded by
planes in the y direcƟon.

Figure 11.7: Sketching the boundaries of
a region in Example 4.

Cylinders

The equaƟon x = 1 obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equaƟon x2 + y2 = 1 in space. In the plane, this equaƟon describes a circle
of radius 1, centered at the origin. In space, the z coordinate is not specified,
meaning it can take on any value. In Figure 11.8 (a), we show part of the graph
of the equaƟon x2+y2 = 1 by sketching 3 circles: the boƩomone has a constant
z-value of−1.5, themiddle one has a z-value of 0 and the top circle has a z-value
of 1. By ploƫng all possible z-values, we get the surface shown in Figure 11.8
(b). This surface looks like a “tube,” or a “cylinder”, which leads to our next
definiƟon.

(a)

(b)

Figure 11.8: Sketching x2 + y2 = 1.

DefiniƟon 52 Cylinder
Let C be a curve in a plane and let L be a line not parallel to C. A cylinder
is the set of all lines parallel to L that pass through C. The curve C is the
directrix of the cylinder, and the lines are the rulings.

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equaƟons involving 2
variables, and the rulings will be parallel to the axis of the 3rd variable.

In the example preceding the definiƟon, the curve x2 + y2 = 1 in the x-y
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle
shown in Figure 11.8 can be considered a directrix; we simply choose the one
where z = 0.) Sample rulings can also be viewed in part (b) of the figure. More
examples will help us understand this definiƟon.

Example 5 Graphing cylinders
Graph the cylinder following cylinders.

1. z = y2 2. x = sin z

Notes:

637






Chapter 11 Vectors

SÊ½çã®ÊÄ
1. We can view the equaƟon z = y2 as a parabola in the y-z plane, as illus-

trated in Figure 11.9 (a). As x does not appear in the equaƟon, the rulings
are lines through this parabola parallel to the x-axis, shown in (b). These
rulings give a general idea as to what the surface looks like, drawn in (c).

(a) (b) (c)

Figure 11.9: Sketching the cylinder defined by z = y2.

2. We can view the equaƟon x = sin z as a sine curve that exists in the x-z
plane, as shown in Figure 11.10 (a). The rules are parallel to the y axis as
the variable y does not appear in the equaƟon x = sin z; some of these
are shown in part (b). The surface is shown in part (c) of the figure.

(a) (b) (c)

Figure 11.10: Sketching the cylinder defined by x = sin z.

Surfaces of RevoluƟon
One of the applicaƟons of integraƟon we learned previously was to find the vol-
ume of solids of revoluƟon – solids formed by revolving a curve about a horizon-
tal or verƟcal axis. We now consider how to find the equaƟon of the surface of
such a solid.

Consider the surface formed by revolving y =
√
x about the x-axis. Cross–

secƟons of this surface parallel to the y-z plane are circles, as shown in Fig-
ure 11.11(a). Each circle has equaƟon of the form y2 + z2 = r2 for some radius

Notes:
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r. The radius is a funcƟon of x; in fact, it is r(x) =
√
x. Thus the equaƟon of the

surface shown in Figure 11.11(b) is y2 + z2 = (
√
x)2.

(a)

(b)

Figure 11.11: Introducing surfaces of rev-
oluƟon.

We generalize the above principles to give the equaƟons of surfaces formed
by revolving curves about the coordinate axes.

Key Idea 49 Surfaces of RevoluƟon, Part 1
Let r be a radius funcƟon.

1. The equaƟon of the surface formed by revolving y = r(x) or z =
r(x) about the x-axis is y2 + z2 = r(x)2.

2. The equaƟon of the surface formed by revolving x = r(y) or z =
r(y) about the y-axis is x2 + z2 = r(y)2.

3. The equaƟon of the surface formed by revolving x = r(z) or y =
r(z) about the z-axis is x2 + y2 = r(z)2.

Example 6 Finding equaƟon of a surface of revoluƟon
Let y = sin z on [0, π]. Find the equaƟon of the surface of revoluƟon formed by
revolving y = sin z about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 49, we find the surface has equaƟon x2 +

(a)

(b)

Figure 11.12: Revolving y = sin z about
the z-axis in Example 6.

y2 = sin2 z. The curve is sketched in Figure 11.12(a) and the surface is drawn in
Figure 11.12(b).

Note how the surface (and hence the resulƟng equaƟon) is the same if we
began with the curve x = sin z, which is also drawn in Figure 11.12(a).

This parƟcular method of creaƟng surfaces of revoluƟon is limited. For in-
stance, in Example 6.3.5 of SecƟon 6.3 we found the volume of the solid formed
by revolving y = sin x about the y-axis. Our current method of forming surfaces
can only rotate y = sin x about the x-axis. Trying to rewrite y = sin x as a func-
Ɵon of y is not trivial, as simply wriƟng x = sin−1 y only gives part of the region
we desire.

What we desire is a way of wriƟng the surface of revoluƟon formed by ro-
taƟng y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural way
of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance r,
we plot a z-height of f(r). When rotaƟng f(x) about the z-axis, wewant all points
a distance of r from the z-axis in the x-y plane to have a z-height of f(r). All such

Notes:
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points saƟsfy the equaƟon r2 = x2 + y2; hence r =
√

x2 + y2. Replacing r with√
x2 + y2 in f(r) gives z = f(

√
x2 + y2). This is the equaƟon of the surface.

Key Idea 50 Surfaces of RevoluƟon, Part 2
Let z = f(x), x ≥ 0, be a curve in the x-z plane. The surface formed by
revolving this curve about the z-axis has equaƟon z = f

(√
x2 + y2

)
.

(a)

(b)

Figure 11.13: Revolving z = sin x about
the z-axis in Example 7.

Example 7 Finding equaƟon of surface of revoluƟon
Find the equaƟon of the surface found by revolving z = sin x about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 50, the surface has equaƟon z = sin
(√

x2 + y2
)
.

The curve and surface are graphed in Figure 11.13.

Quadric Surfaces
Spheres, planes and cylinders are important surfaces to understand. We now
consider one last type of surface, a quadric surface. The definiƟon may look
inƟmidaƟng, but we will show how to analyze these surfaces in an illuminaƟng
way.

DefiniƟon 53 Quadric Surface
A quadric surface is the graph of the general second–degree equaƟon
in three variables:

Ax2 + By2 + Cz2 + Dxy+ Exz+ Fyz+ Gx+ Hy+ Iz+ J = 0.

When the coefficients D, E or F are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these
coefficients are 0; we will not consider rotaƟons. There are six basic quadric sur-
faces: the ellipƟc paraboloid, ellipƟc cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

Figure 11.14: The ellipƟc paraboloid z =
x2/4+ y2.

We study each shape by considering traces, that is, intersecƟons of each
surface with a plane parallel to a coordinate plane. For instance, consider the
ellipƟc paraboloid z = x2/4 + y2, shown in Figure 11.14. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equaƟon:

d =
x2

4
+ y2.

Notes:
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Divide both sides by d:

1 =
x2

4d
+

y2

d
.

This describes an ellipse – so cross secƟons parallel to the x-y coordinate plane
are ellipses. This ellipse is drawn in the figure.

Now consider cross secƟons parallel to the x-z plane. For instance, leƫng
y = 0 gives the equaƟon z = x2/4, clearly a parabola. IntersecƟng with the
plane x = 0 gives a cross secƟon defined by z = y2, another parabola. These
parabolas are also sketched in the figure.

Thuswe seewhere the ellipƟc paraboloid gets its name: some cross secƟons
are ellipses, and others are parabolas.

Such an analysis can be made with each of the quadric surfaces. We give a
sample equaƟon of each, provide a sketch with representaƟve traces, and de-
scribe these traces.

Notes:
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EllipƟc Paraboloid, z =
x2

a2
+

y2

b2

Plane Trace

x = d Parabola
y = d Parabola
z = d Ellipse

One variable in the equaƟon of the ellipƟc paraboloid will be raised to the first power; above,
this is the z variable. The paraboloid will “open” in the direcƟon of this variable’s axis. Thus
x = y2/a2 + z2/b2 is an ellipƟc paraboloid that opens along the x-axis.

MulƟplying the right hand side by (−1) defines an ellipƟc paraboloid that “opens” in the opposite
direcƟon.

EllipƟc Cone, z2 =
x2

a2
+

y2

b2

Plane Trace

x = 0 Crossed Lines
y = 0 Crossed Lines

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

One can rewrite the equaƟon as z2 − x2/a2 − y2/b2 = 0. The one variable with a posiƟve
coefficient corresponds to the axis that the cones “open” along.
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Ellipsoid,
x2

a2
+

y2

b2
+

z2

c2
= 1

Plane Trace

x = d Ellipse
y = d Ellipse
z = d Ellipse

If a = b = c ̸= 0, the ellipsoid is a sphere with radius a; compare to Key Idea 48.

Hyperboloid of One Sheet,
x2

a2
+

y2

b2
− z2

c2
= 1

Plane Trace

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a negaƟve coefficient corresponds to the axis along which the hyperboloid “opens”.
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Hyperboloid of Two Sheets,
z2

c2
− x2

a2
− y2

b2
= 1

Plane Trace

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a posiƟve coefficient corresponds to the axis along which the hyperboloid
“opens”. In the case illustrated, when |d| < |c|, there is no trace in the plane z = d.

Hyperbolic Paraboloid, z =
x2

a2
− y2

b2

Plane Trace

x = d Parabola
y = d Parabola
z = d Hyperbola

The parabolic traces will open along the axis of the one variable that is raised to the first power.
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Watch the video:
IntroducƟon to Quadric Surfaces at
https://youtu.be/x6c2DdOrkQI

(a)

(b)

Figure 11.15: Sketching an ellipƟc
paraboloid.

Example 8 Sketching quadric surfaces
Sketch the quadric surface defined by the given equaƟon.

1. y =
x2

4
+

z2

16
2. x2 +

y2

9
+

z2

4
= 1 3. z = y2 − x2.

SÊ½çã®ÊÄ

1. y =
x2

4
+

z2

16
:

Wefirst idenƟfy the quadric by paƩern–matchingwith the equaƟons given
previously. Only two surfaces have equaƟons where one variable is raised
to the first power, the ellipƟc paraboloid and the hyperbolic paraboloid.
In the laƩer case, the other variables have different signs, so we conclude
that this describes a hyperbolic paraboloid. As the variable with the first
power is y, we note the paraboloid opens along the y-axis.
To make a decent sketch by hand, we need only draw a few traces. In this
case, the traces x = 0 and z = 0 form parabolas that outline the shape.
x = 0: The trace is the parabola y = z2/16
z = 0: The trace is the parabola y = x2/4.
Graphing each trace in the respecƟve plane creates a sketch as shown in
Figure 11.15(a). This is enough to give an idea of what the paraboloid
looks like. The surface is filled in in (b).

2. x2 +
y2

9
+

z2

4
= 1 :

This is an ellipsoid. We can get a good idea of its shape by drawing the

(a)

(b)

Figure 11.16: Sketching an ellipsoid.

traces in the coordinate planes.

x = 0: The trace is the ellipse
y2

9
+

z2

4
= 1. The major axis is along the

y–axis with length 6 (as b = 3, the length of the axis is 6); the minor axis
is along the z-axis with length 4.

y = 0: The trace is the ellipse x2 +
z2

4
= 1. The major axis is along the

z-axis, and the minor axis has length 2 along the x-axis.

Notes:
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z = 0: The trace is the ellipse x2 +
y2

9
= 1, with major axis along the

y-axis.
Graphing each trace in the respecƟve plane creates a sketch as shown in
Figure 11.16(a). Filling in the surface gives Figure 11.16(b).

3. z = y2 − x2:
This defines a hyperbolic paraboloid, very similar to the one shown in the
gallery of quadric secƟons. Consider the traces in the y−z and x−z planes:

(a)

(b)

Figure 11.17: Sketching a hyperbolic
paraboloid.

x = 0: The trace is z = y2, a parabola opening up in the y− z plane.
y = 0: The trace is z = −x2, a parabola opening down in the x− z plane.
Sketching these two parabolas gives a sketch like that in Figure 11.17 (a),
and filling in the surface gives a sketch like (b).

Figure 11.18: A possible equaƟon of this
quadric surface is found in Example 9.

Example 9 IdenƟfying quadric surfaces
Consider the quadric surface shown in Figure 11.18. Which of the following
equaƟons best fits this surface?

(a) x2 − y2 − z2

9
= 0 (c) z2 − x2 − y2 = 1

(b) x2 − y2 − z2 = 1 (d) 4x2 − y2 − z2

9
= 1

SÊ½çã®ÊÄ The image clearly displays a hyperboloid of two sheets. The
gallery informs us that the equaƟon will have a form similar to z2

c2 −
x2
a2 −

y2
b2 = 1.

We can immediately eliminate opƟon (a), as the constant in that equaƟon is
not 1.

The hyperboloid “opens” along the x-axis, meaning xmust be the only vari-
able with a posiƟve coefficient, eliminaƟng (c).

The hyperboloid is wider in the z-direcƟon than in the y-direcƟon, so we
need an equaƟon where c > b. This eliminates (b), leaving us with (d). We
should verify that the equaƟon given in (d), 4x2 − y2 − z2

9 = 1, fits.
We already established that this equaƟon describes a hyperboloid of two

sheets that opens in the x-direcƟon and is wider in the z-direcƟon than in the
y. Now note the coefficient of the x-term. RewriƟng 4x2 in standard form, we

have: 4x2 =
x2

(1/2)2
. Thus when y = 0 and z = 0, x must be 1/2; i.e., each

hyperboloid “starts” at x = 1/2. This matches our figure.

We conclude that 4x2 − y2 − z2

9
= 1 best fits the graph.

Notes:
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This secƟon has introduced points in space and shown how equaƟons can
describe surfaces. The next secƟons explore vectors, an importantmathemaƟcal
object that we’ll use to explore curves in space.

Notes:
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Exercises 11.1
Terms and Concepts
1. Axes drawn in space must conform to the

rule.
2. In the plane, the equaƟon x = 2 defines a ; in

space, x = 2 defines a .
3. In the plane, the equaƟon y = x2 defines a ; in

space, y = x2 defines a .
4. Which quadric surface looks like a Pringles® chip?
5. Consider the hyperbola x2 − y2 = 1 in the plane. If this hy-

perbola is rotated about the x-axis, what quadric surface is
formed?

6. Consider the hyperbola x2 − y2 = 1 in the plane. If this hy-
perbola is rotated about the y-axis, what quadric surface is
formed?

Problems
7. The points A = (1, 4, 2), B = (2, 6, 3) and C = (4, 3, 1)

form a triangle in space. Find the distances between each
pair of points and determine if the triangle is a right trian-
gle.

8. The points A = (1, 1, 3), B = (3, 2, 7), C = (2, 0, 8) and
D = (0,−1, 4) form a quadrilateral ABCD in space. Is this
a parallelogram?

9. Find the center and radius of the sphere defined by
x2 − 8x+ y2 + 2y+ z2 + 8 = 0.

10. Find the center and radius of the sphere defined by
x2 + y2 + z2 + 4x− 2y− 4z+ 4 = 0.

In Exercises 11–14, describe the region in space defined by the
inequaliƟes.

11. x2 + y2 + z2 < 1
12. 0 ≤ x ≤ 3
13. x ≥ 0, y ≥ 0, z ≥ 0
14. y ≥ 3

In Exercises 15–18, sketch the cylinder in space.

15. z = x3

16. y = cos z

17. x2

4
+

y2

9
= 1

18. y = 1
x

In Exercises 19–22, give the equaƟon of the surface of revolu-
Ɵon described.

19. Revolve z = 1
1+ y2

about the y-axis.

20. Revolve y = x2 about the x-axis.
21. Revolve z = x2 about the z-axis.
22. Revolve z = 1/x about the z-axis.

In Exercises 23–26, a quadric surface is sketched. Determine
which of the given equaƟons best fits the graph.

23.

(a) x = y2 + z2

9
(b) x = y2 + z2

3

24.

(a) x2 − y2 − z2 = 0 (b) x2 − y2 + z2 = 0

25.

(a) x2 + y2

3
+

z2

2
= 1 (b) x2 + y2

9
+

z2

4
= 1

26.

(a) y2 − x2 − z2 = 1 (b) y2 + x2 − z2 = 1
In Exercises 27–32, sketch the quadric surface.

27. z− y2 + x2 = 0

28. z2 = x2 + y2

4
29. x = −y2 − z2

30. 16x2 − 16y2 − 16z2 = 1

31. x2

9
− y2 + z2

25
= 1

32. 4x2 + 2y2 + z2 = 4
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11.2 An IntroducƟon to Vectors
Many quanƟƟes we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be describedwith just one number. For instance,
a weather forecaster oŌen describes wind with its speed and its direcƟon (“. . .
with winds from the southeast gusƟng up to 30 mph . . .”). When applying a
force, we are concerned with both the magnitude and direcƟon of that force.
In both of these examples, direcƟon is important. Because of this, we study
vectors, mathemaƟcal objects that convey both magnitude and direcƟon infor-
maƟon.

One “bare–bones” definiƟon of a vector is based on what we wrote above:
“a vector is a mathemaƟcal object with magnitude and direcƟon parameters.”
This definiƟon leaves much to be desired, as it gives no indicaƟon as to how
such an object is to be used. Several other definiƟons exist; we choose here a
definiƟon rooted in a geometric visualizaƟon of vectors. It is very simplisƟc but
readily permits further invesƟgaƟon.

−5 5

−5

5

x

y

Figure 11.19: Drawing the same vector
with different iniƟal points.

DefiniƟon 54 Vector
A vector is a directed line segment.

Given points P and Q (either in the plane or in space), we denote with
#  ‰PQ the vector from P to Q. The point P is said to be the iniƟal point of
the vector, and the point Q is the terminal point.

Themagnitude, length or norm of #  ‰PQ is the length of the line segment
PQ:

∥∥ #  ‰PQ
∥∥ =

∥∥PQ∥∥.
Two vectors are equal if they have the same magnitude and direcƟon.

Figure 11.19 showsmulƟple instances of the same vector. Each directed line
segment has the same direcƟon and length (magnitude), hence each is the same
vector.

We use R2 (pronounced “r two”) to represent all the vectors in the plane,
and use R3 (pronounced “r three”) to represent all the vectors in space.

P

QR

S

−4 −2 2 4

−4

−2

2

4

x

y

Figure 11.20: IllustraƟng how equal vec-
tors have the same displacement.

Consider the vectors #  ‰PQ and #‰RS as shown in Figure 11.20. The vectors look to
be equal; that is, they seem to have the same length and direcƟon. Indeed, they
are. Both vectors move 2 units to the right and 1 unit up from the iniƟal point

Notes:
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to reach the terminal point. One can analyze this movement to measure the
magnitude of the vector, and the movement itself gives direcƟon informaƟon
(one could also measure the slope of the line passing through P and Q or R and
S). Since they have the same length and direcƟon, these two vectors are equal.

This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and possibly z direcƟons the terminal point is from the iniƟal
point. Both the vectors #  ‰PQ and #‰RS in Figure 11.20 have an x-displacement of 2
and a y-displacement of 1. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the iniƟal point is the origin, (0, 0). This
leads us to a definiƟon of a standard and concise way of referring to vectors.

DefiniƟon 55 Component Form of a Vector

1. The component form of a vector v⃗ inR2, whose terminal point is
(a, b) when its iniƟal point is (0, 0), is ⟨a, b⟩ .

2. The component form of a vector v⃗ inR3, whose terminal point is
(a, b, c) when its iniƟal point is (0, 0, 0), is ⟨a, b, c⟩ .

The numbers a, b (and c, respecƟvely) are the components of v⃗.

Note: Instead of v⃗, some texts use
boldface: v. The advantage of v is
that it tends to be easier to read. The
advantage of v⃗ is that it’s easier to
write.

It follows from the definiƟon that the component form of the vector #  ‰PQ,
where P = (x1, y1) and Q = (x2, y2) is

#  ‰PQ = ⟨x2 − x1, y2 − y1⟩ ;

in space, where P = (x1, y1, z1) and Q = (x2, y2, z2), the component form of #  ‰PQ
is

#  ‰PQ = ⟨x2 − x1, y2 − y1, z2 − z1⟩ .

Watch the video:
An IntroducƟon to Vectors, Part 1 at
https://youtu.be/60btq9PN8IM

We pracƟce using this notaƟon in the following example.

Notes:
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11.2 An IntroducƟon to Vectors

Example 1 Using component form notaƟon for vectors

1. Sketch the vector v⃗ = ⟨2,−1⟩ starƟng at P = (3, 2) and find its magni-
tude.

2. Find the component formof the vector w⃗whose iniƟal point isR = (−3,−2)
and whose terminal point is S = (−1, 2).

3. Sketch the vector u⃗ = ⟨2,−1, 3⟩ starƟng at the point Q = (1, 1, 1) and
find its magnitude.

SÊ½çã®ÊÄ
1. Using P as the iniƟal point, wemove 2 units in the posiƟve x-direcƟon and
−1 units in the posiƟve y-direcƟon to arrive at the terminal point P ′ =
(5, 1), as drawn in Figure 11.21(a).

The magnitude of v⃗ is determined directly from the component form:

∥⃗v∥ =
√
22 + (−1)2 =

√
5.

P
P ′

R

S

−5 5

−5

5

x

y

(a)

(b)

Figure 11.21: Graphing vectors in Exam-
ple 1.

2. Using the paragraph following DefiniƟon 55, we have

#‰RS = ⟨−1− (−3), 2− (−2)⟩ = ⟨2, 4⟩ .

One can readily see from Figure 11.21(a) that the x- and y-displacement
of #‰RS is 2 and 4, respecƟvely, as the component form suggests.

3. Using Q as the iniƟal point, we move 2 units in the posiƟve x-direcƟon,
−1 unit in the posiƟve y-direcƟon, and 3 units in the posiƟve z-direcƟon
to arrive at the terminal pointQ′ = (3, 0, 4), illustrated in Figure 11.21(b).

The magnitude of u⃗ is:

∥u⃗∥ =
√
22 + (−1)2 + 32 =

√
14.

Now thatwehave defined vectors, and have created a nice notaƟonbywhich
to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

Notes:
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DefiniƟon 56 Vector Algebra

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ be vectors in R2, and let c be a
scalar.

(a) The addiƟon, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2⟩ = ⟨cv1, cv2⟩ .

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3, and let
c be a scalar.

(a) The addiƟon, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2, u3 + v3⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2, v3⟩ = ⟨cv1, cv2, cv3⟩ .

In short, we say addiƟon and scalarmulƟplicaƟon are computed “component–
wise.”

Example 2 Adding vectors
Sketch the vectors u⃗ = ⟨1, 3⟩, v⃗ = ⟨2, 1⟩ and u⃗ + v⃗ all with iniƟal point at the
origin.

SÊ½çã®ÊÄ We first compute u⃗+ v⃗.

u⃗

v⃗

u⃗+
v⃗

2 4

2

4

x

y

Figure 11.22: Graphing the sumof vectors
in Example 2.

u⃗+ v⃗ = ⟨1, 3⟩+ ⟨2, 1⟩
= ⟨3, 4⟩ .

These are all sketched in Figure 11.22.

As vectors convey magnitude and direcƟon informaƟon, the sum of vectors
also convey length and magnitude informaƟon. Adding u⃗ + v⃗ suggests the fol-
lowing idea:

“StarƟng at an iniƟal point, go out u⃗, then go out v⃗.”

Notes:
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11.2 An IntroducƟon to Vectors

This idea is sketched in Figure 11.23, where the iniƟal point of v⃗ is the termi-
nal point of u⃗. This is known as the “Head to Tail Rule” of adding vectors. Vector
addiƟon is very important. For instance, if the vectors u⃗ and v⃗ represent forces
acƟng on a body, the sum u⃗ + v⃗ gives the resulƟng force. Because of various
physical applicaƟons of vector addiƟon, the sum u⃗+ v⃗ is oŌen referred to as the
resultant vector, or just the “resultant.”

u⃗

v⃗

u⃗

v⃗

u⃗+
v⃗

2 4

2

4

x

y

Figure 11.23: IllustraƟng how to add vec-
tors using the Head to Tail Rule and Paral-
lelogram Law.

AnalyƟcally, it is easy to see that u⃗ + v⃗ = v⃗ + u⃗. Figure 11.23 also gives a
graphical representaƟon of this, using gray vectors. Note that the vectors u⃗ and
v⃗, when arranged as in the figure, form a parallelogram. Because of this, the
Head to Tail Rule is also known as the Parallelogram Law: the vector u⃗ + v⃗ is
defined by forming the parallelogram defined by the vectors u⃗ and v⃗; the iniƟal
point of u⃗ + v⃗ is the common iniƟal point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in R3 as well.

It follows from the properƟes of the real numbers and DefiniƟon 56 that

u⃗− v⃗ = u⃗+ (−1)⃗v.

The Parallelogram Law gives us a good way to visualize this subtracƟon. We
demonstrate this in the following example.

Example 3 Vector SubtracƟon
Let u⃗ = ⟨3, 1⟩ and v⃗ = ⟨1, 2⟩ . Compute and sketch u⃗− v⃗.

SÊ½çã®ÊÄ The computaƟon of u⃗ − v⃗ is straighƞorward, and we show
all steps below. Usually the formal step of mulƟplying by (−1) is omiƩed and
we “just subtract.”

u⃗

v⃗

u⃗− v⃗ −
v⃗

u⃗− v⃗

2 4

2

x

y

Figure 11.24: IllustraƟng how to subtract
vectors graphically.

u⃗− v⃗ = u⃗+ (−1)⃗v
= ⟨3, 1⟩+ ⟨−1,−2⟩
= ⟨2,−1⟩ .

Figure 11.24 illustrates, using the Head to Tail Rule, how the subtracƟon can be
viewed as the sum u⃗+(−v⃗). The figure also illustrates how u⃗−v⃗ can be obtained
by looking only at the terminal points of u⃗ and v⃗ (when their iniƟal points are the
same).

Example 4 Scaling vectors

1. Sketch the vectors v⃗ = ⟨2, 1⟩ and 2⃗v with iniƟal point at the origin.

2. Compute the magnitudes of v⃗ and 2⃗v.

Notes:
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SÊ½çã®ÊÄ

1. We compute 2⃗v:

2⃗v

v⃗

2 4

1

2

3

x

y

Figure 11.25: Graphing vectors v⃗ and 2⃗v
in Example 4.

2⃗v = 2 ⟨2, 1⟩
= ⟨4, 2⟩ .

Both v⃗ and 2⃗v are sketched in Figure 11.25. Make note that 2⃗v does not
start at the terminal point of v⃗; rather, its iniƟal point is also the origin.

2. The figure suggests that 2⃗v is twice as long as v⃗. We compute their mag-
nitudes to confirm this.

∥⃗v∥ =
√
22 + 12

=
√
5.

∥2⃗v∥ =
√
42 + 22

=
√
20

=
√
4 · 5 = 2

√
5.

As we suspected, 2⃗v is twice as long as v⃗.

The zero vector is the vector whose iniƟal point is also its terminal point. It
is denoted by 0⃗. Its component form, inR2, is ⟨0, 0⟩; inR3, it is ⟨0, 0, 0⟩. Usually
the context makes is clear whether 0⃗ is referring to a vector in the plane or in
space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to mulƟply vectors by a scalar. The following the-
orem states formally the properƟes of these operaƟons.

Notes:
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Theorem 86 ProperƟes of Vector OperaƟons
The following are true for all scalars c and d, and for all vectors u⃗, v⃗ and
w⃗, where u⃗, v⃗ and w⃗ are all in R2 or where u⃗, v⃗ and w⃗ are all in R3:

1. u⃗+ v⃗ = v⃗+ u⃗ CommutaƟve Property

2. (⃗u+ v⃗) + w⃗ = u⃗+ (⃗v+ w⃗) AssociaƟve Property

3. v⃗+ 0⃗ = v⃗ AddiƟve IdenƟty

4. (cd)⃗v = c(d⃗v)

5. c(⃗u+ v⃗) = c⃗u+ c⃗v DistribuƟve Property

6. (c+ d)⃗v = c⃗v+ d⃗v DistribuƟve Property

7. 0⃗v = 0⃗

8. ∥c⃗v∥ = |c| · ∥⃗v∥

9. ∥u⃗∥ = 0 if, and only if, u⃗ = 0⃗.

As stated before, each vector v⃗ conveys magnitude and direcƟon informa-
Ɵon. We have a method of extracƟng the magnitude, which we write as ∥⃗v∥.
Unit vectors are a way of extracƟng just the direcƟon informaƟon from a vector.

DefiniƟon 57 Unit Vector
A unit vector is a vector v⃗ with a magnitude of 1; that is,

∥⃗v∥ = 1.

Consider this scenario: you are given a vector v⃗ and are told to create a vector
of length 10 in the direcƟon of v⃗. How does one do that? If we knew that u⃗ was
the unit vector in the direcƟon of v⃗, the answer would be easy: 10u⃗. So how do
we find u⃗ ?

Property 8 of Theorem 86 holds the key. If we divide v⃗ by its magnitude, it
becomes a vector of length 1. Consider:∥∥∥∥ 1

∥⃗v∥
v⃗
∥∥∥∥ =

1
∥⃗v∥
∥⃗v∥ (we can pull out 1

∥⃗v∥ as it is a scalar)

= 1.
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So the vector of length 10 in the direcƟon of v⃗ is 10
1
∥⃗v∥

v⃗. An example will make

this more clear.

Example 5 Using Unit Vectors
Let v⃗ = ⟨3, 1⟩ and let w⃗ = ⟨1, 2, 2⟩.

1. Find the unit vector in the direcƟon of v⃗.

2. Find the unit vector in the direcƟon of w⃗.

3. Find the vector in the direcƟon of v⃗ with magnitude 5.

SÊ½çã®ÊÄ

1. We find ∥⃗v∥ =
√
10. So the unit vector u⃗ in the direcƟon of v⃗ is

u⃗ =
1√
10

v⃗ =
⟨

3√
10

,
1√
10

⟩
.

2. We find ∥w⃗∥ = 3, so the unit vector z⃗ in the direcƟon of w⃗ is

u⃗ =
1
3
w⃗ =

⟨
1
3
,
2
3
,
2
3

⟩
.

5⃗u

v⃗

u⃗

2 4

1

2

3

x

y

Figure 11.26: Graphing vectors in Exam-
ple 5. All vectors shown have their iniƟal
point at the origin.

3. To create a vector with magnitude 5 in the direcƟon of v⃗, we mulƟply the
unit vector u⃗ by 5. Thus 5u⃗ =

⟨
15/
√
10, 5/

√
10
⟩
is the vector we seek.

This is sketched in Figure 11.26.

The basic formaƟon of the unit vector u⃗ in the direcƟon of a vector v⃗ leads
to a interesƟng equaƟon. It is:

v⃗ = ∥⃗v∥ 1
∥⃗v∥

v⃗.

We rewrite the equaƟon with parentheses to make a point:

v⃗ = ∥⃗v∥︸︷︷︸
magnitude

·
(

1
∥⃗v∥

v⃗
)

︸ ︷︷ ︸
direcƟon

.

This equaƟon illustrates the fact that a vector has both magnitude and di-
recƟon, where we view a unit vector as supplying only direcƟon informaƟon.
IdenƟfying unit vectors with direcƟon allows us to define parallel vectors.

Notes:
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DefiniƟon 58 Parallel Vectors

1. Unit vectors u⃗1 and u⃗2 are parallel if u⃗1 = ±u⃗2.

2. Nonzero vectors v⃗1 and v⃗2 are parallel if their respecƟve unit vec-
tors are parallel.

It is equivalent to say that vectors v⃗1 and v⃗2 are parallel if there is a scalar
c ̸= 0 such that v⃗1 = c⃗v2 (see marginal note).

Note: 0⃗ is direcƟonless; because∥∥∥0⃗∥∥∥ = 0, there is no unit vector in

the “direcƟon” of 0⃗.
Some texts define two vectors as be-
ing parallel if one is a scalar mulƟple
of the other. By this definiƟon, 0⃗ is
parallel to all vectors as 0⃗ = 0⃗v for all
v⃗.
We prefer the given definiƟon of par-
allel as it is grounded in the fact that
unit vectors provide direcƟon infor-
maƟon. One may adopt the conven-
Ɵon that 0⃗ is parallel to all vectors if
they desire. (See also the marginal
note on page 680.)

If one graphed all unit vectors in R2 with the iniƟal point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors inR2

is ⟨cos θ, sin θ⟩ for some angle θ.
A similar construcƟon inR3 shows that the terminal points all lie on the unit

sphere. These vectors also have a parƟcular component form, but its derivaƟon
is not as straighƞorward as the one for unit vectors in R2. Important concepts
about unit vectors are given in Key Idea 51 below.

Key Idea 51 Unit Vectors

1. The unit vector in the direcƟon of v⃗ is

u⃗ =
1
∥⃗v∥

v⃗.

2. A vector u⃗ inR2 is a unit vector if, and only if, its component form
is ⟨cos θ, sin θ⟩ for some angle θ.

3. A vector u⃗ inR3 is a unit vector if, and only if, its component form
is ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for some angles θ and φ.

These formulas can come in handy in a variety of situaƟons, especially the
formula for unit vectors in the plane.

50lb

45◦
30◦

Figure 11.27: A diagram of a weight hang-
ing from 2 chains in Example 6.

Example 6 Finding Component Forces
Consider a weight of 50lb hanging from two chains, as shown in Figure 11.27.
One chain makes an angle of 30◦ with the verƟcal, and the other an angle of
45◦. Find the force applied to each chain.

Notes:
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SÊ½çã®ÊÄ Knowing that gravity is pulling the 50lbweight straight down,
we can create a vector F⃗ to represent this force.

F⃗ = 50 ⟨0,−1⟩ = ⟨0,−50⟩ .

We can view each chain as “pulling” theweight up, prevenƟng it from falling.
We can represent the force from each chain with a vector. Let F⃗1 represent the
force from the chain making an angle of 30◦ with the verƟcal, and let F⃗2 repre-
sent the force form the other chain. Convert all angles to be measured from the
horizontal (as shown in Figure 11.28), and apply Key Idea 51. As we do not yet
know the magnitudes of these vectors, (that is the problem at hand), we usem1
andm2 to represent them.

F⃗1 = m1 ⟨cos 120◦, sin 120◦⟩
F⃗2 = m2 ⟨cos 45◦, sin 45◦⟩

As the weight is not moving, we know the sum of the forces is 0⃗. This gives:

F⃗+ F⃗1 + F⃗2 = 0⃗

⟨0,−50⟩+m1 ⟨cos 120◦, sin 120◦⟩+m2 ⟨cos 45◦, sin 45◦⟩ = 0⃗

F⃗1 F⃗2

F⃗

120◦ 45◦

Figure 11.28: A diagram of the force vec-
tors from Example 6.

The sum of the entries in the first component is 0, and the sum of the entries
in the second component is also 0. This leads us to the following two equaƟons:

m1 cos 120◦ +m2 cos 45◦ = 0
m1 sin 120◦ +m2 sin 45◦ = 50

This is a simple 2-equaƟon, 2-unkown system of linear equaƟons. We leave it to
the reader to verify that the soluƟon is

m1 = 50(
√
3− 1)lb; m2 =

50
√
2

1+
√
3
lb.

It might seem odd that the sum of the forces applied to the chains is more
than 50lb. We leave it to a physics class to discuss the full details, but offer this
short explanaƟon. Our equaƟons were established so that the verƟcal compo-
nents of each force sums to 50lb, thus supporƟng the weight. Since the chains
are at an angle, they also pull against each other, creaƟng an “addiƟonal” hori-
zontal force while holding the weight in place.

Unit vectors were very important in the previous calculaƟon; they allowed
us to define a vector in the proper direcƟon but with an unknown magnitude.
Our computaƟons were then computed component–wise. Because such calcu-
laƟons are oŌen necessary, the standard unit vectors can be useful.
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DefiniƟon 59 Standard Unit Vectors

1. In R2, the standard unit vectors are

ı⃗ = ⟨1, 0⟩ and ȷ⃗ = ⟨0, 1⟩ .

2. In R3, the standard unit vectors are

ı⃗ = ⟨1, 0, 0⟩ and ȷ⃗ = ⟨0, 1, 0⟩ and k⃗ = ⟨0, 0, 1⟩ .

Example 7 Using standard unit vectors

1. Rewrite v⃗ = ⟨2,−3⟩ using the standard unit vectors.

2. Rewrite w⃗ = 4⃗ı− 5ȷ⃗+ 2⃗k in component form.

SÊ½çã®ÊÄ

1.
v⃗ = ⟨2,−3⟩
= ⟨2, 0⟩+ ⟨0,−3⟩
= 2 ⟨1, 0⟩ − 3 ⟨0, 1⟩
= 2⃗ı− 3ȷ⃗

2.
w⃗ = 4⃗ı− 5ȷ⃗+ 2⃗k
= ⟨4, 0, 0⟩+ ⟨0,−5, 0⟩+ ⟨0, 0, 2⟩
= ⟨4,−5, 2⟩

These two examples demonstrate that converƟng between component form
and the standard unit vectors is rather straighƞorward. Many mathemaƟcians
prefer component form, and it is the preferred notaƟon in this text. Many en-
gineers prefer using the standard unit vectors, and many engineering texts use
that notaƟon.

2Ō

φ

θ

F⃗w

F⃗g

Figure 11.29: A figure of a weight being
pushed by the wind in Example 8.

Example 8 Finding Component Force
Aweight of 25lb is suspended from a chain of length 2Ōwhile a wind pushes the
weight to the right with constant force of 5lb as shown in Figure 11.29. What
angle will the chain make with the verƟcal as a result of the wind’s pushing?
How much higher will the weight be?
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SÊ½çã®ÊÄ The force of the wind is represented by the vector F⃗w = 5⃗ı.
The force of gravity on the weight is represented by F⃗g = −25ȷ⃗. The direcƟon
and magnitude of the vector represenƟng the force on the chain are both un-
known. We represent this force with

F⃗c = m ⟨cosφ, sinφ⟩ = m cosφ ı⃗+m sinφ ȷ⃗

for some magnitude m and some angle with the horizontal φ. (Note: θ is the
angle the chain makes with the verƟcal; φ is the angle with the horizontal.)

As the weight is at equilibrium, the sum of the forces is 0⃗:

F⃗c + F⃗w + F⃗g = 0⃗

m cosφ ı⃗+m sinφ ȷ⃗+ 5⃗ı− 25ȷ⃗ = 0⃗

Thus the sum of the ı⃗ and ȷ⃗ components are 0, leading us to the following
system of equaƟons:

5+m cosφ = 0 (11.1)
−25+m sinφ = 0 (11.2)

This is enough to determine F⃗c already, as we know m cosφ = −5 and
m sinφ = 25. Thus Fc = ⟨−5, 25⟩ . We can use this to find the magnitude
m:

m =
√
(−5)2 + 252 = 5

√
26lb.

We can then use either equality from EquaƟon (11.2) to solve for φ. We choose
the first equality as using arccosine will return an angle in the 2nd quadrant:

5+ 5
√
26 cosφ = 0 ⇒ φ = cos−1

(
−5

5
√
26

)
≈ 1.7682 ≈ 101.31◦.

SubtracƟng 90◦ from this angle gives us an angle of 11.31◦ with the verƟcal.
We can now use trigonometry to find out how high the weight is liŌed. Fig-

ure 11.29 shows that a right triangle is formed with the 2Ō chain as the hy-
potenuse. We have found that the interior angle is 11.31◦. The length of the
adjacent side (in the diagram, the dashed verƟcal line) is 2 cos 11.31◦ ≈ 1.96Ō.
Thus the weight is liŌed by about 0.04Ō, almost 1/2in.

The algebra we have applied to vectors is already demonstraƟng itself to be
very useful. There are two more fundamental operaƟons we can perform with
vectors, the dot product and the cross product. The next two secƟons explore
each in turn.
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Exercises 11.2
Terms and Concepts
1. Name two different things that cannot be described with

just one number, but rather need 2 or more numbers to
fully describe them.

2. What is the difference between (1, 2) and ⟨1, 2⟩?
3. What is a unit vector?
4. What does it mean for two vectors to be parallel?
5. What effect does mulƟplying a vector by−2 have?

Problems
In Exercises 6–9, points P and Q are given. Write the vector # ‰PQ
in component form and using the standard unit vectors.

6. P = (2,−1), Q = (3, 5)
7. P = (3, 2), Q = (7,−2)
8. P = (0, 3,−1), Q = (6, 2, 5)
9. P = (2, 1, 2), Q = (4, 3, 2)

10. Let u⃗ = ⟨1,−2⟩ and v⃗ = ⟨1, 1⟩.
(a) Find u⃗+ v⃗, u⃗− v⃗, 2⃗u− 3⃗v.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = 2⃗v− x⃗.

11. Let u⃗ = ⟨1, 1,−1⟩ and v⃗ = ⟨2, 1, 2⟩.
(a) Find u⃗+ v⃗, u⃗− v⃗, πu⃗−

√
2⃗v.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = v⃗+ 2⃗x.

In Exercises 12–15, sketch u⃗, v⃗, u⃗ + v⃗ and u⃗ − v⃗ on the same
axes.

12.
u⃗

v⃗

x

y

13.

u⃗

v⃗

x

y

14.
u⃗

v⃗

x y

z

15.
u⃗

v⃗x y

z

In Exercises 16–19, find ∥u⃗∥, ∥⃗v∥, ∥u⃗+ v⃗∥ and ∥u⃗− v⃗∥.

16. u⃗ = ⟨2, 1⟩, v⃗ = ⟨3,−2⟩
17. u⃗ = ⟨−3, 2, 2⟩, v⃗ = ⟨1,−1, 1⟩
18. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−3,−6⟩
19. u⃗ = ⟨2,−3, 6⟩, v⃗ = ⟨10,−15, 30⟩
20. Under what condiƟons is ∥u⃗∥+ ∥⃗v∥ = ∥u⃗+ v⃗∥?

In Exercises 21–24, find the unit vector u⃗ in the direcƟon of v⃗.

21. v⃗ = ⟨3, 7⟩
22. v⃗ = ⟨6, 8⟩
23. v⃗ = ⟨1,−2, 2⟩
24. v⃗ = ⟨2,−2, 2⟩
25. Find the unit vector in the first quadrant of R2 that makes

a 50◦ angle with the x-axis.
26. Find the unit vector in the second quadrant of R2 that

makes a 30◦ angle with the y-axis.
27. Verify, from Key Idea 51, that u⃗ =

⟨sin θ cosφ, sin θ sinφ, cos θ⟩ is a unit vector for all
angles θ and φ.

Aweight of 100lb is suspended from two chains, making angles
with the verƟcal of θ and φ as shown in the figure below.

100lb

θ
φ

In Exercises 28–31, angles θ and φ are given. Find the force
applied to each chain.

28. θ = 30◦, φ = 30◦

29. θ = 60◦, φ = 60◦

30. θ = 20◦, φ = 15◦

31. θ = 0◦, φ = 0◦

A weight of plb is suspended from a chain of length ℓ while a
constant force of F⃗w pushes the weight to the right, making an
angle of θ with the verƟcal, as shown in the figure below.
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p lb

θ

F⃗w

In Exercises 32–35, a force F⃗w and length ℓ are given. Find the

angle θ and the height the weight is liŌed as it moves to the
right.

32. F⃗w = 1lb, ℓ = 1Ō, p = 1lb

33. F⃗w = 1lb, ℓ = 1Ō, p = 10lb

34. F⃗w = 1lb, ℓ = 10Ō, p = 1lb

35. F⃗w = 10lb, ℓ = 10Ō, p = 1lb
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11.3 The Dot Product

11.3 The Dot Product
The previous secƟon introduced vectors and described how to add them to-
gether and how to mulƟply them by scalars. This secƟon introduces a mulƟ-
plicaƟon on vectors called the dot product.

DefiniƟon 60 Dot Product

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ in R2. The dot product of u⃗ and
v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2.

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ in R3. The dot product
of u⃗ and v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Note how this product of vectors returns a scalar, not another vector.
We pracƟce evaluaƟng a dot product in the following example, then we will

discuss why this product is useful.

Example 1 EvaluaƟng dot products

1. Let u⃗ = ⟨1, 2⟩, v⃗ = ⟨3,−1⟩ in R2. Find u⃗ · v⃗.

2. Let x⃗ = ⟨2,−2, 5⟩ and y⃗ = ⟨−1, 0, 3⟩ in R3. Find x⃗ · y⃗.

SÊ½çã®ÊÄ

1. Using DefiniƟon 60, we have

u⃗ · v⃗ = 1(3) + 2(−1) = 1.

2. Using the definiƟon, we have

x⃗ · y⃗ = 2(−1)− 2(0) + 5(3) = 13.

The dot product, as shown by the preceding example, is very simple to eval-
uate. It is only the sum of products. While the definiƟon gives no hint as to why
we would care about this operaƟon, there is an amazing connecƟon between
the dot product and angles formed by the vectors. Before staƟng this connec-
Ɵon, we give a theorem staƟng some of the properƟes of the dot product.

Notes:
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Theorem 87 ProperƟes of the Dot Product
Let u⃗, v⃗ and w⃗ be vectors in R2 or R3 and let c be a scalar.

1. u⃗ · v⃗ = v⃗ · u⃗ CommutaƟve Property

2. u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗ DistribuƟve Property

3. c(⃗u · v⃗) = (c⃗u) · v⃗ = u⃗ · (c⃗v)

4. 0⃗ · v⃗ = 0

5. v⃗ · v⃗ = ∥⃗v∥2

The last statement of the theorem makes a handy connecƟon between the
magnitude of a vector and the dot product with itself. Our definiƟon and theo-
rem give properƟes of the dot product, but we are sƟll likely wondering “What
does the dot productmean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connecƟng the dot product
to magnitudes and angles. Given vectors u⃗ and v⃗ in the plane, an angle θ is
clearly formed when u⃗ and v⃗ are drawn with the same iniƟal point as illustrated
in Figure 11.30(a). (We always take θ to be the angle in [0, π] as two angles are
actually created.)

u⃗

v⃗

θ

(a)

(b)

Figure 11.30: IllustraƟng the angle
formed by two vectors with the same
iniƟal point.

The same is also true of 2 vectors in space: given u⃗ and v⃗ inR3 with the same
iniƟal point, there is a plane that contains both u⃗ and v⃗. (When u⃗ and v⃗ are co-
linear, there are infinite planes that contain both vectors.) In that plane, we can
again find an angle θ between them (and again, 0 ≤ θ ≤ π). This is illustrated
in Figure 11.30(b).

The following theorem connects this angle θ to the dot product of u⃗ and v⃗.

Theorem 88 The Dot Product and Angles
Let u⃗ and v⃗ be vectors in R2 or R3. Then

u⃗ · v⃗ = ∥u⃗∥ ∥⃗v∥ cos θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

When θ is an acute angle (i.e., 0 ≤ θ < π/2), cos θ is posiƟve; when θ =
π/2, cos θ = 0; when θ is an obtuse angle (π/2 < θ ≤ π), cos θ is negaƟve.
Thus the sign of the dot product gives a general indicaƟon of the angle between
the vectors, illustrated in Figure 11.31.

Notes:
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u⃗ · v⃗ > 0
u⃗

v⃗

θ

u⃗ · v⃗ = 0
u⃗

v⃗

θ = π/2

u⃗ · v⃗ < 0
u⃗

v⃗

θ

Figure 11.31: IllustraƟng the relaƟonship between the angle between vectors and the
sign of their dot product.

We can use Theorem 88 to compute the dot product, but generally this the-
orem is used to find the angle between known vectors (since the dot product is
generally easy to compute). To this end, we rewrite the theorem’s equaƟon as

cos θ =
u⃗ · v⃗
∥u⃗∥ ∥⃗v∥

⇔ θ = cos−1
(

u⃗ · v⃗
∥u⃗∥ ∥⃗v∥

)
.

Watch the video:
Vectors: The Dot Product at
https://youtu.be/98C7iv8OcnI

We pracƟce using this theorem in the following example.

u⃗

v⃗

w⃗

αβ

θ

−5 5

2

4

6

x

y

Figure 11.32: Vectors used in Example 2.

Example 2 Using the dot product to find angles
Let u⃗ = ⟨3, 1⟩, v⃗ = ⟨−2, 6⟩ and w⃗ = ⟨−4, 3⟩, as shown in Figure 11.32. Find the
angles α, β and θ.

SÊ½çã®ÊÄ We start by compuƟng the magnitude of each vector.

∥u⃗∥ =
√
10; ∥⃗v∥ = 2

√
10; ∥w⃗∥ = 5.

We now apply Theorem 88 to find the angles.

α = cos−1
(

u⃗ · v⃗
(
√
10)(2

√
10)

)
= cos−1(0) =

π

2
= 90◦.

Notes:
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β = cos−1
(

v⃗ · w⃗
(2
√
10)(5)

)
= cos−1

(
26

10
√
10

)
≈ 0.6055 ≈ 34.7◦.

θ = cos−1
(

u⃗ · w⃗
(
√
10)(5)

)
= cos−1

(
−9

5
√
10

)
≈ 2.1763 ≈ 124.7◦

We see from our computaƟon that α+ β = θ, as indicated by Figure 11.32.
While we knew this should be the case, it is nice to see that this non-intuiƟve
formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.

Figure 11.33: Vectors used in Example 3.

Example 3 Using the dot product to find angles
Let u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨−1, 3,−2⟩ and w⃗ = ⟨−5, 1, 4⟩, as illustrated in Fig-
ure 11.33. Find the angle between each pair of vectors.

SÊ½çã®ÊÄ

1. Between u⃗ and v⃗:

θ = cos−1
(

u⃗ · v⃗
∥u⃗∥ ∥⃗v∥

)
= cos−1

(
0√

3
√
14

)
=

π

2
.

2. Between u⃗ and w⃗:

θ = cos−1
(

u⃗ · w⃗
∥u⃗∥ ∥w⃗∥

)
= cos−1

(
0√

3
√
42

)
=

π

2
.

Notes:
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3. Between v⃗ and w⃗:

θ = cos−1
(

v⃗ · w⃗
∥⃗v∥ ∥w⃗∥

)
= cos−1

(
0√

14
√
42

)
=

π

2
.

While our work shows that each angle is π/2, i.e., 90◦, none of these angles
looks to be a right angle in Figure 11.33. Such is the case when drawing three–
dimensional objects on the page.

All three angles between these vectors was π/2, or 90◦. We know from
geometry and everyday life that 90◦ angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all π/2. NoƟce the common
feature in each calculaƟon (and also the calculaƟon of α in Example 2): the dot
products of each pair of angles was 0. We use this as a basis for a definiƟon of
the term orthogonal, which is essenƟally synonymous to perpendicular.

DefiniƟon 61 Orthogonal
Vectors u⃗ and v⃗ are orthogonal if their dot product is 0.

Note: The term perpendicular origi-
nally referred to lines. As mathemat-
ics progressed, the concept of “be-
ing at right angles to” was applied
to other objects, such as vectors and
planes, and the term orthogonal was
introduced. It is especially usedwhen
discussing objects that are hard, or
impossible, to visualize: two vectors
in 5-dimensional space are orthogo-
nal if their dot product is 0. It is not
wrong to say they are perpendicular,
but common convenƟon gives prefer-
ence to the word orthogonal.

Example 4 Finding orthogonal vectors
Let u⃗ = ⟨3, 5⟩ and v⃗ = ⟨1, 2, 3⟩.

1. Find two vectors in R2 that are orthogonal to u⃗.

2. Find two non–parallel vectors in R3 that are orthogonal to v⃗.

SÊ½çã®ÊÄ

1. Recall that a line perpendicular to a line with slope m has slope −1/m,
the “opposite reciprocal slope.” We can think of the slope of u⃗ as 5/3, its
“rise over run.” A vector orthogonal to u⃗ will have slope−3/5. There are
many such choices, though all parallel:

⟨−5, 3⟩ or ⟨5,−3⟩ or ⟨−10, 6⟩ or ⟨15,−9⟩ , etc.

Notes:
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2. There are infinite direcƟons in space orthogonal to any given direcƟon,
so there are an infinite number of non–parallel vectors orthogonal to v⃗.
Since there are so many, we have great leeway in finding some.
One way is to arbitrarily pick values for the first two components, leaving
the third unknown. For instance, let v⃗1 = ⟨2, 7, z⟩. If v⃗1 is to be orthogonal
to v⃗, then v⃗1 · v⃗ = 0, so

2+ 14+ 3z = 0 ⇒ z =
−16
3

.

So v⃗1 = ⟨2, 7,−16/3⟩ is orthogonal to v⃗. We can apply a similar technique
by leaving the first or second component unknown.
Another method of finding a vector orthogonal to v⃗ mirrors what we did
in part 1. Let v⃗2 = ⟨−2, 1, 0⟩. Here we switched the first two components
of v⃗, changing the sign of one of them (similar to the “opposite reciprocal”
concept before). Leƫng the third component be 0 effecƟvely ignores the
third component of v⃗, and it is easy to see that

v⃗2 · v⃗ = ⟨−2, 1, 0⟩ · ⟨1, 2, 3⟩ = 0.

Clearly v⃗1 and v⃗2 are not parallel.

v⃗

u⃗

θ

(a)

v⃗

u⃗

w⃗

z⃗

θ

(b)

Figure 11.34: Developing the construc-
Ɵon of the orthogonal projecƟon.

An important construcƟon is illustrated in Figure 11.34, where vectors u⃗ and
v⃗ are sketched. In part (a), a doƩed line is drawn from the Ɵp of u⃗ to the line
containing v⃗, where the doƩed line is orthogonal to v⃗. In part (b), the doƩed
line is replaced with the vector z⃗ and w⃗ is formed, parallel to v⃗. It is clear by the
diagram that u⃗ = w⃗ + z⃗. What is important about this construcƟon is this: u⃗ is
decomposed as the sum of two vectors, one of which is parallel to v⃗ and one that
is perpendicular to v⃗. It is hard to overstate the importance of this construcƟon
(as we’ll see in upcoming examples).

The vectors w⃗, z⃗ and u⃗ as shown in Figure 11.34 (b) form a right triangle,
where the angle between v⃗ and u⃗ is labeled θ. We can find w⃗ in terms of v⃗ and
u⃗.

Using trigonometry, we can state that

∥w⃗∥ = ∥u⃗∥ cos θ. (11.3)

We also know that w⃗ is parallel to to v⃗ ; that is, the direcƟon of w⃗ is the
direcƟon of v⃗, described by the unit vector 1

∥⃗v∥ v⃗. The vector w⃗ is the vector in
the direcƟon 1

∥⃗v∥ v⃗ with magnitude ∥u⃗∥ cos θ:

w⃗ =
(
∥u⃗∥ cos θ

) 1
∥⃗v∥

v⃗.

Notes:
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Replace cos θ using Theorem 88:

=

(
∥u⃗∥ u⃗ · v⃗
∥u⃗∥ ∥⃗v∥

)
1
∥⃗v∥

v⃗

=
u⃗ · v⃗
∥⃗v∥2

v⃗.

Now apply Theorem 87.

=
u⃗ · v⃗
v⃗ · v⃗

v⃗.

Since this construcƟon is so important, it is given a special name.

DefiniƟon 62 Orthogonal ProjecƟon
Let u⃗ and v⃗ be given. The orthogonal projecƟon of u⃗ onto v⃗, denoted
proj v⃗ u⃗, is

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗. u⃗ v⃗

proj v⃗ u⃗
−2 −1 1 2 3

1

2

−1

−2

x

y

(a)

(b)

Figure 11.35: Graphing the vectors used
in Example 5.

Example 5 CompuƟng the orthogonal projecƟon

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩. Find proj v⃗ u⃗, and sketch all three vectors
with iniƟal points at the origin.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩. Find proj x⃗ w⃗, and sketch all three
vectors with iniƟal points at the origin.

SÊ½çã®ÊÄ

1. Applying DefiniƟon 62, we have

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
−5
10
⟨3, 1⟩

=

⟨
−3
2
,−1

2

⟩
.

Vectors u⃗, v⃗ and proj v⃗ u⃗ are sketched in Figure 11.35(a). Note how the
projecƟon is parallel to v⃗; that is, it lies on the same line through the origin
as v⃗, although it points in the opposite direcƟon. That is because the angle
between u⃗ and v⃗ is obtuse (i.e., greater than 90◦).

Notes:
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2. Apply the definiƟon:

proj x⃗ w⃗ =
w⃗ · x⃗
x⃗ · x⃗

x⃗

=
6
3
⟨1, 1, 1⟩

= ⟨2, 2, 2⟩ .

These vectors are sketched in Figure 11.35(b).

v⃗

u⃗

proj v⃗ u⃗

z⃗

Figure 11.36: IllustraƟng the orthogonal
projecƟon.

Consider Figure 11.36 where the concept of the orthogonal projecƟon is
again illustrated. It is clear that

u⃗ = proj v⃗ u⃗+ z⃗. (11.4)

As we know what u⃗ and proj v⃗ u⃗ are, we can solve for z⃗ and state that

z⃗ = u⃗− proj v⃗ u⃗.

This leads us to rewrite EquaƟon (11.4) in a seemingly silly way:

u⃗ = proj v⃗ u⃗+ (⃗u− proj v⃗ u⃗).

This is not nonsense, as pointed out in the following Key Idea. (NotaƟon note:
the expression “∥ y⃗ ” means “is parallel to y⃗.” We can use this notaƟon to state
“⃗x ∥ y⃗ ” which means “⃗x is parallel to y⃗.” The expression “⊥ y⃗ ” means “is or-
thogonal to y⃗,” and is used similarly.)

Key Idea 52 Orthogonal DecomposiƟon of Vectors
Let u⃗ and v⃗ be given. Then u⃗ can be wriƩen as the sum of two vectors,
one of which is parallel to v⃗, and one of which is orthogonal to v⃗:

u⃗ = proj v⃗ u⃗︸ ︷︷ ︸
∥ v⃗

+ (⃗u− proj v⃗ u⃗︸ ︷︷ ︸
⊥ v⃗

).

We illustrate the use of this equality in the following example.

Example 6 Orthogonal decomposiƟon of vectors

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩ as in Example 5. Decompose u⃗ as the sum
of a vector parallel to v⃗ and a vector orthogonal to v⃗.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩ as in Example 5. Decompose w⃗ as the
sum of a vector parallel to x⃗ and a vector orthogonal to x⃗.

Notes:
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SÊ½çã®ÊÄ

1. In Example 5, we found that proj v⃗ u⃗ = ⟨−1.5,−0.5⟩. Let

z⃗ = u⃗− proj v⃗ u⃗ = ⟨−2, 1⟩ − ⟨−1.5,−0.5⟩ = ⟨−0.5, 1.5⟩ .

Is z⃗ orthogonal to v⃗ ? (I.e, is z⃗ ⊥ v⃗ ?) We check for orthogonality with the
dot product:

z⃗ · v⃗ = ⟨−0.5, 1.5⟩ · ⟨3, 1⟩ = 0.

Since the dot product is 0, we know z⃗ ⊥ v⃗. Thus:

u⃗ = proj v⃗ u⃗ + (⃗u− proj v⃗ u⃗)
⟨−2, 1⟩ = ⟨−1.5,−0.5⟩︸ ︷︷ ︸

∥ v⃗

+ ⟨−0.5, 1.5⟩︸ ︷︷ ︸
⊥ v⃗

.

2. We found in Example 5 that proj x⃗ w⃗ = ⟨2, 2, 2⟩. Applying the Key Idea 52,
we have:

z⃗ = w⃗− proj x⃗ w⃗ = ⟨2, 1, 3⟩ − ⟨2, 2, 2⟩ = ⟨0,−1, 1⟩ .

We check to see if z⃗ ⊥ x⃗:

z⃗ · x⃗ = ⟨0,−1, 1⟩ · ⟨1, 1, 1⟩ = 0.

Since the dot product is 0, we know the two vectors are orthogonal. We
now write w⃗ as the sum of two vectors, one parallel and one orthogonal
to x⃗:

w⃗ = proj x⃗ w⃗ + (w⃗− proj x⃗ w⃗)
⟨2, 1, 3⟩ = ⟨2, 2, 2⟩︸ ︷︷ ︸

∥ x⃗

+ ⟨0,−1, 1⟩︸ ︷︷ ︸
⊥ x⃗

We give an example of where this decomposiƟon is useful.

Example 7 Orthogonally decomposing a force vector
Consider Figure 11.37(a), showing a box weighing 50 lb on a ramp that rises 5 Ō
over a span of 20 Ō. Find the components of force, and their magnitudes, acƟng
on the box (as sketched in part (b) of the figure):

1. in the direcƟon of the ramp, and

2. orthogonal to the ramp.

5

20

r⃗

g⃗

(a)

5

20

r⃗

g⃗

z⃗

proj r⃗ g⃗

(b)

Figure 11.37: Sketching the ramp and box
in Example 7. Note: The vectors are not
drawn to scale.

Notes:
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SÊ½çã®ÊÄ As the ramp rises 5 Ō over a horizontal distance of 20 Ō, we
can represent the direcƟon of the rampwith the vector r⃗ = ⟨20, 5⟩. Gravity pulls
down with a force of 50 lb, which we represent with g⃗ = ⟨0,−50⟩.

1. To find the force of gravity in the direcƟonof the ramp,we computeproj r⃗ g⃗:

proj r⃗ g⃗ =
g⃗ · r⃗
r⃗ · r⃗

r⃗

=
−250
425

⟨20, 5⟩

=

⟨
−200

17
,−50

17

⟩
.

The magnitude of proj r⃗ g⃗ is ∥proj r⃗ g⃗∥ = 50/
√
17 ≈ 12.13 lb. Though the

box weighs 50 lb, a force of about 12 lb is enough to keep the box from
sliding down the ramp.

2. To find the component z⃗ of gravity orthogonal to the ramp, we use Key
Idea 52.

z⃗ = g⃗− proj r⃗ g⃗

=

⟨
200
17

,−800
17

⟩
.

Themagnitude of this force is ∥⃗z∥ = 200/
√
17 lb. In physics and engineer-

ing, knowing this force is important when compuƟng things like staƟc fric-
Ɵonal force. (For instance, we could easily compute if the staƟc fricƟonal
force alone was enough to keep the box from sliding down the ramp.)

ApplicaƟon to Work

In physics, the applicaƟon of a force F to move an object in a straight line a
distance d produces work; the amount of workW isW = Fd, (where F is in the
direcƟon of travel). The orthogonal projecƟon allows us to compute work when
the force is not in the direcƟon of travel.

Consider Figure 11.38, where a force F⃗ is being applied to an object moving
in the direcƟon of d⃗. (The distance the object travels is the magnitude of d⃗.) The
work done is the amount of force in the direcƟon of d⃗,

∥∥proj d⃗ F⃗∥∥, Ɵmes
∥∥∥d⃗∥∥∥:

d⃗

F⃗

proj d⃗ F⃗

Figure 11.38: Finding work when the
force and direcƟon of travel are given as
vectors.

Notes:
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11.3 The Dot Product

∥∥proj d⃗ F⃗∥∥ · ∥∥∥d⃗∥∥∥ =

∥∥∥∥∥ F⃗ · d⃗d⃗ · d⃗
d⃗

∥∥∥∥∥ · ∥∥∥d⃗∥∥∥
=

∣∣∣∣∣∣∣
F⃗ · d⃗∥∥∥d⃗∥∥∥2

∣∣∣∣∣∣∣ ·
∥∥∥d⃗∥∥∥ · ∥∥∥d⃗∥∥∥

=

∣∣∣⃗F · d⃗∣∣∣∥∥∥d⃗∥∥∥2
∥∥∥d⃗∥∥∥2

=
∣∣∣⃗F · d⃗∣∣∣ .

The expression F⃗ · d⃗ will be posiƟve if the angle between F⃗ and d⃗ is acute;
when the angle is obtuse (hence F⃗ · d⃗ is negaƟve), the force is causing moƟon
in the opposite direcƟon of d⃗, resulƟng in “negaƟve work.” We want to capture
this sign, so we drop the absolute value and find thatW = F⃗ · d⃗.

DefiniƟon 63 Work
Let F⃗ be a constant force that moves an object in a straight line from
point P to point Q. Let d⃗ =

#  ‰PQ. The work W done by F⃗ along d⃗ is
W = F⃗ · d⃗.

15

3

F⃗

30◦

Figure 11.39: CompuƟng work when slid-
ing a box up a ramp in Example 8.

Example 8 CompuƟng work
Aman slides a box along a ramp that rises 3 Ō over a distance of 15 Ō by applying
50 lb of force as shown in Figure 11.39. Compute the work done.

SÊ½çã®ÊÄ The figure indicates that the force applied makes a 30◦ an-
gle with the horizontal, so F⃗ = 50 ⟨cos 30◦, sin 30◦⟩

⟨
25
√
3, 25

⟩
. The ramp is

represented by d⃗ = ⟨15, 3⟩. The work done is simply

F⃗ · d⃗ =
⟨
25
√
3, 25

⟩
· ⟨15, 3⟩ = 375

√
3+ 75 Ō–lb.

Note how we did not actually compute the distance the object traveled, nor
the magnitude of the force in the direcƟon of travel; this is all inherently com-
puted by the dot product!

Notes:
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The dot product is a powerful way of evaluaƟng computaƟons that depend
onangleswithout actually using angles. Thenext secƟonexplores another “prod-
uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.

Notes:
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Exercises 11.3
Terms and Concepts
1. The dot product of two vectors is a , not a vector.
2. How are the concepts of the dot product and vector mag-

nitude related?
3. How can one quickly tell if the angle between two vectors

is acute or obtuse?
4. Give a synonym for “orthogonal.”

Problems
In Exercises 5–10, find the dot product of the given vectors.

5. u⃗ = ⟨2,−4⟩, v⃗ = ⟨3, 7⟩
6. u⃗ = ⟨5, 3⟩, v⃗ = ⟨6, 1⟩
7. u⃗ = ⟨1,−1, 2⟩, v⃗ = ⟨2, 5, 3⟩
8. u⃗ = ⟨3, 5,−1⟩, v⃗ = ⟨4,−1, 7⟩
9. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2, 3⟩

10. u⃗ = ⟨1, 2, 3⟩, v⃗ = ⟨0, 0, 0⟩
11. Create your own vectors u⃗, v⃗ and w⃗ in R2 and show that

u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗.
12. Create your ownvectors u⃗ and v⃗ inR3 and scalar c and show

that c(⃗u · v⃗) = u⃗ · (c⃗v).
In Exercises 13–16, find the measure of the angle between the
two vectors in both radians and degrees.

13. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2⟩
14. u⃗ = ⟨−2, 1⟩, v⃗ = ⟨3, 5⟩
15. u⃗ = ⟨8, 1,−4⟩, v⃗ = ⟨2, 2, 0⟩
16. u⃗ = ⟨1, 7, 2⟩, v⃗ = ⟨4,−2, 5⟩

In Exercises 17–20, a vector v⃗ is given. Give two vectors that
are orthogonal to v⃗.

17. v⃗ = ⟨4, 7⟩
18. v⃗ = ⟨−3, 5⟩
19. v⃗ = ⟨1, 1, 1⟩
20. v⃗ = ⟨1,−2, 3⟩

In Exercises 21–26, vectors u⃗ and v⃗ are given. Find proj v⃗ u⃗, the
orthogonal projecƟon of u⃗ onto v⃗, and sketch all three vectors
on the same axes.

21. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

22. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

23. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

24. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

25. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

26. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

In Exercises 27–32, vectors u⃗ and v⃗ are given. Write u⃗ as the
sum of two vectors, one of which is parallel to v⃗ and one of
which is perpendicular to v⃗. Note: these are the same pairs of
vectors as found in Exercises 21 – 26.

27. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

28. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

29. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

30. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

31. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

32. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

33. A 10lb box sits on a ramp that rises 4Ō over a distance of
20Ō. Howmuch force is required to keep the box from slid-
ing down the ramp?

34. A 10lb box sits on a 15Ō ramp that makes a 30◦ angle with
the horizontal. Howmuch force is required to keep the box
from sliding down the ramp?

35. Howmuch work is performed in moving a box horizontally
10Ō with a force of 20lb applied at an angle of 45◦ to the
horizontal?

36. Howmuch work is performed in moving a box horizontally
10Ō with a force of 20lb applied at an angle of 10◦ to the
horizontal?

37. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2Ō over a distance of 10Ō, with a force
of 50lb applied horizontally?

38. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2Ō over a distance of 10Ō, with a force
of 50lb applied at an angle of 45◦ to the horizontal?

39. Howmuchwork is performed inmoving a box up the length
of a 10Ō ramp that makes a 5◦ angle with the horizontal,
with 50lb of force applied in the direcƟon of the ramp?
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11.4 The Cross Product

“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors u⃗ and v⃗ are perpendicular if, and only if,
u⃗ · v⃗ = 0.

Given two non–parallel, nonzero vectors u⃗ and v⃗ in space, it is very useful
to find a vector w⃗ that is perpendicular to both u⃗ and v⃗. There is a operaƟon,
called the cross product, that creates such a vector. This secƟon defines the
cross product, then explores its properƟes and applicaƟons.

DefiniƟon 64 Cross Product
Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3. The cross
product of u⃗ and v⃗, denoted u⃗× v⃗, is the vector

u⃗× v⃗ = ⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩ .

This definiƟon can be a bit cumbersome to remember. AŌer an example we
will give a convenient method for compuƟng the cross product. For now, careful
examinaƟon of the products and differences given in the definiƟon should reveal
a paƩern that is not too difficult to remember. (For instance, in the first compo-
nent only 2 and 3 appear as subscripts; in the second component, only 1 and 3
appear as subscripts. Further study reveals the order in which they appear.)

Watch the video:
Cross Product at
https://youtu.be/qsgK1d-_8ik

Let’s pracƟce using this definiƟon by compuƟng a cross product.

Example 1 CompuƟng a cross product
Let u⃗ = ⟨2,−1, 4⟩ and v⃗ = ⟨3, 2, 5⟩. Find u⃗ × v⃗, and verify that it is orthogonal
to both u⃗ and v⃗.

Notes:
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11.4 The Cross Product

SÊ½çã®ÊÄ Using DefiniƟon 64, we have

u⃗× v⃗ =
⟨
(−1)5− (4)2,−

(
(2)5− (4)3

)
, (2)2− (−1)3

⟩
= ⟨−13, 2, 7⟩ .

(We encourage the reader to compute this product on their own, then verify
their result.)

We test whether or not u⃗× v⃗ is orthogonal to u⃗ and v⃗ using the dot product:(⃗
u× v⃗

)
· u⃗ = ⟨−13, 2, 7⟩ · ⟨2,−1, 4⟩ = 0,(⃗

u× v⃗
)
· v⃗ = ⟨−13, 2, 7⟩ · ⟨3, 2, 5⟩ = 0.

Since both dot products are zero, u⃗× v⃗ is indeed orthogonal to both u⃗ and v⃗.

A convenient method of compuƟng the cross product starts with forming a
parƟcular 3 × 3 matrix, or rectangular array. The first row comprises the stan-
dard unit vectors ı⃗, ȷ⃗, and k⃗. The second and third rows are the vectors u⃗ and v⃗,
respecƟvely. Using u⃗ and v⃗ from Example 1, we begin with:

ı⃗ ȷ⃗ k⃗
2 −1 4
3 2 5

Now repeat the first two columns aŌer the original three:

ı⃗ ȷ⃗ k⃗ ı⃗ ȷ⃗
2 −1 4 2 −1
3 2 5 3 2

This gives three full “upper leŌ to lower right” diagonals, and three full “up-
per right to lower leŌ” diagonals, as shown. Compute the products along each
diagonal, then add the products on the right and subtract the products on the
leŌ:

ı⃗ ȷ⃗ k⃗ ı⃗ ȷ⃗
2 −1 4 2 −1
3 2 5 3 2

−5⃗ı 12ȷ⃗ 4⃗k−3⃗k 8⃗ı 10ȷ⃗

u⃗× v⃗ =
(
− 5⃗ı+12ȷ⃗+ 4⃗k

)
−
(
− 3⃗k+ 8⃗ı+10ȷ⃗

)
= −13⃗ı+2ȷ⃗+ 7⃗k = ⟨−13, 2, 7⟩ .

This is equivalent to evaluaƟng the determinant∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
2 −1 4
3 2 5

∣∣∣∣∣∣ =
∣∣∣∣−1 4
2 5

∣∣∣∣ ı⃗− ∣∣∣∣2 4
3 5

∣∣∣∣ ȷ⃗+ ∣∣∣∣2 −1
3 2

∣∣∣∣ k⃗
= (−5− 8)⃗ı− (10− 12)ȷ⃗+ (4− (−3))⃗k = −13⃗ı+ 2ȷ⃗+ 7⃗k.

We pracƟce using this method.

Notes:
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Example 2 CompuƟng a cross product
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩. Compute both u⃗× v⃗ and v⃗× u⃗.

SÊ½çã®ÊÄ To compute u⃗× v⃗, we form the matrix as prescribed above,
complete with repeated first columns:

ı⃗ ȷ⃗ k⃗ ı⃗ ȷ⃗
1 3 6 1 3
−1 2 1 −1 2

We let the reader compute the products of the diagonals; we give the result:

u⃗× v⃗ =
(
3⃗ı− 6ȷ⃗+ 2⃗k

)
−
(
− 3⃗k+ 12⃗ı+ ȷ⃗

)
= ⟨−9,−7, 5⟩ .

To compute v⃗× u⃗, we switch the second and third rows of the above matrix,
then mulƟply along diagonals and subtract:

ı⃗ ȷ⃗ k⃗ ı⃗ ȷ⃗
−1 2 1 −1 2
1 3 6 1 3

Note how with the rows being switched, the products that once appeared on
the right now appear on the leŌ, and vice–versa. Thus the result is:

v⃗× u⃗ =
(
12⃗ı+ ȷ⃗− 3⃗k

)
−
(
2⃗k+ 3⃗ı− 6ȷ⃗

)
= ⟨9, 7,−5⟩ ,

which is the opposite of u⃗ × v⃗. We leave it to the reader to verify that each of
these vectors is orthogonal to u⃗ and v⃗.

ProperƟes of the Cross Product

It is not coincidence that v⃗ × u⃗ = −(⃗u × v⃗) in the preceding example; one
can show using DefiniƟon 64 that this will always be the case. The following
theorem states several useful properƟes of the cross product, each of which can
be verified by referring to the definiƟon.

Notes:
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11.4 The Cross Product

Theorem 89 ProperƟes of the Cross Product
Let u⃗, v⃗ and w⃗ be vectors inR3 and let c be a scalar. The following idenƟƟes
hold:

1. u⃗× v⃗ = −(⃗v× u⃗) AnƟcommutaƟve Property

2. (a) (⃗u+ v⃗)× w⃗ = u⃗× w⃗+ v⃗× w⃗ DistribuƟve ProperƟes
(b) u⃗× (⃗v+ w⃗) = u⃗× v⃗+ u⃗× w⃗

3. c(⃗u× v⃗) = (c⃗u)× v⃗ = u⃗× (c⃗v)

4. (a) (⃗u× v⃗) · u⃗ = 0 Orthogonality ProperƟes
(b) (⃗u× v⃗) · v⃗ = 0

5. u⃗× u⃗ = 0⃗

6. u⃗× 0⃗ = 0⃗

7. u⃗ · (⃗v× w⃗) = (⃗u× v⃗) · w⃗ Triple Scalar Product

We introduced the cross product as a way to find a vector orthogonal to
two given vectors, but we did not give a proof that the construcƟon given in
DefiniƟon 64 saƟsfies this property. Theorem 89 asserts this property holds; we
leave the verificaƟon to Exercise 42.

Property 5 from the theorem is also leŌ to the reader to prove in Exercise
43, but it reveals somethingmore interesƟng than “the cross product of a vector
with itself is 0⃗.” Let u⃗ and v⃗ be parallel vectors; that is, let there be a scalar c such
that v⃗ = c⃗u. Consider their cross product:

u⃗× v⃗ = u⃗× (c⃗u)
= c(⃗u× u⃗) (by Property 3 of Theorem 89)
= 0⃗. (by Property 5 of Theorem 89)

We have just shown that the cross product of parallel vectors is 0⃗. This hints
at something deeper. Theorem 88 related the angle between two vectors and
their dot product; there is a similar relaƟonship relaƟng the cross product of two
vectors and the angle between them, given by the following theorem.

Notes:
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Theorem 90 The Cross Product and Angles
Let u⃗ and v⃗ be vectors in R3. Then

∥u⃗× v⃗∥ = ∥u⃗∥ ∥⃗v∥ sin θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Note: DefiniƟon 61 (through Theo-
rem 88) defines u⃗ and v⃗ to be orthog-
onal if u⃗ · v⃗ = 0. We could use Theo-
rem 90 to define u⃗ and v⃗ are parallel
if u⃗ × v⃗ = 0. By such a definiƟon,
0⃗ would be both orthogonal and par-
allel to every vector. Apparent para-
doxes such as this are not uncommon
in mathemaƟcs and can be very use-
ful. (See also the marginal note on
page 657.)

Note that this theoremmakes a statement about themagnitude of the cross
product. When the angle between u⃗ and v⃗ is 0 or π (i.e., the vectors are parallel),
the magnitude of the cross product is 0. The only vector with a magnitude of 0
is 0⃗ (see Property 9 of Theorem 86), hence the cross product of parallel vectors
is 0⃗.

We demonstrate the truth of this theorem in the following example.

Example 3 The cross product and angles
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩ as in Example 2. Verify Theorem 90 by
finding θ, the angle between u⃗ and v⃗, and the magnitude of u⃗× v⃗.

SÊ½çã®ÊÄ We use Theorem 88 to find the angle between u⃗ and v⃗.

θ = cos−1
(

u⃗ · v⃗
∥u⃗∥ ∥⃗v∥

)
= cos−1

(
11√
46
√
6

)
≈ 0.8471 = 48.54◦.

Our work in Example 2 showed that u⃗× v⃗ = ⟨−9,−7, 5⟩, hence ∥u⃗× v⃗∥ =√
155. Is ∥u⃗× v⃗∥ = ∥u⃗∥ ∥⃗v∥ sin θ? Using numerical approximaƟons, we find:

∥u⃗× v⃗∥ =
√
155 ∥u⃗∥ ∥⃗v∥ sin θ =

√
46
√
6 sin 0.8471

≈ 12.45. ≈ 12.45.

Numerically, they seem equal. Using a right triangle, one can show that

sin
(
cos−1

(
11√
46
√
6

))
=

√
155√
46
√
6
,

which allows us to verify the theorem exactly.

Notes:
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Right Hand Rule
The anƟcommutaƟve property of the cross product demonstrates that u⃗× v⃗ and
v⃗ × u⃗ differ only by a sign — these vectors have the same magnitude but point
in the opposite direcƟon. When seeking a vector perpendicular to u⃗ and v⃗, we
essenƟally have two direcƟons to choose from, one in the direcƟon of u⃗× v⃗ and
one in the direcƟon of v⃗× u⃗. Does it maƩer which we choose? How can we tell
which one we will get without graphing, etc.?

Another property of the cross product, as defined, is that it follows the right
hand rule. Given u⃗ and v⃗ in R3 with the same iniƟal point, point the index fin-
ger of your right hand in the direcƟon of u⃗ and let your middle finger point in
the direcƟon of v⃗ (much as we did when establishing the right hand rule for the
3-dimensional coordinate system). Your thumb will naturally extend in the di-
recƟon of u⃗ × v⃗. One can “pracƟce” this using Figure 11.40. If you switch, and
point the index finder in the direcƟon of v⃗ and the middle finger in the direc-
Ɵon of u⃗, your thumb will now point in the opposite direcƟon, allowing you to
“visualize” the anƟcommutaƟve property of the cross product.

Figure 11.40: IllustraƟng the Right Hand
Rule of the cross product.

ApplicaƟons of the Cross Product
There are a number of ways in which the cross product is useful in mathemaƟcs,
physics and other areas of science beyond “just” finding a vector perpendicular
to two others. We highlight a few here.

Area of a Parallelogram

It is a standard geometry fact that the area of a parallelogram is A = bh, where
b is the length of the base and h is the height of the parallelogram, as illustrated
in Figure 11.41(a). As shown when defining the Parallelogram Law of vector
addiƟon, two vectors u⃗ and v⃗ define a parallelogramwhen drawn from the same
iniƟal point, as illustrated in Figure 11.41(b). Trigonometry tells us that h =
∥u⃗∥ sin θ, hence the area of the parallelogram is

A = ∥u⃗∥ ∥⃗v∥ sin θ = ∥u⃗× v⃗∥ , (11.5)

where the second equality comes from Theorem 90. We illustrate using Equa-

b

h

(a)

v⃗

θ

u⃗

h

(b)

Figure 11.41: Using the cross product to
find the area of a parallelogram.

Ɵon (11.5) in the following example.

Example 4 Finding the area of a parallelogram

1. Find the area of the parallelogram defined by the vectors u⃗ = ⟨2, 1⟩ and
v⃗ = ⟨1, 3⟩.

Notes:
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2. Verify that the points A = (1, 1, 1), B = (2, 3, 2), C = (4, 5, 3) and
D = (3, 3, 2) are the verƟces of a parallelogram. Find the area of the
parallelogram.

SÊ½çã®ÊÄ

u⃗

v⃗

1 2 3 4

1

2

3

4

5

x

y

(a)

(b)

Figure 11.42: Sketching the parallelo-
grams in Example 4.

1. Figure 11.42(a) sketches the parallelogram defined by the vectors u⃗ and
v⃗. We have a slight problem in that our vectors exist in R2, not R3, and
the cross product is only defined on vectors in R3. We skirt this issue by
viewing u⃗ and v⃗ as vectors in the x−y plane ofR3, and rewrite themas u⃗ =
⟨2, 1, 0⟩ and v⃗ = ⟨1, 3, 0⟩. We can now compute the cross product. It is
easy to show that u⃗×v⃗ = ⟨0, 0, 5⟩; therefore the area of the parallelogram
is A = ∥u⃗× v⃗∥ = 5.

2. To show that the quadrilateral ABCD is a parallelogram (shown in Fig-
ure 11.42(b)), we need to show that the opposite sides are parallel. We
can quickly show that # ‰AB =

# ‰DC = ⟨1, 2, 1⟩ and # ‰BC =
#  ‰AD = ⟨2, 2, 1⟩. We

find the area by compuƟng the magnitude of the cross product of # ‰AB and
# ‰BC:

# ‰AB× # ‰BC = ⟨0, 1,−2⟩ ⇒
∥∥ # ‰AB× # ‰BC

∥∥ =
√
5.

This applicaƟon is more commonly used to find the area of a triangle (be-
cause triangles are used more oŌen than parallelograms). We illustrate this in
the following example.

Example 5 Area of a triangle
Find the area of the triangle with verƟces A = (1, 2), B = (2, 3) and C = (3, 1),
as pictured in Figure 11.43.

SÊ½çã®ÊÄ We found the area of this triangle in Example 6.1.5 to be 1.5
using integraƟon. There we discussed the fact that finding the area of a triangle
can be inconvenient using the “ 12bh” formula as one has to compute the height,
which generally involves finding angles, etc. Using a cross product is muchmore
direct.

A

B

C

1 2 3

1

2

3

x

y

Figure 11.43: Finding the area of a trian-
gle in Example 5.

We can choose any two sides of the triangle to use to form vectors; we
choose # ‰AB = ⟨1, 1⟩ and # ‰AC = ⟨2,−1⟩. As in the previous example, we will
rewrite these vectors with a third component of 0 so that we can apply the cross
product. The area of the triangle is

1
2
∥∥ # ‰AB× # ‰AC

∥∥ =
1
2
∥⟨1, 1, 0⟩ × ⟨2,−1, 0⟩∥ = 1

2
∥⟨0, 0,−3⟩∥ = 3

2
.

We arrive at the same answer as before with less work.
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Volume of a Parallelepiped

The three dimensional analogue to the parallelogram is the parallelepiped.
Note: The word “parallelepiped” is
pronounced “parallel–eh–pipe–ed.”

Figure 11.44: A parallelepiped is the three
dimensional analogue to the parallelo-
gram.

Each face is parallel to the opposite face, as illustrated in Figure 11.44. By cross-
ing v⃗ and w⃗, one gets a vector whose magnitude is the area of the base. Doƫng
this vector with u⃗ computes the volume of parallelepiped! (Up to a sign; take
the absolute value.)

Thus the volume of a parallelepiped defined by vectors u⃗, v⃗ and w⃗ is

V = |⃗u · (⃗v× w⃗)| . (11.6)

Note how this is the Triple Scalar Product, first seen in Theorem 89. Applying
the idenƟƟes given in the theorem shows that we can apply the Triple Scalar
Product in any “order” we choose to find the volume. That is,

V = |⃗u · (⃗v× w⃗)| = |⃗u · (w⃗× v⃗)| = |(⃗u× v⃗) · w⃗| , etc.

As with the cross product, we can alsowrite u⃗· (⃗v×w⃗) in terms of a determinant:

u⃗ · (⃗v× w⃗) =

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
Because the volume is the absolute value of the determinant, the order of the
rows doesn’t maƩer.

Figure 11.45: A parallelepiped in Exam-
ple 6.

Example 6 Finding the volume of parallelepiped
Find the volume of the parallepiped defined by the vectors u⃗ = ⟨1, 1, 0⟩, v⃗ =
⟨−1, 1, 0⟩ and w⃗ = ⟨0, 1, 1⟩.

SÊ½çã®ÊÄ We apply EquaƟon (11.6). We first find v⃗× w⃗ = ⟨1, 1,−1⟩.
Then

|⃗u · (⃗v× w⃗)| = |⟨1, 1, 0⟩ · ⟨1, 1,−1⟩| = 2.

So the volume of the parallelepiped is 2 cubic units. In terms of determinants,
we have∣∣∣∣∣∣
1 1 0
−1 1 0
0 1 1

∣∣∣∣∣∣ =
∣∣∣∣1 0
1 1

∣∣∣∣ 1−∣∣∣∣−1 0
0 1

∣∣∣∣ 1+∣∣∣∣−1 1
0 1

∣∣∣∣ 0(1−0)1−(−1−0)1 = 1+1 = 2,

and the absolute value of this determinant is again 2.

While this applicaƟon of the Triple Scalar Product is interesƟng, it is not used
all that oŌen: parallelepipeds are not a common shape in physics and engineer-
ing. The last applicaƟon of the cross product is very applicable in engineering.

Notes:
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Torque

Torque is a measure of the turning force applied to an object. A classic scenario
involving torque is the applicaƟon of a wrench to a bolt. When a force is applied
to the wrench, the bolt turns. When we represent the force and wrench with
vectors F⃗ and ℓ⃗, we see that the boltmoves (because of the threads) in a direcƟon
orthogonal to F⃗ and ℓ⃗. Torque is usually represented by the Greek leƩer τ, or tau,
and has units of N·m, a Newton–meter, or Ō·lb, a foot–pound.

While a full understanding of torque is beyond the purposes of this book,
when a force F⃗ is applied to a lever arm ℓ⃗, the resulƟng torque is

τ⃗ = ℓ⃗× F⃗. (11.7)

Example 7 CompuƟng torque
A lever of length 2Ōmakes an anglewith the horizontal of 45◦. Find the resulƟng
torque when a force of 10lb is applied to the end of the level where:

ℓ⃗

90◦

F⃗

ℓ⃗

60◦

F⃗

Figure 11.46: Showing a force being ap-
plied to a lever in Example 7.

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60◦ with the lever, as shown in Figure 11.46.

SÊ½çã®ÊÄ

1. We start by determining vectors for the force and lever arm. Since the
lever arm makes a 45◦ angle with the horizontal and is 2Ō long, we can
state that ℓ⃗ = 2 ⟨cos 45◦, sin 45◦⟩ =

⟨√
2,
√
2
⟩
.

Since the force vector is perpendicular to the lever arm (as seen in the
leŌ hand side of Figure 11.46), we can conclude it is making an angle of
−45◦ with the horizontal. As it has a magnitude of 10lb, we can state
F⃗ = 10 ⟨cos(−45◦), sin(−45◦)⟩ =

⟨
5
√
2,−5

√
2
⟩
.

Using EquaƟon (11.7) to find the torque requires a cross product. We
again let the third component of each vector be 0 and compute the cross
product:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5
√
2,−5

√
2, 0
⟩

= ⟨0, 0,−20⟩

This clearly has a magnitude of 20 Ō-lb.
We can view the force and lever arm vectors as lying “on the page”; our
computaƟon of τ⃗ shows that the torque goes “into the page.” This follows
the Right Hand Rule of the cross product, and it alsomatcheswell with the
example of the wrench turning the bolt. Turning a bolt clockwise moves
it in.

Notes:
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2. Our lever arm can sƟll be represented by ℓ⃗ =
⟨√

2,
√
2
⟩
. As our force

vector makes a 60◦ angle with ℓ⃗, we can see (referencing the right hand
side of the figure) that F⃗makes a−15◦ angle with the horizontal. Thus

F⃗ = 10 ⟨cos−15◦, sin−15◦⟩ =
⟨
5(1+

√
3)√

2
,
5(1−

√
3)√

2

⟩
.

We again make the third component 0 and take the cross product to find
the torque:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5(1+

√
3)√

2
,
5(1−

√
3)√

2
, 0
⟩

=
⟨
0, 0,−10

√
3
⟩
.

As one might expect, when the force and lever arm vectors are orthog-
onal, the magnitude of force is greater than when the vectors are not
orthogonal.

While the cross product has a variety of applicaƟons (as noted in this chap-
ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector is orthogonal to two others is of incredible importance, as it allows
us to find the equaƟons of lines and planes in a variety of contexts. The impor-
tance of the cross product, in some sense, relies on the importance of lines and
planes, which see widespread use throughout engineering, physics and mathe-
maƟcs. We study lines and planes in the next two secƟons.
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Exercises 11.4
Terms and Concepts
1. The cross product of two vectors is a , not a

scalar.
2. One can visualize the direcƟon of u⃗× v⃗ using the

.
3. Give a synonym for “orthogonal.”
4. T/F: A fundamental principle of the cross product is that

u⃗× v⃗ is orthogonal to u⃗ and v⃗.
5. is a measure of the turning force applied to an

object.

Problems
6. State whether each expression is meaningful. If not, ex-

plain why. If so, state whether it is a vector or a scalar.
(a) a⃗ · (⃗b× c⃗)

(b) a⃗× (⃗b× c⃗)

(c) (⃗a · b⃗)× (⃗c · d⃗)

(d) a⃗× (⃗b · c⃗)
(e) (⃗a× b⃗)(⃗c× d⃗)

(f) (⃗a× b⃗) · (⃗c× d⃗)

In Exercises 7–15, vectors u⃗ and v⃗ are given. Compute u⃗ × v⃗
and show this is orthogonal to both u⃗ and v⃗.

7. u⃗ = ⟨3, 2,−2⟩, v⃗ = ⟨0, 1, 5⟩
8. u⃗ = ⟨5,−4, 3⟩, v⃗ = ⟨2,−5, 1⟩
9. u⃗ = ⟨4,−5,−5⟩, v⃗ = ⟨3, 3, 4⟩

10. u⃗ = ⟨−4, 7,−10⟩, v⃗ = ⟨4, 4, 1⟩
11. u⃗ = ⟨1, 0, 1⟩, v⃗ = ⟨5, 0, 7⟩
12. u⃗ = ⟨1, 5,−4⟩, v⃗ = ⟨−2,−10, 8⟩
13. u⃗ = ı⃗, v⃗ = ȷ⃗

14. u⃗ = ı⃗, v⃗ = k⃗

15. u⃗ = ȷ⃗, v⃗ = k⃗

16. Pick any vectors u⃗, v⃗ and w⃗ in R3 and show that u⃗ × (⃗v +
w⃗) = u⃗× v⃗+ u⃗× w⃗.

17. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗·(⃗v×w⃗) =
(⃗u× v⃗) · w⃗.

In Exercises 18–21, themagnitudes of vectors u⃗ and v⃗ inR3 are
given, along with the angle θ between them. Use this informa-
Ɵon to find the magnitude of u⃗× v⃗.

18. ∥u⃗∥ = 2, ∥⃗v∥ = 5, θ = 30◦

19. ∥u⃗∥ = 3, ∥⃗v∥ = 7, θ = π/2
20. ∥u⃗∥ = 3, ∥⃗v∥ = 4, θ = π

21. ∥u⃗∥ = 2, ∥⃗v∥ = 5, θ = 5π/6

In Exercises 22–25, find the area of the parallelogram defined
by the given vectors.

22. u⃗ = ⟨1, 1, 2⟩, v⃗ = ⟨2, 0, 3⟩
23. u⃗ = ⟨−2, 1, 5⟩, v⃗ = ⟨−1, 3, 1⟩
24. u⃗ = ⟨1, 2⟩, v⃗ = ⟨2, 1⟩
25. u⃗ = ⟨2, 0⟩, v⃗ = ⟨0, 3⟩

In Exercises 26–29, find the area of the triangle with the given
verƟces.

26. VerƟces: (0, 0, 0), (1, 3,−1) and (2, 1, 1).

27. VerƟces: (5, 2,−1), (3, 6, 2) and (1, 0, 4).

28. VerƟces: (1, 1), (1, 3) and (2, 2).

29. VerƟces: (3, 1), (1, 2) and (4, 3).

In Exercises 30–31, find the area of the quadrilateral with the
given verƟces. (Hint: break the quadrilateral into 2 triangles.)

30. VerƟces: (0, 0), (1, 2), (3, 0) and (4, 3).

31. VerƟces: (0, 0, 0), (2, 1, 1), (−1, 2,−8) and (1,−1, 5).

In Exercises 32–33, find the volume of the parallelepiped de-
fined by the given vectors.

32. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨1, 2, 3⟩, w⃗ = ⟨1, 0, 1⟩
33. u⃗ = ⟨−1, 2, 1⟩, v⃗ = ⟨2, 2, 1⟩, w⃗ = ⟨3, 1, 3⟩

In Exercises 34–37, find a unit vector orthogonal to both u⃗ and
v⃗.

34. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨2, 0, 1⟩
35. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨3, 2, 1⟩
36. u⃗ = ⟨5, 0, 2⟩, v⃗ = ⟨−3, 0, 7⟩
37. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨−2, 4,−2⟩
38. A bicycle rider applies 150lb of force, straight down, onto

a pedal that extends 7in horizontally from the crankshaŌ.
Find themagnitude of the torque applied to the crankshaŌ.

39. A bicycle rider applies 150lb of force, straight down, onto
a pedal that extends 7in from the crankshaŌ, making a
30◦ angle with the horizontal. Find the magnitude of the
torque applied to the crankshaŌ.

40. To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench. What is the maximum amount of torque that can
be applied to the bolt?

41. To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench in a confined space, where the direcƟon of ap-
plied force makes a 10◦ angle with the wrench. Howmuch
torque is subsequently applied to the wrench?

42. Show, using the definiƟon of the Cross Product, that u⃗· (⃗u×
v⃗) = 0; that is, that u⃗ is orthogonal to the cross product of
u⃗ and v⃗.

43. Show, using the definiƟon of the Cross Product, that u⃗ ×
u⃗ = 0⃗.
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11.5 Lines
To find the equaƟon of a line in the x-y plane, we need two pieces of informaƟon:
a point and the slope. The slope conveys direcƟon informaƟon. As verƟcal lines
have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direcƟon of
the line.

This holds true for lines in space.

Let P be a point in space, let p⃗ be the vector with iniƟal point at the origin
and terminal point at P (i.e., p⃗ “points” to P), and let d⃗ be a vector. Consider the
points on the line through P in the direcƟon of d⃗.

Clearly one point on the line is P; we can say that the vector p⃗ lies at this
point on the line. To find another point on the line, we can start at p⃗ and move
in a direcƟon parallel to d⃗. For instance, starƟng at p⃗ and traveling one length of
d⃗ places one at another point on the line. Consider Figure 11.47 where certain
points along the line are indicated.

Figure 11.47: Defining a line in space.

The figure illustrates how every point on the line can be obtained by starƟng
with p⃗ and moving a certain distance in the direcƟon of d⃗. That is, we can define
the line as a funcƟon of t:

ℓ⃗(t) = p⃗+ t d⃗. (11.8)

In many ways, this is not a new concept. Compare EquaƟon (11.8) to the
familiar “y = mx+ b” equaƟon of a line:

y = b + mx ℓ⃗(t) = p⃗ + t d⃗

StarƟng
Point DirecƟon

How Far To
Go In That
DirecƟon

Figure 11.48: Understanding the vector equaƟon of a line.

The equaƟons exhibit the same structure: they give a starƟng point, define
a direcƟon, and state how far in that direcƟon to travel.

Notes:
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EquaƟon (11.8) is an example of a vector–valued funcƟon; the input of the
funcƟon is a real number and the output is a vector. Wewill cover vector–valued
funcƟons extensively in the next chapter.

There are other ways to represent a line. Let p⃗ = ⟨x0, y0, z0⟩ and let d⃗ =

⟨a, b, c⟩. Then the equaƟon of the line through p⃗ in the direcƟon of d⃗ is:

ℓ⃗(t) = p⃗+ t⃗d
= ⟨x0, y0, z0⟩+ t ⟨a, b, c⟩
= ⟨x0 + at, y0 + bt, z0 + ct⟩ .

The last line states the the x values of the line are given by x = x0 + at, the
y values are given by y = y0 + bt, and the z values are given by z = z0 + ct.
These three equaƟons, taken together, are the parametric equaƟons of the line
through p⃗ in the direcƟon of d⃗.

Finally, each of the equaƟons for x, y and z above contain the variable t. We
can solve for t in each equaƟon:

x = x0 + at ⇒ t =
x− x0

a
,

y = y0 + bt ⇒ t =
y− y0

b
,

z = z0 + ct ⇒ t =
z− z0

c
,

assuming a, b, c ̸= 0. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equaƟons of the line through
p⃗ in the direcƟon of d⃗:

x− x0
a

=
y− y0

b
=

z− z0
c

.

Each representaƟon has its own advantages, depending on the context. We
summarize these three forms in the following definiƟon, then give examples of
their use.
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DefiniƟon 65 EquaƟons of Lines in Space
Consider the line in space that passes through p⃗ = ⟨x0, y0, z0⟩ in the
direcƟon of d⃗ = ⟨a, b, c⟩ .

1. The vector equaƟon of the line is

ℓ⃗(t) = p⃗+ t⃗d.

2. The parametric equaƟons of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct.

3. The symmetric equaƟons of the line are

x− x0
a

=
y− y0

b
=

z− z0
c

.

Watch the video:
Example of Symmetric EquaƟons of a Line at
https://youtu.be/q4wDcrCkkfQ

Example 1 Finding the equaƟon of a line
Give all three equaƟons, as given inDefiniƟon65, of the line throughP = (2, 3, 1)
in the direcƟon of d⃗ = ⟨−1, 1, 2⟩. Does the pointQ = (−1, 6, 6) lie on this line?

SÊ½çã®ÊÄ We idenƟfy the point P = (2, 3, 1) with the vector p⃗ =
⟨2, 3, 1⟩. Following the definiƟon, we have

• the vector equaƟon of the line is ℓ⃗(t) = ⟨2, 3, 1⟩+ t ⟨−1, 1, 2⟩;

• the parametric equaƟons of the line are

x = 2− t, y = 3+ t, z = 1+ 2t; and

• the symmetric equaƟons of the line are

x− 2
−1

=
y− 3
1

=
z− 1
2

.
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The first two equaƟons of the line are useful when a t value is given: one
can immediately find the corresponding point on the line. These forms are good
when calculaƟng with a computer; most soŌware programs easily handle equa-
Ɵons in these formats.

Figure 11.49: Graphing a line in Exam-
ple 1.

Does the point Q = (−1, 6, 6) lie on the line? The graph in Figure 11.49
makes it clear that it does not. We can answer this quesƟon without the graph
using any of the three equaƟon forms. Of the three, the symmetric equaƟons
are probably best suited for this task. Simply plug in the values of x, y and z and
see if equality is maintained:

−1− 2
−1

?
=

6− 3
1

?
=

6− 1
2

⇒ 3 = 3 ̸= 2.5.

Wesee thatQdoes not lie on the line as it did not saƟsfy the symmetric equaƟons.

Example 2 Finding the equaƟon of a line through two points
Find the parametric equaƟons of the line through the points P = (2,−1, 2) and
Q = (1, 3,−1).

SÊ½çã®ÊÄ Recall the statement made at the beginning of this secƟon:
to find the equaƟon of a line, we need a point and a direcƟon. We have two
points; either one will suffice. The direcƟon of the line can be found by the
vector with iniƟal point P and terminal point Q: #  ‰PQ = ⟨−1, 4,−3⟩.

The parametric equaƟons of the line ℓ through P in the direcƟon of #  ‰PQ are:

ℓ : x = 2− t y = −1+ 4t z = 2− 3t.

Figure 11.50: A graph of the line in Exam-
ple 2.

A graph of the points and line are given in Figure 11.50. Note how in the
given parametrizaƟon of the line, t = 0 corresponds to the point P, and t =
1 corresponds to the point Q. This relates to the understanding of the vector
equaƟon of a line described in Figure 11.48. The parametric equaƟons “start”
at the point P, and t determines how far in the direcƟon of #  ‰PQ to travel. When
t = 0, we travel 0 lengths of #  ‰PQ; when t = 1, we travel one length of #  ‰PQ,
resulƟng in the point Q.

Parallel, IntersecƟng and Skew Lines
In the plane, two disƟnct lines can either be parallel or they will intersect at
exactly one point. In space, given equaƟons of two lines, it can someƟmes be
difficult to tell whether the lines are disƟnct or not (i.e., the same line can be
represented in different ways). Given lines ℓ⃗1(t) = p⃗1+ t⃗d1 and ℓ⃗2(t) = p⃗2+ t⃗d2,
we have four possibiliƟes: ℓ⃗1 and ℓ⃗2 are
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the same line they share all points;
intersecƟng lines share only 1 point;
parallel lines d⃗1 ∥ d⃗2, no points in common; or
skew lines d⃗1 ∦ d⃗2, no points in common.

The next two examples invesƟgate these possibiliƟes.

Example 3 Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equaƟon form:

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

SÊ½çã®ÊÄ We start by looking at the direcƟons of each line. Line ℓ1
has the direcƟon given by d⃗1 = ⟨3,−1, 1⟩ and line ℓ2 has the direcƟon given by
d⃗2 = ⟨4, 1, 2⟩. It should be clear that d⃗1 and d⃗2 are not parallel, hence ℓ1 and ℓ2
are not the same line, nor are they parallel. Figure 11.51 verifies this fact (where
the points and direcƟons indicated by the equaƟons of each line are idenƟfied).

Figure 11.51: Sketching the lines from Ex-
ample 3.

We next check to see if they intersect (if they do not, they are skew lines).
To find if they intersect, we look for t and s values such that the respecƟve x, y
and z values are the same. That is, we want s and t such that:

1+ 3t = −2+ 4s
2− t = 3+ s
t = 5+ 2s.

This is a relaƟvely simple system of linear equaƟons. Since the last equaƟon is
already solved for t, subsƟtute that value of t into the equaƟon above it:

2− (5+ 2s) = 3+ s ⇒ s = −2, t = 1.

A key to remember is that we have three equaƟons; we need to check if s =
−2, t = 1 saƟsfies the first equaƟon as well:

1+ 3(1) ̸= −2+ 4(−2).

It does not. Therefore, we conclude that the lines ℓ1 and ℓ2 are skew.

Example 4 Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equaƟon form:

ℓ1 :
x = −0.7+ 1.6t
y = 4.2+ 2.72t
z = 2.3− 3.36t

ℓ2 :
x = 2.8− 2.9s
y = 10.15− 4.93s
z = −5.05+ 6.09s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

Notes:

691




Chapter 11 Vectors

SÊ½çã®ÊÄ It is obviously very difficult to simply look at these equaƟons
and discern anything. This is done intenƟonally. In the “real world,” most equa-
Ɵons that are used do not have nice, integer coefficients.

We again start by deciding whether or not each line has the same direcƟon.
The direcƟon of ℓ1 is given by d⃗1 = ⟨1.6, 2.72,−3.36⟩ and the direcƟon of ℓ2
is given by d⃗2 = ⟨−2.9,−4.93, 6.09⟩. When it is not clear through observaƟon
whether two vectors are parallel or not, the standard way of determining this is
by comparing their respecƟve unit vectors. Using a calculator, we find:

u⃗1 =
d⃗1∥∥∥d⃗1∥∥∥ = ⟨0.3471, 0.5901,−0.7289⟩

u⃗2 =
d⃗2∥∥∥d⃗2∥∥∥ = ⟨−0.3471,−0.5901, 0.7289⟩ .

The two vectors seem to be parallel (at least, their components are equal to
4 decimal places). In most situaƟons, it would suffice to conclude that the lines
are at least parallel, if not the same. One way to be sure is to rewrite d⃗1 and d⃗2
in terms of fracƟons, not decimals. We have

d⃗1 =
⟨
16
10

,
272
100

,−336
100

⟩
d⃗2 =

⟨
−29
10

,−493
100

,
609
100

⟩
.

One can then find the magnitudes of each vector in terms of fracƟons, then
compute the unit vectors likewise. AŌer a lot of manual arithmeƟc (or aŌer
briefly using a computer algebra system), one finds that

u⃗1 =

⟨√
10
83

,
17√
830

,− 21√
830

⟩
u⃗2 =

⟨
−
√

10
83

,− 17√
830

,
21√
830

⟩
.

We can now say without equivocaƟon that these lines are parallel.
Are they the same line? The parametric equaƟons for a line describe one

point that lies on the line, so we know that the point P1 = (−0.7, 4.2, 2.3) lies
on ℓ1. To determine if this point also lies on ℓ2, plug in the x, y and z values of P1
into the symmetric equaƟons for ℓ2:

(−0.7)− 2.8
−2.9

?
=

(4.2)− 10.15
−4.93

?
=

(2.3)− (−5.05)
6.09
⇒ 1.2069 = 1.2069 = 1.2069.

The point P1 lies on both lines, so we conclude they are the same line, just

Figure 11.52: Graphing the lines in Exam-
ple 4.

parametrized differently. Figure 11.52 graphs this line along with the points and
vectors described by the parametric equaƟons. Note how d⃗1 and d⃗2 are parallel,
though point in opposite direcƟons (as indicated by their unit vectors above).

Notes:
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Distances

d⃗

Q

P

h
#‰PQ

θ

Figure 11.53: Establishing the distance
from a point to a line.

Given a point Q and a line ℓ⃗(t) = p⃗ + t⃗d in space, it is oŌen useful to know
the distance from the point to the line. (Here we use the standard definiƟon
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) IdenƟfying p⃗ with the point P, Figure 11.53 will help establish a general
method of compuƟng this distance h.

From trigonometry, we know h =
∥∥ #  ‰PQ

∥∥ sin θ. We have a similar idenƟty
involving the cross product:

∥∥∥ #  ‰PQ× d⃗
∥∥∥ =

∥∥ #  ‰PQ
∥∥ ∥∥∥d⃗∥∥∥ sin θ. Divide both sides of

this laƩer equaƟon by
∥∥∥d⃗∥∥∥ to obtain h:

h =

∥∥∥ #  ‰PQ× d⃗
∥∥∥∥∥∥d⃗∥∥∥ . (11.9)

Figure 11.54: Establishing the distance
between lines.

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
lines ℓ⃗1(t) = p⃗1 + t⃗d1 and ℓ⃗2(t) = p⃗2 + t⃗d2 be given, as shown in Figure 11.54.
To find the direcƟon orthogonal to both d⃗1 and d⃗2, we take the cross product:
c⃗ = d⃗1 × d⃗2. The magnitude of the orthogonal projecƟon of #      ‰P1P2 onto c⃗ is the
distance h we seek:

h =
∥∥proj c⃗ #      ‰P1P2

∥∥
=

∥∥∥∥ #      ‰P1P2 · c⃗
c⃗ · c⃗

c⃗
∥∥∥∥

=

∣∣ #      ‰P1P2 · c⃗
∣∣

∥⃗c∥2
∥⃗c∥

=

∣∣ #      ‰P1P2 · c⃗
∣∣

∥⃗c∥
.

Exercise 30 shows that this distance is 0 when the lines intersect. Note the use
of the Triple Scalar Product: #      ‰P1P2 · c⃗ =

#      ‰P1P2 · (⃗d1 × d⃗2).

The following Key Idea restates these two distance formulas.

Notes:
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Key Idea 53 Distances to Lines

1. Let P be a point on a line ℓ that is parallel to d⃗. The distance h
from a point Q to the line ℓ is:

h =

∥∥∥ #  ‰PQ× d⃗
∥∥∥∥∥∥d⃗∥∥∥ .

2. Let P1 be a point on line ℓ1 that is parallel to d⃗1, and let P2 be a
point on line ℓ2 parallel to d⃗2, and let c⃗ = d⃗1 × d⃗2, where lines ℓ1
and ℓ2 are not parallel. The distance h between the two lines is:

h =

∣∣ #      ‰P1P2 · c⃗
∣∣

∥⃗c∥
.

Example 5 Finding the distance from a point to a line
Find the distance from the point Q = (1, 1, 3) to the line ℓ⃗(t) = ⟨1,−1, 1⟩ +
t ⟨2, 3, 1⟩ .

SÊ½çã®ÊÄ The equaƟon of the line gives us the point P = (1,−1, 1)
that lies on the line, hence #  ‰PQ = ⟨0, 2, 2⟩. The equaƟon also gives d⃗ = ⟨2, 3, 1⟩.
Following Key Idea 53, we have the distance as

h =

∥∥∥ #  ‰PQ× d⃗
∥∥∥∥∥∥d⃗∥∥∥

=
∥⟨−4, 4,−4⟩∥√

14

=
4
√
3√

14
.

The point Q is approximately 1.852 units from the line ℓ⃗(t).

Example 6 Finding the distance between lines
Find the distance between the lines

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

Notes:
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SÊ½çã®ÊÄ These are the sames lines as given in Example 3, where we
showed them to be skew. The equaƟons allow us to idenƟfy the following points
and vectors:

P1 = (1, 2, 0) P2 = (−2, 3, 5) ⇒ #      ‰P1P2 = ⟨−3, 1, 5⟩ .

d⃗1 = ⟨3,−1, 1⟩ d⃗2 = ⟨4, 1, 2⟩ ⇒ c⃗ = d⃗1 × d⃗2 = ⟨−3,−2, 7⟩ .

From Key Idea 53 we have the distance h between the two lines is

h =

∣∣ #      ‰P1P2 · c⃗
∣∣

∥⃗c∥

=
42√
62

.

The lines are approximately 5.334 units apart.

One of the key points to understand from this secƟon is this: to describe a
line, we need a point and a direcƟon. Whenever a problem is posed concern-
ing a line, one needs to take whatever informaƟon is offered and glean point
and direcƟon informaƟon. Many quesƟons can be asked (and are asked in the
exercises) whose answer immediately follows from this understanding.

Lines are one of two fundamental objects of study in space. The other fun-
damental object is the plane, which we study in detail in the next secƟon. Many
complex three dimensional objects are studied by approximaƟng their surfaces
with lines and planes.

Notes:

695



Exercises 11.5
Terms and Concepts
1. To find an equaƟon of a line, what two pieces of informa-

Ɵon are needed?
2. Two disƟnct lines in the plane can intersect or be

.
3. Two disƟnct lines in space can intersect, be or

be .
4. Use your ownwords to describewhat itmeans for two lines

in space to be skew.

Problems
In Exercises 5–14, write the vector, parametric and symmetric
equaƟons of the lines described.

5. Passes through P = (2,−4, 1), parallel to d⃗ = ⟨9, 2, 5⟩.
6. Passes through P = (6, 1, 7), parallel to d⃗ = ⟨−3, 2, 5⟩.
7. Passes through P = (2, 1, 5) and Q = (7,−2, 4).

8. Passes through P = (1,−2, 3) and Q = (5, 5, 5).

9. Passes through P = (0, 1, 2) and orthogonal to both
d⃗1 = ⟨2,−1, 7⟩ and d⃗2 = ⟨7, 1, 3⟩.

10. Passes through P = (5, 1, 9) and orthogonal to both
d⃗1 = ⟨1, 0, 1⟩ and d⃗2 = ⟨2, 0, 3⟩.

11. Passes through the point of intersecƟon of ℓ⃗1(t) and ℓ⃗2(t)
and orthogonal to both lines, where
ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1,−2⟩ and
ℓ⃗2(t) = ⟨−2,−1, 2⟩+ t ⟨3, 1,−1⟩.

12. Passes through the point of intersecƟon of ℓ1(t) and ℓ2(t)
and orthogonal to both lines, where

ℓ1 =


x = t
y = −2+ 2t
z = 1+ t

and ℓ2 =


x = 2+ t
y = 2− t
z = 3+ 2t

.

13. Passes through P = (1, 1), parallel to d⃗ = ⟨2, 3⟩.
14. Passes through P = (−2, 5), parallel to d⃗ = ⟨0, 1⟩.

In Exercises 15–22, determine if the described lines are the
same line, parallel lines, intersecƟng or skew lines. If inter-
secƟng, give the point of intersecƟon.

15. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨−4, 2,−2⟩.

16. ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1, 3⟩,
ℓ⃗2(t) = ⟨14, 5, 9⟩+ t ⟨1, 1, 1⟩.

17. ℓ⃗1(t) = ⟨3, 4, 1⟩+ t ⟨2,−3, 4⟩,
ℓ⃗2(t) = ⟨−3, 3,−3⟩+ t ⟨3,−2, 4⟩.

18. ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨3, 1, 3⟩,
ℓ⃗2(t) = ⟨7, 3, 7⟩+ t ⟨6, 2, 6⟩.

19. ℓ1 =


x = 1+ 2t
y = 3− 2t
z = t

and ℓ2 =


x = 3− t
y = 3+ 5t
z = 2+ 7t

20. ℓ1 =


x = 1.1+ 0.6t
y = 3.77+ 0.9t
z = −2.3+ 1.5t

and

ℓ2 =


x = 3.11+ 3.4t
y = 2+ 5.1t
z = 2.5+ 8.5t

21. ℓ1 =


x = 0.2+ 0.6t
y = 1.33− 0.45t
z = −4.2+ 1.05t

and

ℓ2 =


x = 0.86+ 9.2t
y = 0.835− 6.9t
z = −3.045+ 16.1t

22. ℓ1 =


x = 0.1+ 1.1t
y = 2.9− 1.5t
z = 3.2+ 1.6t

and

ℓ2 =


x = 4− 2.1t
y = 1.8+ 7.2t
z = 3.1+ 1.1t

In Exercises 23–26, find the distance from the point to the line.

23. P = (1, 1, 1), ℓ⃗(t) = ⟨2, 1, 3⟩+ t ⟨2, 1,−2⟩

24. P = (2, 5, 6), ℓ⃗(t) = ⟨−1, 1, 1⟩+ t ⟨1, 0, 1⟩

25. P = (0, 3), ℓ⃗(t) = ⟨2, 0⟩+ t ⟨1, 1⟩

26. P = (1, 1), ℓ⃗(t) = ⟨4, 5⟩+ t ⟨−4, 3⟩

In Exercises 27–28, find the distance between the two lines.

27. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨4, 2,−2⟩.

28. ℓ⃗1(t) = ⟨0, 0, 1⟩+ t ⟨1, 0, 0⟩,
ℓ⃗2(t) = ⟨0, 0, 3⟩+ t ⟨0, 1, 0⟩.

Exercises 29–31 explore special cases of the distance formulas
found in Key Idea 53.

29. Let Q be a point on the line ℓ⃗(t). Show why the distance
formula correctly gives the distance from the point to the
line as 0.

30. Let lines ℓ⃗1(t) and ℓ⃗2(t) be intersecƟng lines. Show why
the distance formula correctly gives the distance between
these lines as 0.

31. Let lines ℓ⃗1(t) and ℓ⃗2(t) be parallel.

(a) Showwhy the distance formula for distance between
lines cannot be used as stated to find the distance
between the lines.

(b) Show why leƫng c⃗ = (
#     ‰P1P2× d⃗2)× d⃗2 allows one to

the use the formula.

(c) Show how one can use the formula for the distance
between a point and a line to find the distance be-
tween parallel lines.
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11.6 Planes
Any flat surface, such as a wall, table top or sƟff piece of cardboard can be
thought of as represenƟng part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and sƟck it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure 11.55.

Figure 11.55: IllustraƟng defining a plane
with a sheet of cardboard and a nail.

This nail provides a “handle” for the cardboard. Moving the cardboard around
moves P to different locaƟons in space. TilƟng the nail (but keeping P fixed) Ɵlts
the cardboard. Both moving and ƟlƟng the cardboard defines a different plane
in space. In fact, we can define a plane by: 1) the locaƟon of P in space, and 2)
the direcƟon of the nail.

The previous secƟon showed that one can define a line given a point on the
line and the direcƟon of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direcƟon the plane “faces” (using the descripƟon above, the
direcƟon of the nail). Once again, the direcƟon informaƟon will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane”mean? Choose any twopoints P
and Q in the plane, and consider the vector #  ‰PQ. We say a vector n⃗ is orthogonal
to the plane if n⃗ is perpendicular to #  ‰PQ for all choices of P and Q; that is, if
n⃗ · #  ‰PQ = 0 for all P and Q.

This gives us way of wriƟng an equaƟon describing the plane. Let P =
(x0, y0, z0) be a point in the plane and let n⃗ = ⟨a, b, c⟩ be a normal vector to
the plane. A point Q = (x, y, z) lies in the plane defined by P and n⃗ if, and only
if, #  ‰PQ is orthogonal to n⃗. Knowing #  ‰PQ = ⟨x− x0, y− y0, z− z0⟩, consider:

#  ‰PQ · n⃗ = 0
⟨x− x0, y− y0, z− z0⟩ · ⟨a, b, c⟩ = 0

a(x− x0) + b(y− y0) + c(z− z0) = 0 (11.10)

EquaƟon (11.10) defines an implicit funcƟon describing the plane. More algebra
produces:

ax+ by+ cz = ax0 + by0 + cz0.

The right hand side is just a number, so we replace it with d:

ax+ by+ cz = d. (11.11)

As long as c ̸= 0, we can solve for z:

z =
1
c
(d− ax− by). (11.12)

Notes:
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EquaƟon (11.12) is especially useful asmany computer programs can graph func-
Ɵons in this form. EquaƟons (11.10) and (11.11) have specific names, given next.

DefiniƟon 66 EquaƟons of a Plane in Standard and General Forms
The plane passing through the point P = (x0, y0, z0)with normal vector
n⃗ = ⟨a, b, c⟩ can be described by an equaƟon with standard form

a(x− x0) + b(y− y0) + c(z− z0) = 0;

the equaƟon’s general form is

ax+ by+ cz = d;

the equaƟon’s vector form is

⟨x, y, z⟩ · n⃗ = ⟨x0, y0, z0⟩ · n⃗ = d.

A key to remember throughout this secƟon is this: to find the equaƟon of a
plane, we need a point and a normal vector. We will give several examples of
finding the equaƟon of a plane, and in each one different types of informaƟon
are given. In each case, we need to use the given informaƟon to find a point on
the plane and a normal vector.

Watch the video:
EquaƟon of a Plane Through Three Points at
https://youtu.be/0MECmEjR2WU

Figure 11.56: Sketching the plane in Ex-
ample 1.

Example 1 Finding the equaƟon of a plane.
Write the equaƟon of the plane that passes through the points P = (1, 1, 0),
Q = (1, 2,−1) and R = (0, 1, 2) in standard form.

SÊ½çã®ÊÄ We need a vector n⃗ that is orthogonal to the plane. Since P,
Q and R are in the plane, so are the vectors #  ‰PQ and # ‰PR; #  ‰PQ × # ‰PR is orthogonal
to #  ‰PQ and # ‰PR and hence the plane itself.

It is straighƞorward to compute n⃗ =
#  ‰PQ × # ‰PR = ⟨2, 1, 1⟩. We can use any

point we wish in the plane (any of P, Q or R will do) and we arbitrarily choose P.

Notes:
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11.6 Planes

Following DefiniƟon 66, the equaƟon of the plane in standard form is

2(x− 1) + (y− 1) + z = 0.

The plane is sketched in Figure 11.56.

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

Example 2 Finding the equaƟon of a plane.
Verify that lines ℓ1 and ℓ2, whose parametric equaƟons are given below, inter-
sect, then give the equaƟon of the plane that contains these two lines in general
form.

ℓ1 :
x = −5+ 2s
y = 1+ s
z = −4+ 2s

ℓ2 :
x = 2+ 3t
y = 1− 2t
z = 1+ t

SÊ½çã®ÊÄ The lines clearly are not parallel. If they do not intersect,
they are skew, meaning there is not a plane that contains them both. If they do
intersect, there is such a plane.

To find their point of intersecƟon, we set the x, y and z equaƟons equal to
each other and solve for s and t:

−5+ 2s = 2+ 3t
1+ s = 1− 2t
−4+ 2s = 1+ t

⇒ s = 2, t = −1.

When s = 2 and t = −1, the lines intersect at the point P = (−1, 3, 0).
Let d⃗1 = ⟨2, 1, 2⟩ and d⃗2 = ⟨3,−2, 1⟩ be the direcƟons of lines ℓ1 and ℓ2,

respecƟvely. A normal vector to the plane containing these the two lines will
also be orthogonal to d⃗1 and d⃗2. Thus we find a normal vector n⃗ by compuƟng
n⃗ = d⃗1 × d⃗2 = ⟨5, 4− 7⟩.

We can pick any point in the plane with which to write our equaƟon; each
line gives us infinite choices of points. We choose P, the point of intersecƟon.
We follow DefiniƟon 66 to write the plane’s equaƟon in general form:

Figure 11.57: Sketching the plane in Ex-
ample 2.

5(x+ 1) + 4(y− 3)− 7z = 0
5x+ 5+ 4y− 12− 7z = 0

5x+ 4y− 7z = 7.

The plane’s equaƟon in general form is 5x + 4y − 7z = 7; it is sketched in
Figure 11.57.

Notes:
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Example 3 Finding the equaƟon of a plane
Give the equaƟon, in standard form, of the plane that passes through the point
P = (−1, 0, 1) and is orthogonal to the linewith vector equaƟon ℓ⃗(t) = ⟨−1, 0, 1⟩+
t ⟨1, 2, 2⟩.

SÊ½çã®ÊÄ As the plane is to be orthogonal to the line, the plane must
be orthogonal to the direcƟon of the line given by d⃗ = ⟨1, 2, 2⟩. We use this as
our normal vector. Thus the plane’s equaƟon, in standard form, is

Figure 11.58: The line and plane in Exam-
ple 3.

(x+ 1) + 2y+ 2(z− 1) = 0.

The line and plane are sketched in Figure 11.58.

Example 4 Finding the intersecƟon of two planes
Give the parametric equaƟons of the line that is the intersecƟon of the planes
p1 and p2, where:

p1 : x− (y− 2) + (z− 1) = 0
p2 : −2(x− 2) + (y+ 1) + (z− 3) = 0

SÊ½çã®ÊÄ To find an equaƟon of a line, we need a point on the line and
the direcƟon of the line.

We can find a point on the line by solving each equaƟon of the planes for z:

p1 : z = −x+ y− 1
p2 : z = 2x− y− 2

We can now set these two equaƟons equal to each other (i.e., we are finding
values of x and y where the planes have the same z value):

−x+ y− 1 = 2x− y− 2
2y = 3x− 1

y =
1
2
(3x− 1)

We can choose any value for x; we choose x = 1. This determines that y = 1.
We can now use the equaƟons of either plane to find z: when x = 1 and y = 1,
z = −1 on both planes. We have found a point P on the line: P = (1, 1,−1).

Figure 11.59: Graphing the planes and
their line of intersecƟon in Example 4.

We now need the direcƟon of the line. Since the line lies in each plane,
its direcƟon is orthogonal to a normal vector for each plane. Considering the
equaƟons for p1 and p2, we can quickly determine their normal vectors. For p1,

Notes:
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n⃗1 = ⟨1,−1, 1⟩ and for p2, n⃗2 = ⟨−2, 1, 1⟩ . A direcƟon orthogonal to both of
these direcƟons is their cross product: d⃗ = n⃗1 × n⃗2 = ⟨−2,−3,−1⟩ .

The parametric equaƟons of the line through P = (1, 1,−1) in the direcƟon
of d = ⟨−2,−3,−1⟩ is:

ℓ : x = −2t+ 1 y = −3t+ 1 z = −t− 1.

The planes and line are graphed in Figure 11.59.

Example 5 Finding the intersecƟon of a plane and a line
Find the point of intersecƟon, if any, of the line ℓ(t) = ⟨3,−3,−1⟩+ t ⟨−1, 2, 1⟩
and the plane with equaƟon in general form 2x+ y+ z = 4.

SÊ½çã®ÊÄ The equaƟonof the plane shows that the vector n⃗ = ⟨2, 1, 1⟩
is a normal vector to the plane, and the equaƟon of the line shows that the line
moves parallel to d⃗ = ⟨−1, 2, 1⟩. Since these are not orthogonal, we know
there is a point of intersecƟon. (If there were orthogonal, it would mean that
the plane and line were parallel to each other, either never intersecƟng or the
line was in the plane itself.)

To find the point of intersecƟon, we need to find a t value such that ℓ(t)
saƟsfies the equaƟon of the plane. RewriƟng the equaƟon of the line with para-
metric equaƟons will help:

ℓ(t) =


x = 3− t
y = −3+ 2t
z = −1+ t

.

Replacing x, y and z in the equaƟon of the planewith the expressions containing

Figure 11.60: IllustraƟng the intersecƟon
of a line and a plane in Example 5.

t found in the equaƟon of the line allows us to determine a t value that indicates
the point of intersecƟon:

2x+ y+ z = 4
2(3− t) + (−3+ 2t) + (−1+ t) = 4

t = 2.

When t = 2, the point on the line saƟsfies the equaƟon of the plane; that point
is ℓ(2) = ⟨1, 1, 1⟩. Thus the point (1, 1, 1) is the point of intersecƟon between
the plane and the line, illustrated in Figure 11.60.

Notes:
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Distances

Just as it was useful to find distances between points and lines in the previous
secƟon, it is also oŌen necessary to find the distance from a point to a plane.

Consider Figure 11.61, where a plane with normal vector n⃗ is sketched con-
taining a point P and a point Q, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projecƟon of #  ‰PQ
onto n⃗. That is, we want:

∥∥proj n⃗ #  ‰PQ
∥∥ =

∥∥∥∥∥ n⃗ ·
#  ‰PQ

∥n⃗∥2
n⃗

∥∥∥∥∥ =

∣∣⃗n · #  ‰PQ
∣∣

∥n⃗∥
(11.13)

EquaƟon (11.13) is important as it doesmore than just give the distance between
a point and a plane. We will see how it allows us to find several other distances
as well: the distance between parallel planes and the distance from a line and a
plane. Because EquaƟon (11.13) is important, we restate it as a Key Idea.

Figure 11.61: IllustraƟng finding the dis-
tance from a point to a plane.

Key Idea 54 Distance from a Point to a Plane
Let a plane with normal vector n⃗ be given, and let Q be a point. The
distance h from Q to the plane is

h =

∣∣⃗n · #  ‰PQ
∣∣

∥n⃗∥
,

where P is any point in the plane.

Example 6 Distance between a point and a plane
Find the distance between the point Q = (2, 1, 4) and the plane with equaƟon
2x− 5y+ 6z = 9.

SÊ½çã®ÊÄ Using the equaƟon of the plane, we find the normal vector
n⃗ = ⟨2,−5, 6⟩. To find a point on the plane, we can let x and y be anything we
choose, then let z be whatever saƟsfies the equaƟon. Leƫng x and y be 0 seems
simple; this makes z = 1.5. Thus we let P = ⟨0, 0, 1.5⟩, and #  ‰PQ = ⟨2, 1, 2.5⟩ .

Notes:
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The distance h from Q to the plane is given by Key Idea 54:

h =

∣∣⃗n · #  ‰PQ
∣∣

∥n⃗∥

=
|⟨2,−5, 6⟩ · ⟨2, 1, 2.5⟩|

∥⟨2,−5, 6⟩∥

=
|14|√
65

=
14√
65

.

We can use Key Idea 54 to find other distances. Given two parallel planes,
we can find the distance between these planes by leƫng P be a point on one
plane and Q a point on the other. If ℓ is a line parallel to a plane, we can use the
Key Idea to find the distance between them as well: again, let P be a point in the
plane and let Q be any point on the line. (One can also use Key Idea 53.) The
exercises contain several problems of these types.

These past two secƟons have not explored lines and planes in space as an ex-
ercise of mathemaƟcal curiosity. However, there are many, many applicaƟons
of these fundamental concepts. Complex shapes can be modeled (or, approxi-
mated) using planes. For instance, part of the exterior of an aircraŌ may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air fricƟon. Many
equaƟons that help determine air flow and heat dissipaƟon are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approximaƟng a surface
with millions of small planes one can more readily model the needed behavior.

Notes:
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Exercises 11.6
Terms and Concepts
1. In order to find the equaƟon of a plane, what two pieces

of informaƟon must one have?
2. What is the relaƟonship between a plane and one of its

normal vectors?

Problems
In Exercises 3–6, give any two points in the given plane.

3. 2x− 4y+ 7z = 2

4. 3(x+ 2) + 5(y− 9)− 4z = 0

5. x = 2

6. 4(y+ 2)− (z− 6) = 0

In Exercises 7–20, give the equaƟon of the described plane in
standard and general forms.

7. Passes through (2, 3, 4) and has normal vector
n⃗ = ⟨3,−1, 7⟩.

8. Passes through (1, 3, 5) and has normal vector
n⃗ = ⟨0, 2, 4⟩.

9. Passes through the points (1, 2, 3), (3,−1, 4) and (1, 0, 1).

10. Passes through the points (5, 3, 8), (6, 4, 9) and (3, 3, 3).

11. Contains the intersecƟng lines
ℓ⃗1(t) = ⟨2, 1, 2⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨2, 1, 2⟩+ t ⟨2, 5, 4⟩.

12. Contains the intersecƟng lines
ℓ⃗1(t) = ⟨5, 0, 3⟩+ t ⟨−1, 1, 1⟩ and
ℓ⃗2(t) = ⟨1, 4, 7⟩+ t ⟨3, 0,−3⟩.

13. Contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨1, 1, 2⟩+ t ⟨1, 2, 3⟩.

14. Contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨4, 1, 3⟩ and
ℓ⃗2(t) = ⟨2, 2, 2⟩+ t ⟨4, 1, 3⟩.

15. Contains the point (2,−6, 1) and the line

ℓ(t) =


x = 2+ 5t
y = 2+ 2t
z = −1+ 2t

16. Contains the point (5, 7, 3) and the line

ℓ(t) =


x = t
y = t
z = t

17. Contains the point (5, 7, 3) and is orthogonal to the line
ℓ⃗(t) = ⟨4, 5, 6⟩+ t ⟨1, 1, 1⟩.

18. Contains the point (4, 1, 1) and is orthogonal to the line

ℓ(t) =


x = 4+ 4t
y = 1+ 1t
z = 1+ 1t

19. Contains the point (−4, 7, 2) and is parallel to the plane
3(x− 2) + 8(y+ 1)− 10z = 0.

20. Contains the point (1, 2, 3) and is parallel to the plane
x = 5.

In Exercises 21–22, give the equaƟon of the line that is the in-
tersecƟon of the given planes.

21. p1 : 3(x− 2) + (y− 1) + 4z = 0, and
p2 : 2(x− 1)− 2(y+ 3) + 6(z− 1) = 0.

22. p1 : 5(x− 5) + 2(y+ 2) + 4(z− 1) = 0, and
p2 : 3x− 4(y− 1) + 2(z− 1) = 0.

In Exercises 23–26, find the point of intersecƟon between the
line and the plane.

23. line: ⟨5, 1,−1⟩+ t ⟨2, 2, 1⟩,
plane: 5x− y− z = −3

24. line: ⟨4, 1, 0⟩+ t ⟨1, 0,−1⟩,
plane: 3x+ y− 2z = 8

25. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = 4

26. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = −4

In Exercises 27–30, find the given distances.

27. The distance from the point (1, 2, 3) to the plane
3(x− 1) + (y− 2) + 5(z− 2) = 0.

28. The distance from the point (2, 6, 2) to the plane
2(x− 1)− y+ 4(z+ 1) = 0.

29. The distance between the parallel planes
x+ y+ z = 0 and
(x− 2) + (y− 3) + (z+ 4) = 0

30. The distance between the parallel planes
2(x− 1) + 2(y+ 1) + (z− 2) = 0 and
2(x− 3) + 2(y− 1) + (z− 3) = 0

31. Show why if the point Q lies in a plane, then the distance
formula correctly gives the distance from the point to the
plane as 0.

32. How is Exercise 30 in SecƟon 11.5 easier to answer once
we have an understanding of planes?
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11.7 Curvilinear Coordinates

(a)

(b)

(c)

Figure 11.62: Cartesian (top), cylindrical
(middle), and spherical (boƩom) coordi-
nate systems

TheCartesian coordinates of a point (x, y, z) are determinedby following straight
paths starƟng from the origin: first along the x-axis, then parallel to the y-axis,
then parallel to the z-axis, as in Figure 11.62(a). In curvilinear coordinate sys-
tems, these paths can be curved. The two types of curvilinear coordinates which
wewill consider are cylindrical and spherical coordinates. Instead of referencing
a point in terms of sides of a rectangular parallelepiped, as with Cartesian co-
ordinates, we will think of the point as lying on a cylinder or sphere. Cylindrical
coordinates are oŌen used when there is symmetry around the z-axis; spherical
coordinates are useful when there is symmetry about the origin.

Let P = (x, y, z) be a point in Cartesian coordinates in R3, and let P0 =
(x, y, 0) be the projecƟon of P upon the xy-plane. TreaƟng (x, y) as a point in
R2, let (r, θ) be its polar coordinates (see Figure 11.62(b)). Let ρ be the length
of the line segment from the origin to P, and let ϕ be the angle between that line
segment and the posiƟve z-axis (see Figure 11.62(c)), which is called the zenith
angle. Then the cylindrical coordinates (r, θ, z) and the spherical coordinates
(ρ, θ,ϕ) of P(x, y, z) are defined as follows:

Key Idea 55 Cylindrical coordinates (r, θ, z)

x = r cos θ r =
√

x2 + y2

y = r sin θ θ = tan−1 ( y
x

)
z = z z = z

where 0 ≤ θ ≤ π if y ≥ 0 and π < θ < 2π if y < 0.

This “standard” definiƟon of spheri-
cal coordinates used by mathemaƟ-
cians results in a leŌ-handed sys-
tem. For this reason, physicists usu-
ally switch the definiƟons of θ and
ϕ to make (ρ, θ,ϕ) a right-handed
system.

Key Idea 56 Spherical coordinates (ρ, θ,ϕ)

x = ρ sinϕ cos θ ρ =
√

x2 + y2 + z2

y = ρ sinϕ sin θ θ = tan−1 ( y
x

)
z = ρ cosϕ ϕ = cos−1

(
z√

x2+y2+z2

)
where 0 ≤ θ ≤ π if y ≥ 0 and π < θ < 2π if y < 0.

Notes:
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Both θ and ϕ are measured in radians. Note that r ≥ 0, 0 ≤ θ < 2π, ρ ≥ 0
and 0 ≤ ϕ ≤ π. Also, θ is undefined when (x, y) = (0, 0), and ϕ is undefined
when (x, y, z) = (0, 0, 0).

Watch the video:
Conversion From Rectangular Coordinates at
https://youtu.be/w9wCdLuklw8

Example 1 ConverƟng Between Coordinate Systems
Convert the point (−2,−2, 1) from Cartesian coordinates to 1. cylindrical and
2. spherical coordinates.

SÊ½çã®ÊÄ
1. r =

√
(−2)2 + (−2)2 = 2

√
2 and θ = tan−1

(
−2
−2

)
= tan−1(1) = 5π

4 ,
since y = −2 < 0. Therefore (r, θ, z) =

(
2
√
2, 5π4 , 1

)
.

2. ρ =
√

(−2)2 + (−2)2 + 12 =
√
9 = 3 and ϕ = cos−1 ( 1

3
)
≈ 1.23

radians. Therefore (ρ, θ,ϕ) =
(
3, 5π4 , 1.23

)
.

For cylindrical coordinates (r, θ, z), and constants r0, θ0 and z0, we see from
Figure 11.63 that the surface r = r0 is a cylinder of radius r0 centered along
the z-axis, the surface θ = θ0 is a half-plane emanaƟng from the z-axis, and the
surface z = z0 is a plane parallel to the xy-plane.

(a) r = r0 (b) θ = θ0 (c) z = z0

Figure 11.63: Cylindrical coordinate surfaces

Notes:
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11.7 Curvilinear Coordinates

For spherical coordinates (ρ, θ,ϕ), and constants ρ0, θ0 and ϕ0, we see from
Figure 11.64 that the surface ρ = ρ0 is a sphere of radius ρ0 centered at the
origin, the surface θ = θ0 is a half-plane emanaƟng from the z-axis, and the
surface ϕ = ϕ0 is a circular cone whose vertex is at the origin.

(a) ρ = ρ0 (b) θ = θ0 (c) ϕ = ϕ0

Figure 11.64: Spherical coordinate surfaces
Figures 11.63(a) and 11.64(a) show how these coordinate systems got their

names.
SomeƟmes the equaƟon of a surface in Cartesian coordinates can be trans-

formed into a simpler equaƟon in some other coordinate system, as in the fol-
lowing example.

Example 2 ConverƟng an EquaƟon in Coordinate Systems
Write the equaƟon of the cylinder x2 + y2 = 4 in cylindrical coordinates.

SÊ½çã®ÊÄ Since r =
√

x2 + y2, then the equaƟon in cylindrical coordi-
nates is r = 2.

Using spherical coordinates to write the equaƟon of a sphere does not nec-
essarily make the equaƟon simpler, if the sphere is not centered at the origin.

Example 3 ConverƟng an EquaƟon to Spherical Coordinates
Write the equaƟon (x− 2)2 + (y− 1)2 + z2 = 9 in spherical coordinates.

SÊ½çã®ÊÄ MulƟplying the equaƟon out gives

x2 + y2 + z2 − 4x− 2y+ 5 = 9 , so we get
ρ2 − 4ρ sinϕ cos θ − 2ρ sinϕ sin θ − 4 = 0 , or

ρ2 − 2 sinϕ(2 cos θ − sin θ)ρ − 4 = 0

Notes:
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aŌer combining terms. Note that this actually makes it more difficult to figure
out what the surface is, as opposed to the Cartesian equaƟon where you could
immediately idenƟfy the surface as a sphere of radius 3 centered at (2, 1, 0).

Example 4 IdenƟfying a Surface
Describe the surface given by θ = z in cylindrical coordinates.

SÊ½çã®ÊÄ This surface is called a helicoid. As the (verƟcal) z coordinate
increases, so does the angle θ, while the radius r is unrestricted. So this sweeps
out a (ruled!) surface shaped like a spiral staircase, where the spiral has an infi-
nite radius. Figure 11.65 shows a secƟon of this surface restricted to 0 ≤ z ≤ 4π
and 0 ≤ r ≤ 2.

Figure 11.65: Helicoid θ = z

Notes:
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Exercises 11.7
Problems
In Exercises 1–4, find the (a) cylindrical and (b) spherical coor-
dinates of the point whose Cartesian coordinates are given.
1. (2, 2

√
3,−1)

2. (−5, 5, 6)
3. (

√
21,−

√
7, 0)

4. (0,
√
2, 2)

In Exercises 5–7, write the given equaƟon in (a) cylindrical and
(b) spherical coordinates.
5. x2 + y2 + z2 = 25
6. x2 + y2 = 2y
7. x2 + y2 + 9z2 = 36
8. Describe the intersecƟon of the surfaces whose equaƟons

in spherical coordinates are θ = π
2 and ϕ = π

4 .
9. Show that for a ̸= 0, the equaƟon ρ = 2a sinϕ cos θ

in spherical coordinates describes a sphere centered at
(a, 0, 0) with radius |a|.

10. Let P = (a, θ,ϕ) be a point in spherical coordinates, with
a > 0 and 0 < ϕ < π. Then P lies on the sphere ρ = a.
Since 0 < ϕ < π, the line segment from the origin to P
can be extended to intersect the cylinder given by r = a (in
cylindrical coordinates). Find the cylindrical coordinates of
that point of intersecƟon.

11. Let P1 and P2 be points whose spherical coordinates are
(ρ1, θ1,ϕ1) and (ρ2, θ2,ϕ2), respecƟvely. Let v⃗1 be the vec-
tor from the origin to P1, and let v⃗2 be the vector from the
origin to P2. For the angle γ between v⃗1 and v⃗2, show that

cos γ = cosϕ1 cosϕ2 + sinϕ1 sinϕ2 cos( θ2 − θ1 ).

This formula is used in electrodynamics to prove the ad-
diƟon theorem for spherical harmonics, which provides a
general expression for the electrostaƟc potenƟal at a point
due to a unit charge.

12. Show that the distance d between the points P1 and P2 with
cylindrical coordinates (r1, θ1, z1) and (r2, θ2, z2), respec-
Ɵvely, is

d =
√

r21 + r22 − 2r1 r2 cos( θ2 − θ1 ) + (z2 − z1)2 .

13. Show that the distance d between the points P1 and P2 with
spherical coordinates (ρ1, θ1,ϕ1) and (ρ2, θ2,ϕ2), respec-
Ɵvely, is

d =
√

ρ21 + ρ22 − 2ρ1 ρ2[sinϕ1 sinϕ2 cos( θ2 − θ1 ) + cosϕ1 cosϕ2] .

709





12: V��ãÊÙ V�½ç�� FçÄ�ã®ÊÄÝ
In the previous chapter, we learned about vectors and were introduced to the
power of vectors within mathemaƟcs. In this chapter, we’ll build on this foun-
daƟon to define funcƟons whose input is a real number and whose output is a
vector. We’ll see how to graph these funcƟons and apply calculus techniques
to analyze their behavior. Most importantly, we’ll see why we are interested in
doing this: we’ll see beauƟful applicaƟons to the study of moving objects.

12.1 Vector–Valued FuncƟons
We are very familiar with real valued funcƟons, that is, funcƟons whose output
is a real number. This secƟon introduces vector–valued funcƟons — funcƟons
whose output is a vector.

DefiniƟon 67 Vector–Valued FuncƟons
A vector–valued funcƟon is a funcƟon of the form

r⃗(t) = ⟨ f(t), g(t) ⟩ or r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ ,

where f, g and h are real valued funcƟons.

The domain of r⃗ is the set of all values of t for which r⃗(t) is defined. The
range of r⃗ is the set of all possible output vectors r⃗(t).

EvaluaƟng and Graphing Vector–Valued FuncƟons

1 2 3 4 5

−3

−2

−1

1

2

3

r⃗(−2)

x

y

(a)

1 2 3 4 5

−3

−2

−1

1

2

3

r⃗(−2)

x

y

(b)

Figure 12.1: Sketching the graph of a
vector–valued funcƟon.

EvaluaƟng a vector–valued funcƟon at a specific value of t is straighƞorward;
simply evaluate each component funcƟon at that value of t. For instance, if
r⃗(t) =

⟨
t2, t2 + t− 1

⟩
, then r⃗(−2) = ⟨4, 1⟩. We can sketch this vector, as is

done in Figure 12.1(a). Ploƫng lots of vectors is cumbersome, though, so gen-
erally we do not sketch the whole vector but just the terminal point. The graph
of a vector–valued funcƟon is the set of all terminal points of r⃗(t), where the
iniƟal point of each vector is always the origin. In Figure 12.1(b) we sketch the
graph of r⃗ ; we can indicate individual points on the graph with their respecƟve
vector, as shown.

Vector–valued funcƟons are closely related to parametric equaƟons of graphs.
While in bothmethods we plot points

(
x(t), y(t)

)
or
(
x(t), y(t), z(t)

)
to produce
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a graph, in the context of vector–valued funcƟons each such point represents a
vector. The implicaƟons of this will be more fully realized in the next secƟon as
we apply calculus ideas to these funcƟons.

Watch the video:
Domain of a Vector–Valued FuncƟon at
https://youtu.be/Djtttm0C7zA

t t3 − t 1
t2 + 1

−2 −6 1/5
−1 0 1/2
0 0 1
1 0 1/2
2 6 1/5

(a)

−6 −4 −2 2 4 6

0.5

1

r⃗(
−
1)

r⃗(2)

x

y

(b)

Figure 12.2: Sketching the vector–valued
funcƟon of Example 1.

Example 1 Graphing vector–valued funcƟons

Graph r⃗(t) =
⟨
t3 − t,

1
t2 + 1

⟩
, for−2 ≤ t ≤ 2. Sketch r⃗(−1) and r⃗(2).

SÊ½çã®ÊÄ We start by making a table of t, x and y values as shown in
Figure 12.2(a). Ploƫng these points gives an indicaƟon of what the graph looks
like. In Figure 12.2(b), we indicate these points and sketch the full graph. We
also highlight r⃗(−1) and r⃗(2) on the graph.

Figure 12.3: Viewing a vector–valued
funcƟon, and its value at one point.

Example 2 Graphing vector–valued funcƟons.
Graph r⃗(t) = ⟨cos t, sin t, t⟩ for 0 ≤ t ≤ 4π.

SÊ½çã®ÊÄ We can again plot points, but careful consideraƟon of this
funcƟon is very revealing. Momentarily ignoring the third component, we see
the x and y components trace out a circle of radius 1 centered at the origin.
NoƟcing that the z component is t, we see that as the graph winds around the
z-axis, it is also increasing at a constant rate in the posiƟve z direcƟon, forming
a spiral. This is graphed in Figure 12.3. In the graph r⃗(7π/4) =

⟨
1√
2 ,−

1√
2 ,

7π
4

⟩
is highlighted to help us understand the graph.

Algebra of Vector–Valued FuncƟons

Notes:
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12.1 Vector–Valued FuncƟons

DefiniƟon 68 OperaƟons on Vector–Valued FuncƟons
Let r⃗1(t) = ⟨f1(t), g1(t)⟩ and r⃗2(t) = ⟨f2(t), g2(t)⟩ be vector–valued
funcƟons in R2 and let c be a scalar. Then:

1. r⃗1(t)± r⃗2(t) = ⟨ f1(t)± f2(t), g1(t)± g2(t) ⟩.

2. c⃗r1(t) = ⟨ cf1(t), cg1(t) ⟩.

A similar definiƟon holds for vector–valued funcƟons in R3.

This definiƟon states that we add, subtract and scale vector-valued funcƟons
component–wise. Combining vector–valued funcƟons in this way can be very
useful (as well as create interesƟng graphs).

−4 −2 2 4
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−2
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4

x

y

(a)

−4 −2 2 4
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x

y

(b)
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−20
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10

20

x

y

(c)

Figure 12.4: Graphing the funcƟons in Ex-
ample 3.

Example 3 Adding and scaling vector–valued funcƟons.
Let r⃗1(t) = ⟨ 0.2t, 0.3t ⟩, r⃗2(t) = ⟨ cos t, sin t ⟩ and r⃗(t) = r⃗1(t) + r⃗2(t). Graph
r⃗1(t), r⃗2(t), r⃗(t) and 5⃗r(t) on−10 ≤ t ≤ 10.

SÊ½çã®ÊÄ We can graph r⃗1 and r⃗2 easily by ploƫng points (or just using
technology). Let’s think about each for a moment to beƩer understand how
vector–valued funcƟons work.

We can rewrite r⃗1(t) = ⟨ 0.2t, 0.3t ⟩ as r⃗1(t) = t ⟨0.2, 0.3⟩. That is, the
funcƟon r⃗1 scales the vector ⟨0.2, 0.3⟩ by t. This scaling of a vector produces a
line in the direcƟon of ⟨0.2, 0.3⟩.

We are familiar with r⃗2(t) = ⟨ cos t, sin t ⟩; it traces out a circle, centered at
the origin, of radius 1. Figure 12.4(a) graphs r⃗1(t) and r⃗2(t).

Adding r⃗1(t) to r⃗2(t) produces r⃗(t) = ⟨ cos t+ 0.2t, sin t+ 0.3t ⟩, graphed
in Figure 12.4(b). The linear movement of the line combines with the circle to
create loops that move in the direcƟon of ⟨0.2, 0.3⟩. (We encourage the reader
to experiment by changing r⃗1(t) to ⟨2t, 3t⟩, etc., and observe the effects on the
loops.)

MulƟplying r⃗(t)by5 scales the funcƟonby 5, producing 5⃗r(t) = ⟨5 cos t+ 1, 5 sin t+ 1.5⟩,
which is graphed in Figure 12.4(c) along with r⃗(t). The new funcƟon is “5 Ɵmes
bigger” than r⃗(t). Note how the graph of 5⃗r(t) in (c) looks idenƟcal to the graph
of r⃗(t) in (b). This is due to the fact that the x and y bounds of the plot in (c) are
exactly 5 Ɵmes larger than the bounds in (b).

Example 4 Adding and scaling vector–valued funcƟons.
A cycloid is a graph traced by a point p on a rolling circle, as shown in Figure 12.6.
Find an equaƟon describing the cycloid, where the circle has radius 1.

Notes:
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Chapter 12 Vector Valued FuncƟons

SÊ½çã®ÊÄ This problem is not very difficult if we approach it in a clever
way. We start by leƫng p⃗(t) describe the posiƟon of the point p on the circle,
where the circle is centered at the origin and only rotates clockwise (i.e., it does
not roll). This is relaƟvely simple given our previous experienceswith parametric
equaƟons; p⃗(t) = ⟨cos t,− sin t⟩.

We now want the circle to roll. We represent this by leƫng c⃗(t) represent
the locaƟon of the center of the circle. It should be clear that the y component
of c⃗(t) should be 1; the center of the circle is always going to be 1 if it rolls on a
horizontal surface.

The x component of c⃗(t) is a linear funcƟon of t: f(t) = mt for some scalarm.
When t = 0, f(t) = 0 (the circle starts centered on the y-axis). When t = 2π,
the circle has made one complete revoluƟon, traveling a distance equal to its
circumference, which is also 2π. This gives us a point on our line f(t) = mt, the
point (2π, 2π). It should be clear thatm = 1 and f(t) = t. So c⃗(t) = ⟨t, 1⟩.

Wenow combine p⃗ and c⃗ together to form the equaƟonof the cycloid: r⃗(t) =
p⃗(t) + c⃗(t) = ⟨cos t+ t,− sin t+ 1⟩, which is graphed in Figure 12.5.

Displacement

5 10 15

5

10

x

y

Figure 12.5: The cycloid in Example 4.

A vector–valued funcƟon r⃗(t) is oŌen used to describe the posiƟon of a moving
object at Ɵme t. At t = t0, the object is at r⃗(t0); at t = t1, the object is at
r⃗(t1). Knowing the locaƟons r⃗(t0) and r⃗(t1) give no indicaƟon of the path taken
between them, but oŌen we only care about the difference of the locaƟons,
r⃗(t1)− r⃗(t0), the displacement.

DefiniƟon 69 Displacement
Let r⃗(t) be a vector–valued funcƟon and let t0 < t1 be values in the
domain. The displacement d⃗ of r⃗, from t = t0 to t = t1, is

d⃗ = r⃗(t1)− r⃗(t0).

p

Figure 12.6: Tracing a cycloid.

Notes:
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12.1 Vector–Valued FuncƟons

When the displacement vector is drawnwith iniƟal point at r⃗(t0), its terminal
point is r⃗(t1). We think of it as the vector which points from a starƟng posiƟon
to an ending posiƟon.

Example 5 Finding and graphing displacement vectors
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
. Graph r⃗(t) on−1 ≤ t ≤ 1, and find the displace-

ment of r⃗(t) on this interval.

SÊ½çã®ÊÄ The funcƟon r⃗(t) traces out the unit circle, though at a dif-
ferent rate than the “usual” ⟨cos t, sin t⟩ parametrizaƟon. At t0 = −1, we have
r⃗(t0) = ⟨0,−1⟩; at t1 = 1, we have r⃗(t1) = ⟨0, 1⟩. The displacement of r⃗(t) on
[−1, 1] is thus d⃗ = ⟨0, 1⟩ − ⟨0,−1⟩ = ⟨0, 2⟩ .

−1 1

−1

1

d⃗

x

y

Figure 12.6: Graphing the displacement
of a posiƟon funcƟon in Example 5.

A graph of r⃗(t) on [−1, 1] is given in Figure 12.6, along with the displacement
vector d⃗ on this interval.

Measuring displacement makes us contemplate related, yet very different,
concepts. Considering the semi–circular path the object in Example 5 took, we
can quickly verify that the object ended up a distance of 2 units from its iniƟal
locaƟon. That is, we can compute

∥∥∥d⃗∥∥∥ = 2. However, measuring distance from
the starƟng point is different from measuring distance traveled. Being a semi–
circle, we can measure the distance traveled by this object as π units. Knowing
distance from the starƟng point allows us to compute average rate of change.

DefiniƟon 70 Average Rate of Change
Let r⃗(t) be a vector–valued funcƟon, where each of its component func-
Ɵons is conƟnuous on its domain, and let t0 < t1. The average rate of
change of r⃗(t) on [t0, t1] is

average rate of change =
r⃗(t1)− r⃗(t0)

t1 − t0
.

Example 6 Average rate of change
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
as in Example 5. Find the average rate of change

of r⃗(t) on [−1, 1] and on [−1, 5].

SÊ½çã®ÊÄ We computed in Example 5 that the displacement of r⃗(t) on
[−1, 1] was d⃗ = ⟨0, 2⟩. Thus the average rate of change of r⃗(t) on [−1, 1] is:

r⃗(1)− r⃗(−1)
1− (−1)

=
⟨0, 2⟩
2

= ⟨0, 1⟩ .

Notes:
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We interpret this as follows: the object followed a semi–circular path, meaning
it moved towards the right then moved back to the leŌ, while climbing slowly,
then quickly, then slowly again. On average, however, it progressed straight up
at a constant rate of ⟨0, 1⟩ per unit of Ɵme.

We canquickly see that the displacement on [−1, 5] is the sameas on [−1, 1],
so d⃗ = ⟨0, 2⟩. The average rate of change is different, though:

r⃗(5)− r⃗(−1)
5− (−1)

=
⟨0, 2⟩
6

= ⟨0, 1/3⟩ .

As it took “3 Ɵmes as long” to arrive at the same place, this average rate of
change on [−1, 5] is 1/3 the average rate of change on [−1, 1].

We considered average rates of change in SecƟons 1.1 and 2.1 as we studied
limits and derivaƟves. The same is true here; in the following secƟon we apply
calculus concepts to vector–valued funcƟons as we find limits, derivaƟves, and
integrals. Understanding the average rate of change will give us an understand-
ing of the derivaƟve; displacement gives us one applicaƟon of integraƟon.

Notes:
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Exercises 12.1
Terms and Concepts
1. Vector–valued funcƟons are closely related to

of graphs.
2. When sketching vector–valued funcƟons, technically one

isn’t graphing points, but rather .
3. It can be useful to think of as a vector that points

from a starƟng posiƟon to an ending posiƟon.

Problems
In Exercises 4–11, sketch the vector–valued funcƟon on the
given interval.

4. r⃗(t) =
⟨
t2, t2 − 1

⟩
, for−2 ≤ t ≤ 2.

5. r⃗(t) =
⟨
t2, t3

⟩
, for−2 ≤ t ≤ 2.

6. r⃗(t) =
⟨
1/t, 1/t2

⟩
, for−2 ≤ t ≤ 2.

7. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

8. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

9. r⃗(t) = ⟨3 sin(πt), 2 cos(πt)⟩, on [0, 2].
10. r⃗(t) = ⟨3 cos t, 2 sin(2t)⟩, on [0, 2π].
11. r⃗(t) = ⟨2 sec t, tan t⟩, on [−π, π].

In Exercises 12–15, sketch the vector–valued funcƟon on the
given interval in R3. Technology may be useful in creaƟng the
sketch.

12. r⃗(t) = ⟨2 cos t, t, 2 sin t⟩, on [0, 2π].
13. r⃗(t) = ⟨3 cos t, sin t, t/π⟩ on [0, 2π].
14. r⃗(t) = ⟨cos t, sin t, sin t⟩ on [0, 2π].
15. r⃗(t) = ⟨cos t, sin t, sin(2t)⟩ on [0, 2π].

In Exercises 16–19, find ∥⃗r(t)∥.

16. r⃗(t) =
⟨
t, t2
⟩
.

17. r⃗(t) = ⟨5 cos t, 3 sin t⟩.
18. r⃗(t) = ⟨2 cos t, 2 sin t, t⟩.
19. r⃗(t) =

⟨
cos t, t, t2

⟩
.

In Exercises 20–27, create a vector–valued funcƟon whose
graph matches the given descripƟon.

20. A circle of radius 2, centered at (1, 2), traced counter–
clockwise once on [0, 2π].

21. A circle of radius 3, centered at (5, 5), traced clockwise
once on [0, 2π].

22. An ellipse, centered at (0, 0) with verƟcal major axis of
length 10 and minor axis of length 3, traced once counter–
clockwise on [0, 2π].

23. An ellipse, centered at (3,−2)with horizontalmajor axis of
length 6 and minor axis of length 4, traced once clockwise
on [0, 2π].

24. A line through (2, 3) with a slope of 5.

25. A line through (1, 5) with a slope of−1/2.

26. A verƟcally oriented helix with radius of 2 that starts at
(2, 0, 0) and ends at (2, 0, 4π) aŌer 1 revoluƟon on [0, 2π].

27. A verƟcally oriented helix with radius of 3 that starts at
(3, 0, 0) and ends at (3, 0, 3) aŌer 2 revoluƟons on [0, 1].

In Exercises 28–31, find the average rate of change of r⃗(t) on
the given interval.

28. r⃗(t) =
⟨
t, t2
⟩
on [−2, 2].

29. r⃗(t) = ⟨t, t+ sin t⟩ on [0, 2π].

30. r⃗(t) = ⟨3 cos t, 2 sin t, t⟩ on [0, 2π].

31. r⃗(t) =
⟨
t, t2, t3

⟩
on [−1, 3].
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12.2 Calculus and Vector–Valued FuncƟons

The previous secƟon introduced us to a new mathemaƟcal object, the vector–
valued funcƟon. We now apply calculus concepts to these funcƟons. We start
with the limit, then work our way through derivaƟves to integrals.

Limits of Vector–Valued FuncƟons

The iniƟal definiƟon of the limit of a vector–valued funcƟon is a bit inƟmidaƟng,
as was the definiƟon of the limit in DefiniƟon 1. The theorem following the
definiƟon shows that in pracƟce, taking limits of vector–valued funcƟons is no
more difficult than taking limits of real–valued funcƟons.

DefiniƟon 71 Limits of Vector–Valued FuncƟons
Let I be an open interval containing c, and let r⃗(t) be a vector–valued
funcƟon defined on I, except possibly at c. The limit of r⃗(t), as t ap-
proaches c, is L⃗, expressed as

lim
t→c

r⃗(t) = L⃗,

means that given any ε > 0, there exists a δ > 0 such that for all t ̸= c,
if |t− c| < δ, we have

∥∥∥⃗r(t)− L⃗
∥∥∥ < ε.

Note how the measurement of distance between real numbers is the abso-
lute value of their difference; the measure of distance between vectors is the
vector norm, or magnitude, of their difference.

Notes:
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Theorem 91 Limits of Vector–Valued FuncƟons

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩ be a vector–valued funcƟon in R2 defined
on an open interval I containing c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t)
⟩
.

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ be a vector–valued funcƟon in R3

defined on an open interval I containing c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t) , lim
t→c

h(t)
⟩

Theorem 91 states that we compute limits component–wise.

Example 1 Finding limits of vector–valued funcƟons

Let r⃗(t) =
⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Find lim

t→0
r⃗(t).

SÊ½çã®ÊÄ Weapply the theoremand compute limits component–wise.

lim
t→0

r⃗(t) =
⟨
lim
t→0

sin t
t

, lim
t→0

t2 − 3t+ 3 , lim
t→0

cos t
⟩

= ⟨1, 3, 1⟩ .

ConƟnuity

DefiniƟon 72 ConƟnuity of Vector–Valued FuncƟons
Let r⃗(t) be a vector–valued funcƟon defined on an open interval I con-
taining c.

1. r⃗(t) is conƟnuous at c if lim
t→c

r⃗(t) = r⃗(c).

2. If r⃗(t) is conƟnuous at all c in I, then r⃗(t) is conƟnuous on I.

We again have a theorem that lets us evaluate conƟnuity component–wise.

Notes:
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Theorem 92 ConƟnuity of Vector–Valued FuncƟons
Let r⃗(t) be a vector–valued funcƟon defined on an open interval I con-
taining c. Then r⃗(t) is conƟnuous at c if, and only if, each of its compo-
nent funcƟons is conƟnuous at c.

Example 2 EvaluaƟng conƟnuity of vector–valued funcƟons

Let r⃗(t) =

⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Determine whether r⃗ is conƟnuous at

t = 0 and t = 1.

SÊ½çã®ÊÄ While the second and third components of r⃗(t) are defined
at t = 0, the first component, (sin t)/t, is not. Since the first component is not
even defined at t = 0, r⃗(t) is not defined at t = 0, and hence it is not conƟnuous
at t = 0.

At t = 1 each of the component funcƟons is conƟnuous. Therefore r⃗(t) is
conƟnuous at t = 1.

DerivaƟves

Consider a vector–valued funcƟon r⃗ defined on an open interval I containing
t0 and t1. We can compute the displacement of r⃗ on [t0, t1], as shown in Fig-
ure 12.7(a). Recall that dividing the displacement vector by t1 − t0 gives the
average rate of change on [t0, t1], as shown in (b).

r⃗(t0) r⃗(t1)

r⃗(t1) − r⃗(t0)

r⃗(t0) r⃗(t1)

r⃗(t1)−⃗r(t0)
t1−t0

r⃗ ′(t0)

(a) (b)

Figure 12.7: IllustraƟng displacement, leading to an understanding of the derivaƟve of
vector–valued funcƟons.

The derivaƟve of a vector–valued funcƟon is ameasure of the instantaneous
rate of change, measured by taking the limit as the length of [t0, t1] goes to 0.
Instead of thinking of an interval as [t0, t1], we think of it as [c, c + h] for some

Notes:
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value of h (hence the interval has length h). The average rate of change is

r⃗(c+ h)− r⃗(c)
h

for any value of h ̸= 0. We take the limit as h→ 0 tomeasure the instantaneous
rate of change; this is the derivaƟve of r⃗.

DefiniƟon 73 DerivaƟve of a Vector–Valued FuncƟon
Let r⃗(t) be conƟnuous on an open interval I containing c.

1. The derivaƟve of r⃗ at t = c is

r⃗ ′(c) = lim
h→0

r⃗(c+ h)− r⃗(c)
h

.

2. The derivaƟve of r⃗ is

r⃗ ′(t) = lim
h→0

r⃗(t+ h)− r⃗(t)
h

.

Alternate notaƟons for the derivaƟve
of r⃗ include:

r⃗ ′(t) =
d
dt
(
r⃗(t)

)
=

d⃗r
dt
.

If a vector–valued funcƟon has a derivaƟve for all c in an open interval I, we
say that r⃗(t) is differenƟable on I.

Once again we might view this definiƟon as inƟmidaƟng, but recall that we
can evaluate limits component–wise. The following theorem verifies that this
means we can compute derivaƟves component–wise as well, making the task
not too difficult.

Theorem 93 DerivaƟves of Vector–Valued FuncƟons

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g ′(t) ⟩ .

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g ′(t), h ′(t) ⟩ .

Notes:
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Watch the video:
Limit and DerivaƟve of Vector FuncƟon at
https://youtu.be/238wiC0U7NE

−4 −2 2 4

−2

−1

1

2
r⃗(t)

r⃗ ′(t)

x

y

(a)

−4 −2 2 4

−2

−1

1

2

r⃗ ′(1)

r⃗ ′(1)

x

y

(b)

Figure 12.8: Graphing the derivaƟve of a
vector–valued funcƟon in Example 3.

Example 3 DerivaƟves of vector–valued funcƟons
Let r⃗(t) =

⟨
t2, t
⟩
.

1. Sketch r⃗(t) and r⃗ ′(t) on the same axes.

2. Compute r⃗ ′(1) and sketch this vector with its iniƟal point at the origin and
at r⃗(1).

SÊ½çã®ÊÄ

1. Theorem 93 allows us to compute derivaƟves component–wise, so

r⃗ ′(t) = ⟨2t, 1⟩ .

r⃗(t) and r⃗ ′(t) are graphed together in Figure 12.8(a). Note how ploƫng
the two of these together, in this way, is not very illuminaƟng. When
dealing with real–valued funcƟons, ploƫng f(x) with f ′(x) gave us useful
informaƟon as we were able to compare f and f ′ at the same x-values.
When dealing with vector–valued funcƟons, it is hard to tell which points
on the graph of r⃗ ′ correspond to which points on the graph of r⃗.

2. We easily compute r⃗ ′(1) = ⟨2, 1⟩, which is drawn in Figure 12.8 with its
iniƟal point at the origin, as well as at r⃗(1) = ⟨1, 1⟩ . These are sketched
in Figure 12.8(b).

Figure 12.9: Viewing a vector–valued
funcƟon and its derivaƟve at one point.

Example 4 DerivaƟves of vector–valued funcƟons
Let r⃗(t) = ⟨cos t, sin t, t⟩. Compute r⃗ ′(t) and r⃗ ′(π/2). Sketch r⃗ ′(π/2) with its
iniƟal point at the origin and at r⃗(π/2).

SÊ½çã®ÊÄ We compute r⃗ ′ as r⃗ ′(t) = ⟨− sin t, cos t, 1⟩. At t = π/2,
we have r⃗ ′(π/2) = ⟨−1, 0, 1⟩. Figure 12.9 shows a graph of r⃗(t), with r⃗ ′(π/2)
ploƩed with its iniƟal point at the origin and at r⃗(π/2).

Notes:
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12.2 Calculus and Vector–Valued FuncƟons

In Examples 3 and 4, sketching a parƟcular derivaƟve with its iniƟal point
at the origin did not seem to reveal anything significant. However, when we
sketched the vectorwith its iniƟal point on the corresponding point on the graph,
we did see something significant: the vector appeared to be tangent to the
graph. We have not yet defined what “tangent” means in terms of curves in
space; in fact, we use the derivaƟve to define this term.

DefiniƟon 74 Tangent Vector, Tangent Line
Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I
containing c, where r⃗ ′(c) ̸= 0⃗.

1. A vector v⃗ is tangent to the graph of r⃗(t) at t = c if v⃗ is parallel to
r⃗ ′(c).

2. The tangent line to the graph of r⃗(t) at t = c is the line through
r⃗(c) with direcƟon parallel to r⃗ ′(c). An equaƟon of the tangent
line is

ℓ⃗(t) = r⃗(c) + t r⃗ ′(c).

Figure 12.10: Graphing a curve in space
with its tangent line.

Example 5 Finding tangent lines to curves in space
Let r⃗(t) =

⟨
t, t2, t3

⟩
on [−1.5, 1.5]. Find the vector equaƟon of the line tangent

to the graph of r⃗ at t = −1.

SÊ½çã®ÊÄ To find the equaƟon of a line, we need a point on the line
and the line’s direcƟon. The point is given by r⃗(−1) = ⟨−1, 1,−1⟩. (To be clear,
⟨−1, 1,−1⟩ is a vector, not a point, but we use the point “pointed to” by this
vector.)

The direcƟon comes from r⃗ ′(−1). We compute, component–wise, r⃗ ′(t) =⟨
1, 2t, 3t2

⟩
. Thus r⃗ ′(−1) = ⟨1,−2, 3⟩.

The vector equaƟon of the line is ℓ(t) = ⟨−1, 1,−1⟩+ t ⟨1,−2, 3⟩. This line
and r⃗(t) are sketched in Figure 12.10.

−2 2

−2

2 r⃗(t)

ℓ⃗(t)

x

y

Figure 12.11: Graphing r⃗(t) and its tan-
gent line in Example 6.

Example 6 Finding tangent lines to curves
Find the equaƟons of the lines tangent to r⃗(t) =

⟨
t3, t2

⟩
at t = −1 and t = 0.

SÊ½çã®ÊÄ We find that r⃗ ′(t) =
⟨
3t2, 2t

⟩
. At t = −1, we have

r⃗(−1) = ⟨−1, 1⟩ and r⃗ ′(−1) = ⟨3,−2⟩ ,

Notes:
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so the equaƟon of the line tangent to the graph of r⃗(t) at t = −1 is

ℓ(t) = ⟨−1, 1⟩+ t ⟨3,−2⟩ .

This line is graphed with r⃗(t) in Figure 12.11.
At t = 0, we have r⃗ ′(0) = ⟨0, 0⟩ = 0⃗. This implies that the tangent line “has

no direcƟon.” We cannot apply DefiniƟon 74, hence cannot find the equaƟon of
the tangent line.

We were unable to compute the equaƟon of the tangent line to r⃗(t) =⟨
t3, t2

⟩
at t = 0 because r⃗ ′(0) = 0⃗. The graph in Figure 12.11 shows that there

is a cusp at this point. This leads us to another definiƟon of smooth, previously
defined by DefiniƟon 48 in SecƟon 10.2.

DefiniƟon 75 Smooth Vector–Valued FuncƟons
Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval
I. Then r⃗(t) is smooth on I if r⃗ ′(t) is conƟnuous and r⃗ ′(t) ̸= 0⃗ on I.

Having established derivaƟves of vector–valued funcƟons, we now explore
the relaƟonships between the derivaƟve and other vector operaƟons. The fol-
lowing theorem states how the derivaƟve interacts with vector addiƟon and the
various vector products.

Note: Because the order is important
when compuƟng a cross product, we
must maintain the correct order of
the funcƟons in rule 5.

Theorem 94 Properies of DerivaƟves of Vector–Valued FuncƟons
Let r⃗ and s⃗ be differenƟable vector–valued funcƟons, let f be a differen-
Ɵable real–valued funcƟon, and let c be a real number.

1.
d
dt

(⃗
r(t)± s⃗(t)

)
= r⃗ ′(t)± s⃗ ′(t)

2.
d
dt

(
c⃗r(t)

)
= c⃗r ′(t)

3. d
dt

(
f(t)⃗r(t)

)
= f ′(t)⃗r(t) + f(t)⃗r ′(t) Product Rule

4. d
dt

(⃗
r(t) · s⃗(t)

)
= r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t) Product Rule

5. d
dt

(⃗
r(t)× s⃗(t)

)
= r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t) Product Rule

6. d
dt

(⃗
r
(
f(t)
))

= r⃗ ′
(
f(t)
)
f ′(t) Chain Rule

Notes:
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Example 7 Using derivaƟve properƟes of vector–valued funcƟons
Let r⃗(t) =

⟨
t, t2 − 1

⟩
and let u⃗(t) be the unit vector that points in the direcƟon

of r⃗(t).

1. Graph r⃗(t) and u⃗(t) on the same axes, on [−2, 2].

2. Find u⃗ ′(t) and sketch u⃗ ′(−2), u⃗ ′(−1) and u⃗ ′(0). Sketch each with iniƟal
point the corresponding point on the graph of u⃗.

SÊ½çã®ÊÄ

1. To form the unit vector that points in the direcƟon of r⃗, we need to divide
r⃗(t) by its magnitude.

∥⃗r(t)∥ =
√

t2 + (t2 − 1)2 ⇒ u⃗(t) =
1√

t2 + (t2 − 1)2
⟨
t, t2 − 1

⟩
.

r⃗(t) and u⃗(t) are graphed in Figure 12.12. Note how the graph of u⃗(t)
forms part of a circle; this must be the case, as the length of u⃗(t) is 1 for
all t.

−2 2

−1

1

2

3

r⃗(t)
u⃗(t)

x

y

Figure 12.12: Graphing r⃗(t) and u⃗(t) in Ex-
ample 7.

2. To compute u⃗ ′(t), we use Theorem 94, wriƟng

u⃗(t) = f(t)⃗r(t), where f(t) =
1√

t2 + (t2 − 1)2
=
(
t2+(t2−1)2

)−1/2
.

(We could write

u⃗(t) =

⟨
t√

t2 + (t2 − 1)2
,

t2 − 1√
t2 + (t2 − 1)2

⟩
and then take the derivaƟve. It is amaƩer of preference; this laƩermethod
requires two applicaƟons of theQuoƟent Rulewhere ourmethod uses the
Product and Chain Rules.)
We find f ′(t) using the Chain Rule:

f ′(t) = −1
2
(
t2 + (t2 − 1)2

)−3/2(2t+ 2(t2 − 1)(2t)
)

= − 2t(2t2 − 1)
2
(√

t2 + (t2 − 1)2
)3

We now find u⃗ ′(t) using part 3 of Theorem 94:

u⃗ ′(t) = f ′(t)⃗u(t) + f(t)⃗u ′(t)

= − 2t(2t2 − 1)
2
(√

t2 + (t2 − 1)2
)3 ⟨t, t2 − 1

⟩
+

1√
t2 + (t2 − 1)2

⟨1, 2t⟩ .

Notes:
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This is admiƩedly very “messy;” such is usually the case when we deal
with unit vectors. We can use this formula to compute u⃗ ′(−2), u⃗ ′(−1)
and u⃗ ′(0):

u⃗ ′(−2) =
⟨
− 15
13
√
13

,− 10
13
√
13

⟩
u⃗ ′(−1) = ⟨0,−2⟩
u⃗ ′(0) = ⟨1, 0⟩

Each of these is sketched in Figure 12.13. Note how the length of the

−1 1

−2

−1

1

u⃗(t)

x

y

Figure 12.13: Graphing some of the
derivaƟves of u⃗(t) in Example 7.

vector gives an indicaƟon of how quickly the circle is being traced at that
point. When t = −2, the circle is being drawn relaƟvely slow; when t =
−1, the circle is being traced much more quickly.

It is a basic geometric fact that a line tangent to a circle at a point P is per-
pendicular to the line passing through the center of the circle and P. This is
illustrated in Figure 12.13; each tangent vector is perpendicular to the line that
passes through its iniƟal point and the center of the circle. Since the center of
the circle is the origin, we can state this another way: u⃗ ′(t) is orthogonal to u⃗(t).

Recall that the dot product serves as a test for orthogonality: if u⃗ · v⃗ = 0,
then u⃗ is orthogonal to v⃗. Thus in the above example, u⃗(t) · u⃗ ′(t) = 0.

This is true of any vector–valued funcƟon that has a constant length, that is,
that traces out part of a circle. It has important implicaƟons later on, so we state
it as a theorem (and leave its formal proof as Exercise 42.)

Theorem 95 Vector–Valued FuncƟons of Constant Length
Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval
I of constant length. That is, ∥⃗r(t)∥ = c for all t in I (equivalently, r⃗(t) ·
r⃗(t) = c2 for all t in I). Then r⃗(t) · r⃗ ′(t) = 0 for all t in I.

IntegraƟon

Indefinite and definite integrals of vector–valued funcƟons are also evaluated
component–wise.

Notes:
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Theorem96 Indefinite and Definite Integrals of Vector–Valued
FuncƟons

Let r⃗(t) = ⟨f(t), g(t)⟩ be a vector–valued funcƟon in R2.

1.
ˆ

r⃗(t) dt =
⟨ˆ

f(t) dt,
ˆ

g(t) dt
⟩

2.
ˆ b

a
r⃗(t) dt =

⟨ˆ b

a
f(t) dt,

ˆ b

a
g(t) dt

⟩

Let r⃗(t) = ⟨f(t), g(t), h(t)⟩ be a vector–valued funcƟon in R3.

1.
ˆ

r⃗(t) dt =
⟨ˆ

f(t) dt,
ˆ

g(t) dt,
ˆ

h(t) dt
⟩

2.
ˆ b

a
r⃗(t) dt =

⟨ˆ b

a
f(t) dt,

ˆ b

a
g(t) dt,

ˆ b

a
h(t) dt

⟩

Example 8 EvaluaƟng a definite integral of a vector–valued funcƟon

Let r⃗(t) =
⟨
e2t, sin t

⟩
. Evaluate

ˆ 1

0
r⃗(t) dt.

SÊ½çã®ÊÄ We follow Theorem 96.ˆ 1

0
r⃗(t) dt =

ˆ 1

0

⟨
e2t, sin t

⟩
dt

=

⟨ˆ 1

0
e2t dt ,

ˆ 1

0
sin t dt

⟩
=

⟨
1
2
e2t
∣∣∣1
0
,− cos t

∣∣∣1
0

⟩
=

⟨
1
2
(e2 − 1) ,− cos(1) + 1

⟩
.

Example 9 Solving an iniƟal value problem
Let r⃗ ′′(t) = ⟨2, cos t, 12t⟩. Find r⃗(t) where:

• r⃗(0) = ⟨−7,−1, 2⟩ and

• r⃗ ′(0) = ⟨5, 3, 0⟩ .

Notes:
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SÊ½çã®ÊÄ Knowing r⃗ ′′(t) = ⟨2, cos t, 12t⟩, we find r⃗ ′(t) by evaluaƟng
the indefinite integral.

ˆ
r⃗ ′′(t) dt =

⟨ˆ
2 dt ,

ˆ
cos t dt ,

ˆ
12t dt

⟩
=
⟨
2t+ C1, sin t+ C2, 6t2 + C3

⟩
=
⟨
2t, sin t, 6t2

⟩
+ ⟨C1, C2, C3⟩

=
⟨
2t, sin t, 6t2

⟩
+ C⃗.

Note how each indefinite integral creates its own constant which we collect as
one constant vector C⃗. Knowing r⃗ ′(0) = ⟨5, 3, 0⟩ allows us to solve for C⃗:

r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ C⃗

r⃗ ′(0) = ⟨0, 0, 0⟩+ C⃗

⟨5, 3, 0⟩ = C⃗.

So r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ ⟨5, 3, 0⟩ =

⟨
2t+ 5, sin t+ 3, 6t2

⟩
. To find r⃗(t),

we integrate once more.

ˆ
r⃗ ′(t) dt =

⟨ˆ
2t+ 5 dt,

ˆ
sin t+ 3 dt,

ˆ
6t2 dt

⟩
=
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗.

With r⃗(0) = ⟨−7,−1, 2⟩, we solve for C⃗:

r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗

r⃗(0) = ⟨0,−1, 0⟩+ C⃗

⟨−7,−1, 2⟩ = ⟨0,−1, 0⟩+ C⃗

⟨−7, 0, 2⟩ = C⃗.

Therefore,

r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ ⟨−7, 0, 2⟩

=
⟨
t2 + 5t− 7,− cos t+ 3t, 2t3 + 2

⟩
.

What does the integraƟon of a vector–valued funcƟon mean? There are
many applicaƟons, but none as direct as “the area under the curve” that we
used in understanding the integral of a real–valued funcƟon.

Notes:
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A key understanding for us comes from considering the integral of a deriva-
Ɵve: ˆ b

a
r⃗ ′(t) dt = r⃗(t)

∣∣∣b
a
= r⃗(b)− r⃗(a).

IntegraƟng a rate of change funcƟon gives displacement.
NoƟng that vector–valued funcƟons are closely related to parametric equa-

Ɵons, we can describe the arc length of the graph of a vector–valued funcƟon
as an integral. Given parametric equaƟons x = f(t), y = g(t), the arc length on
[a, b] of the graph is

Arc Length =

ˆ b

a

√
f ′(t)2 + g ′(t)2 dt,

as stated in Theorem84 in SecƟon10.3. If r⃗(t) = ⟨f(t), g(t)⟩, note that
√

f ′(t)2 + g ′(t)2 =
∥⃗r ′(t)∥. Therefore we can express the arc length of the graph of a vector–valued
funcƟon as an integral of the magnitude of its derivaƟve.

Theorem 97 Arc Length of a Vector–Valued FuncƟon
Let r⃗(t) be a vector–valued funcƟon where r⃗ ′(t) is conƟnuous on [a, b].
The arc length L of the graph of r⃗(t) is

L =
ˆ b

a
∥⃗r ′(t)∥ dt.

Note that we are actually integraƟng a scalar–funcƟon here, not a vector–
valued funcƟon.

The next secƟon takes what we have established thus far and applies it to
objects in moƟon. We will let r⃗(t) describe the path of an object in the plane or
in space and will discover the informaƟon provided by r⃗ ′(t) and r⃗ ′′(t).

Notes:
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Exercises 12.2
Terms and Concepts
1. Limits, derivaƟves and integrals of vector–valued funcƟons

are all evaluated –wise.
2. The definite integral of a rate of change funcƟon gives

.
3. Why is it generally not useful to graph both r⃗(t) and r⃗ ′(t)

on the same axes?

Problems
In Exercises 4–7, evaluate the given limit.

4. lim
t→5

⟨
2t+ 1, 3t2 − 1, sin t

⟩
5. lim

t→3

⟨
et, t

2 − 9
t+ 3

⟩
6. lim

t→0

⟨ t
sin t

, (1+ t)
1
t

⟩
7. lim

h→0

r⃗(t+ h)− r⃗(t)
h

, where r⃗(t) =
⟨
t2, t, 1

⟩
.

In Exercises 8–9, idenƟfy the interval(s) on which r⃗(t) is con-
Ɵnuous.

8. r⃗(t) =
⟨
t2, 1/t

⟩
9. r⃗(t) =

⟨
cos t, et, ln t

⟩
In Exercises 10–14, find the derivaƟve of the given funcƟon.

10. r⃗(t) =
⟨
cos t, et, ln t

⟩
11. r⃗(t) =

⟨
1
t
,
2t− 1
3t+ 1

, tan t
⟩

12. r⃗(t) = (t2) ⟨sin t, 2t+ 5⟩
13. r⃗(t) =

⟨
t2 + 1, t− 1

⟩
· ⟨sin t, 2t+ 5⟩

14. r⃗(t) =
⟨
t2 + 1, t− 1, 1

⟩
× ⟨sin t, 2t+ 5, 1⟩

In Exercises 15–18, find r⃗ ′(t). Sketch r⃗(t) and r⃗ ′(1), with the
iniƟal point of r⃗ ′(1) at r⃗(1).

15. r⃗(t) =
⟨
t2 + t, t2 − t

⟩
16. r⃗(t) =

⟨
t2 − 2t+ 2, t3 − 3t2 + 2t

⟩
17. r⃗(t) =

⟨
t2 + 1, t3 − t

⟩
18. r⃗(t) =

⟨
t2 − 4t+ 5, t3 − 6t2 + 11t− 6

⟩
In Exercises 19–22, give the equaƟon of the line tangent to the
graph of r⃗(t) at the given t value.

19. r⃗(t) =
⟨
t2 + t, t2 − t

⟩
at t = 1.

20. r⃗(t) = ⟨3 cos t, sin t⟩ at t = π/4.
21. r⃗(t) = ⟨3 cos t, 3 sin t, t⟩ at t = π.
22. r⃗(t) =

⟨
et, tan t, t

⟩
at t = 0.

In Exercises 23–26, find the value(s) of t for which r⃗(t) is not
smooth.

23. r⃗(t) = ⟨cos t, sin t− t⟩
24. r⃗(t) =

⟨
t2 − 2t+ 1, t3 + t2 − 5t+ 3

⟩
25. r⃗(t) = ⟨cos t− sin t, sin t− cos t, cos(4t)⟩
26. r⃗(t) =

⟨
t3 − 3t+ 2,− cos(πt), sin2(πt)

⟩
Exercises 27–29 ask you to verify parts of Theorem 94. In each
let f(t) = t3, r⃗(t) =

⟨
t2, t− 1, 1

⟩
and s⃗(t) =

⟨
sin t, et, t

⟩
.

Compute the various derivaƟves as indicated.

27. Simplify f(t)⃗r(t), then find its derivaƟve; show this is the
same as f ′(t)⃗r(t) + f(t)⃗r ′(t).

28. Simplify r⃗(t) · s⃗(t), then find its derivaƟve; show this is the
same as r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t).

29. Simplify r⃗(t)× s⃗(t), then find its derivaƟve; show this is the
same as r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t).

In Exercises 30–33, evaluate the given definite or indefinite in-
tegral.

30.
ˆ ⟨

t3, cos t, tet
⟩
dt

31.
ˆ ⟨

1
1+ t2

, sec2 t
⟩

dt

32.
ˆ π

0
⟨− sin t, cos t⟩ dt

33.
ˆ 2

−2
⟨2t+ 1, 2t− 1⟩ dt

In Exercises 34–37, solve the given iniƟal value problems.

34. Find r⃗(t), given that r⃗ ′(t) = ⟨t, sin t⟩ and r⃗(0) = ⟨2, 2⟩.
35. Find r⃗(t), given that r⃗ ′(t) = ⟨1/(t+ 1), tan t⟩ and

r⃗(0) = ⟨1, 2⟩.
36. Find r⃗(t), given that r⃗ ′′(t) =

⟨
t2, t, 1

⟩
,

r⃗ ′(0) = ⟨1, 2, 3⟩ and r⃗(0) = ⟨4, 5, 6⟩.
37. Find r⃗(t), given that r⃗ ′′(t) =

⟨
cos t, sin t, et

⟩
,

r⃗ ′(0) = ⟨0, 0, 0⟩ and r⃗(0) = ⟨0, 0, 0⟩.

In Exercises 38–41, find the arc length of r⃗(t) on the indicated
interval.

38. r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩ on [0, 2π].

39. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩ on [0, 2π].

40. r⃗(t) =
⟨
t3, t2, t3

⟩
on [0, 1].

41. r⃗(t) =
⟨
e−t cos t, e−t sin t

⟩
on [0, 1].

42.
Prove Theorem 95; that is, show if r⃗(t) has constant length
and is differenƟable, then r⃗(t) · r⃗ ′(t) = 0. (Hint: use the
Product Rule to compute d

dt

(⃗
r(t) · r⃗(t)

)
.)
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12.3 The Calculus of MoƟon
A common use of vector–valued funcƟons is to describe themoƟon of an object
in the plane or in space. A posiƟon funcƟon r⃗(t) gives the posiƟon of an object
at Ɵme t. This secƟon explores how derivaƟves and integrals are used to study
the moƟon described by such a funcƟon.

DefiniƟon 76 Velocity, Speed and AcceleraƟon
Let r⃗(t) be a posiƟon funcƟon in R2 or R3.

1. Velocity, denoted v⃗(t), is the instantaneous rate of posiƟon
change; that is, v⃗(t) = r⃗ ′(t).

2. Speed is the magnitude of velocity, ∥⃗v(t)∥.

3. AcceleraƟon, denoted a⃗(t), is the instantaneous rate of velocity
change; that is, a⃗(t) = v⃗ ′(t) = r⃗ ′′(t).

Watch the video:
Example of PosiƟon, Velocity and AcceleraƟon in
Three Space at
https://youtu.be/gD2R4Jqw6dQ

Example 1 Finding velocity and acceleraƟon
An object is moving with posiƟon funcƟon r⃗(t) =

⟨
t2 − t, t2 + t

⟩
, −3 ≤ t ≤ 3,

where distances are measured in feet and Ɵme is measured in seconds.

1. Find v⃗(t) and a⃗(t).

2. Sketch r⃗(t); plot v⃗(−1), a⃗(−1), v⃗(1) and a⃗(1), each with their iniƟal point
at their corresponding point on the graph of r⃗(t).

3. When is the object’s speed minimized?

SÊ½çã®ÊÄ
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1. Taking derivaƟves, we find

v⃗(t) = r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩ and a⃗(t) = r⃗ ′′(t) = ⟨2, 2⟩ .

Note that acceleraƟon is constant.

2. v⃗(−1) = ⟨−3,−1⟩, a⃗(−1) = ⟨2, 2⟩; v⃗(1) = ⟨1, 3⟩, a⃗(1) = ⟨2, 2⟩.
These are ploƩed with r⃗(t) in Figure 12.14(a).

5 10

5

10

x

y

(a)

5 10

5

10

x

y

(b)

Figure 12.14: Graphing the posiƟon, ve-
locity and acceleraƟon of an object in Ex-
ample 1.

We can think of acceleraƟon as “pulling” the velocity vector in a certain
direcƟon. At t = −1, the velocity vector points down and to the leŌ; at
t = 1, the velocity vector has been pulled in the ⟨2, 2⟩ direcƟon and is
now poinƟng up and to the right. In Figure 12.14(b) we plot more veloc-
ity/acceleraƟon vectors, making more clear the effect acceleraƟon has on
velocity.
Since a⃗(t) is constant in this example, as t grows large v⃗(t) becomes almost
parallel to a⃗(t). For instance, when t = 10, v⃗(10) = ⟨19, 21⟩, which is
nearly parallel to ⟨2, 2⟩.

3. The object’s speed is given by

∥⃗v(t)∥ =
√

(2t− 1)2 + (2t+ 1)2 =
√
8t2 + 2.

To find the minimal speed, we could apply calculus techniques (such as
set the derivaƟve equal to 0 and solve for t, etc.) but we can find it by
inspecƟon. Inside the square root we have a quadraƟc which is minimized
when t = 0. Thus the speed is minimized at t = 0, with a speed of

√
2

Ō/s.
The graph in Figure 12.14(b) also implies speed is minimized here. The
filled dots on the graph are located at integer values of t between −3
and 3. Dots that are far apart imply the object traveled a far distance in
1 second, indicaƟng high speed; dots that are close together imply the
object did not travel far in 1 second, indicaƟng a low speed. The dots are
closest together near t = 0, implying the speed is minimized near that
value.

Example 2 Analyzing MoƟon
Two objects follow an idenƟcal path at different rates on [−1, 1]. The posiƟon
funcƟon for Object 1 is r⃗1(t) =

⟨
t, t2
⟩
; the posiƟon funcƟon for Object 2 is

r⃗2(t) =
⟨
t3, t6

⟩
, where distances are measured in feet and Ɵme is measured

in seconds. Compare the velocity, speed and acceleraƟon of the two objects on
the path.

Notes:
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SÊ½çã®ÊÄ We begin by compuƟng the velocity and acceleraƟon func-
Ɵon for each object:

v⃗1(t) = ⟨1, 2t⟩ v⃗2(t) =
⟨
3t2, 6t5

⟩
a⃗1(t) = ⟨0, 2⟩ a⃗2(t) =

⟨
6t, 30t4

⟩
We immediately see that Object 1 has constant acceleraƟon, whereas Object 2
does not.

At t = −1, we have v⃗1(−1) = ⟨1,−2⟩ and v⃗2(−1) = ⟨3,−6⟩; the velocity
of Object 2 is three Ɵmes that of Object 1 and so it follows that the speed of
Object 2 is three Ɵmes that of Object 1 (3

√
5 Ō/s compared to

√
5 Ō/s.)

−2 −1 1 2

−1

1

2

3

x

y

Figure 12.15: Ploƫng velocity and accel-
eraƟon vectors for Object 1 in Example 2.

At t = 0, the velocity of Object 1 is v⃗(1) = ⟨1, 0⟩ and the velocity of Object
2 is 0⃗. This tells us that Object 2 comes to a complete stop at t = 0.

In Figure 12.15, we see the velocity and acceleraƟon vectors for Object 1
ploƩed for t = −1,−1/2, 0, 1/2 and t = 1. Note again how the constant accel-
eraƟon vector seems to “pull” the velocity vector from poinƟng down, right to
up, right. We could plot the analogous picture for Object 2, but the velocity and
acceleraƟon vectors are rather large (⃗a2(−1) = ⟨−6, 30⟩).

Instead, we simply plot the locaƟons of Object 1 and 2 on intervals of 1/5th
of a second, shown in Figure 12.16(a) and (b). Note how the x-values of Object
1 increase at a steady rate. This is because the x-component of a⃗(t) is 0; there is
no acceleraƟon in the x-component. The dots are not evenly spaced; the object
is moving faster near t = −1 and t = 1 than near t = 0.

−1 −0.5 0.5 1

0.5

1

r⃗1(t)

x

y

(a)

−1 −0.5 0.5 1

0.5

1

r⃗2(t)

x

y

(b)

Figure 12.16: Comparing the posiƟons of
Objects 1 and 2 in Example 2.

In part (b) of the Figure, we see the points ploƩed for Object 2. Note the
large change in posiƟon from t = −1 to t = −0.8; the object starts moving very
quickly. However, it slows considerably at it approaches the origin, and comes
to a complete stop at t = 0. While it looks like there are 3 points near the origin,
there are in reality 5 points there.

Since the objects begin and end at the same locaƟon, they have the same
displacement. Since they begin and end at the same Ɵme, with the same dis-
placement, they have the same average rate of change (i.e, they have the same
average velocity). Since they follow the same path, they have the same distance
traveled. Even though these three measurements are the same, the objects ob-
viously travel the path in very different ways.

Example 3 Analyzing the moƟon of a whirling ball on a string
A young boy whirls a ball, aƩached to a string, above his head in a counter-
clockwise circle. The ball follows a circular path and makes 2 revoluƟons per
second. The string has length 2Ō.

1. Find the posiƟon funcƟon r⃗(t) that describes this situaƟon.

Notes:

733



Chapter 12 Vector Valued FuncƟons

2. Find the acceleraƟon of the ball and derive a physical interpretaƟon of it.

3. A tree stands 10Ō in front of the boy. At what t-values should the boy
release the string so that the ball hits the tree?

SÊ½çã®ÊÄ

1. The ball whirls in a circle. Since the string is 2Ō long, the radius of the
circle is 2. The posiƟon funcƟon r⃗(t) = ⟨2 cos t, 2 sin t⟩ describes a circle
with radius 2, centered at the origin, but makes a full revoluƟon every
2π seconds, not two revoluƟons per second. Wemodify the period of the
trigonometric funcƟons to be 1/2 bymulƟplying t by 4π. The final posiƟon
funcƟon is thus

r⃗(t) = ⟨2 cos(4πt), 2 sin(4πt)⟩ .

(Plot this for 0 ≤ t ≤ 1/2 to verify that one revoluƟon is made in 1/2 a
second.)

2. To find a⃗(t), we derive r⃗(t) twice.

v⃗(t) = r⃗ ′(t) = ⟨−8π sin(4πt), 8π cos(4πt)⟩
a⃗(t) = r⃗ ′′(t) =

⟨
−32π2 cos(4πt),−32π2 sin(4πt)

⟩
= −32π2 ⟨cos(4πt), sin(4πt)⟩ .

Note how a⃗(t) is parallel to r⃗(t), but has a different magnitude and points
in the opposite direcƟon. Why is this?
Recall the classic physics equaƟon, “Force=mass× acceleraƟon.” A force
acƟng on a mass induces acceleraƟon (i.e., the mass moves); acceleraƟon
acƟng on a mass induces a force (gravity gives our mass a weight). Thus
force and acceleraƟon are closely related. A moving ball “wants” to travel
in a straight line. Why does the ball in our example move in a circle? It is
aƩached to the boy’s handby a string. The string applies a force to the ball,
affecƟng it’s moƟon: the string accelerates the ball. This is not accelera-
Ɵon in the sense of “it travels faster;” rather, this acceleraƟon is changing
the velocity of the ball. In what direcƟon is this force/acceleraƟon being
applied? In the direcƟon of the string, towards the boy’s hand.
Themagnitude of the acceleraƟon is related to the speed at which the ball
is traveling. A ball whirling quickly is rapidly changing direcƟon/velocity.
When velocity is changing rapidly, the acceleraƟon must be “large.”

3. When the boy releases the string, the string no longer applies a force to
the ball, meaning acceleraƟon is 0⃗ and the ball can nowmove in a straight
line in the direcƟon of v⃗(t).

Notes:
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Let t = t0 be the Ɵme when the boy lets go of the string. The ball will be
at r⃗(t0), traveling in the direcƟon of v⃗(t0). We want to find t0 so that this
line contains the point (0, 10) (since the tree is 10Ō directly in front of the
boy).

2Ō

⟨0, 10⟩
−

r⃗(t0 )

Figure 12.17: Modeling the flight of a ball
in Example 3.

There are many ways to find this Ɵme value. We choose one that is rela-
Ɵvely simple computaƟonally. As shown in Figure 12.17, the vector from
the release point to the tree is ⟨0, 10⟩− r⃗(t0). This line segment is tangent
to the circle, which means it is also perpendicular to r⃗(t0) itself, so their
dot product is 0.

r⃗(t0) ·
(
⟨0, 10⟩ − r⃗(t0)

)
= 0

⟨2 cos(4πt0), 2 sin(4πt0)⟩ · ⟨−2 cos(4πt0), 10− 2 sin(4πt0)⟩ = 0
−4 cos2(4πt0) + 20 sin(4πt0)− 4 sin2(4πt0) = 0

20 sin(4πt0)− 4 = 0
sin(4πt0) = 1/5

4πt0 = sin−1(1/5)
4πt0 ≈ 0.2+ 2πn

t0 ≈ 0.016+ n/2

where n is an integer. This means that every 1/2 second aŌer t = 0.016s
the boy can release the string (since the ball makes 2 revoluƟons per sec-
ond, he has two chances each second to release the ball).

Example 4 Analyzing moƟon in space
An object moves in a spiral with posiƟon funcƟon r⃗(t) = ⟨cos t, sin t, t⟩, where
distances are measured in meters and Ɵme is in minutes. Describe the object’s
speed and acceleraƟon at Ɵme t.

SÊ½çã®ÊÄ With r⃗(t) = ⟨cos t, sin t, t⟩, we have:

v⃗(t) = ⟨− sin t, cos t, 1⟩ and
a⃗(t) = ⟨− cos t,− sin t, 0⟩ .

The speed of the object is ∥⃗v(t)∥ =
√
(− sin t)2 + cos2 t+ 1 =

√
2m/min;

it moves at a constant speed. Note that the object does not accelerate in the
z-direcƟon, but rather moves up at a constant rate of 1m/min.

Notes:
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Theobjects in Examples 3 and4 traveled at a constant speed. That is, ∥⃗v(t)∥ =
c for some constant c. Recall Theorem 95, which states that if a vector–valued
funcƟon r⃗(t) has constant length, then r⃗(t) is perpendicular to its derivaƟve:
r⃗(t) · r⃗ ′(t) = 0. In these examples, the velocity funcƟon has constant length,
therefore we can conclude that the velocity is perpendicular to the acceleraƟon:
v⃗(t) · a⃗(t) = 0. A quick check verifies this.

There is an intuiƟve understanding of this. If acceleraƟon is parallel to veloc-
ity, then it is only affecƟng the object’s speed; it does not change the direcƟon
of travel. (For example, consider a dropped stone. AcceleraƟon and velocity are
parallel – straight down – and the direcƟon of velocity never changes, though
speed does increase.) If acceleraƟon is not perpendicular to velocity, then there
is some acceleraƟon in the direcƟon of travel, influencing the speed. If speed
is constant, then acceleraƟon must be orthogonal to velocity, as it then only
affects direcƟon, and not speed.

Key Idea 57 Objects With Constant Speed
If an object moves with constant speed, then its velocity and accelera-
Ɵon vectors are orthogonal. That is, v⃗(t) · a⃗(t) = 0.

ProjecƟle MoƟon

An important applicaƟon of vector–valued posiƟon funcƟons is projecƟle mo-
Ɵon: the moƟon of objects under only the influence of gravity. We will measure
Ɵme in seconds, and distances will either be in meters or feet. We will show
that we can completely describe the path of such an object knowing its iniƟal
posiƟon and iniƟal velocity (i.e., where it is and where it is going.)

Suppose an object has iniƟal posiƟon r⃗(0) = ⟨x0, y0⟩ and iniƟal velocity
v⃗(0) = ⟨vx, vy⟩. It is customary to rewrite v⃗(0) in terms of its speed v0 and
direcƟon u⃗, where u⃗ is a unit vector. Recall all unit vectors in R2 can be wriƩen
as ⟨cos θ, sin θ⟩, where θ is an angle measure counter–clockwise from the x-axis.
(We refer to θ as the angle of elevaƟon.) Thus v⃗(0) = v0 ⟨cos θ, sin θ⟩ .

Since the acceleraƟon of the object is known, namely a⃗(t) = ⟨0,−g⟩, where
g is the gravitaƟonal constant, we can find r⃗(t) knowing our two iniƟal condi-
Ɵons. We first find v⃗(t):

Note: In this text we use g = 32Ō/s2
when using Imperial units, and g =
9.8m/s2 when using SI units.

Notes:

736



12.3 The Calculus of MoƟon

v⃗(t) =
ˆ

a⃗(t) dt

v⃗(t) =
ˆ
⟨0,−g⟩ dt

v⃗(t) = ⟨0,−gt⟩+ C⃗.

Knowing v⃗(0) = v0 ⟨cos θ, sin θ⟩, we have C⃗ = v0 ⟨cos θ, sin θ⟩ and so

v⃗(t) =
⟨
v0 cos θ,−gt+ v0 sin θ

⟩
.

We integrate once more to find r⃗(t):

r⃗(t) =
ˆ

v⃗(t) dt

r⃗(t) =
ˆ ⟨

v0 cos θ,−gt+ v0 sin θ
⟩
dt

r⃗(t) =
⟨(

v0 cos θ
)
t,−1

2
gt2 +

(
v0 sin θ

)
t
⟩
+ C⃗.

Knowing r⃗(0) = ⟨x0, y0⟩, we conclude C⃗ = ⟨x0, y0⟩ and

r⃗(t) =
⟨(

v0 cos θ
)
t+ x0 ,−

1
2
gt2 +

(
v0 sin θ

)
t+ y0

⟩
. (12.1)

We demonstrate how to use this posiƟon funcƟon in the next two examples.

Example 5 ProjecƟle MoƟon
Sydney shoots her Red Ryder® bb gun across level ground from an elevaƟon of
4Ō, where the barrel of the gun makes a 5◦ angle with the horizontal. Find how
far the bb travels before landing, assuming the bb is fired at the adverƟsed rate
of 350Ō/s and ignoring air resistance.

SÊ½çã®ÊÄ A direct applicaƟon of EquaƟon (12.1) gives

r⃗(t) =
⟨
(350 cos 5◦)t,−16t2 + (350 sin 5◦)t+ 4

⟩
≈
⟨
346.67t,−16t2 + 30.50t+ 4

⟩
,

wherewe set her iniƟal posiƟon to be ⟨0, 4⟩. We need to findwhen the bb lands,
then we can find where. We accomplish this by seƫng the y-component equal
to 0 and solving for t:

−16t2 + 30.50t+ 4 = 0

t =
−30.50±

√
30.502 − 4(−16)(4)
−32

t ≈ 2.03s.

Notes:
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(We discarded a negaƟve soluƟon that resulted from our quadraƟc equaƟon.)
We have found that the bb lands 2.03s aŌer firing; with t = 2.03, we find

the x-component of our posiƟon funcƟon is 346.67(2.03) = 703.74Ō. The bb
lands about 704 feet away.

Example 6 ProjecƟle MoƟon
Alex holds his sister’s bb gun at a height of 3Ō and wants to shoot a target that
is 6Ō above the ground, 25Ō away. At what angle should he hold the gun to hit
his target? (We sƟll assume the muzzle velocity is 350Ō/s.)

SÊ½çã®ÊÄ The posiƟon funcƟon for the path of Alex’s bb is

r⃗(t) =
⟨
(350 cos θ)t,−16t2 + (350 sin θ)t+ 3

⟩
.

We need to find θ so that r⃗(t) = ⟨25, 6⟩ for some value of t. That is, we want to
find θ and t such that

(350 cos θ)t = 25 and − 16t2 + (350 sin θ)t+ 3 = 6.

This is not trivial (though not “hard”). We start by solving each equaƟon for cos θ
and sin θ, respecƟvely.

cos θ =
25
350t

and sin θ =
3+ 16t2

350t
.

Using the Pythagorean IdenƟty cos2 θ + sin2 θ = 1, we have(
25
350t

)2

+

(
3+ 16t2

350t

)2

= 1

MulƟply both sides by (350t)2:

252 + (3+ 16t2)2 = 3502t2

256t4 − 122, 404t2 + 634 = 0.

This is a quadraƟc in t2. That is, we can apply the quadraƟc formula to find t2,
then solve for t itself.

t2 =
122, 404±

√
122, 4042 − 4(256)(634)

512
t2 = 0.0052, 478.135
t = ±0.072, ±21.866

Notes:
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Clearly the negaƟve t values do not fit our context, so we have t = 0.072 and
t = 21.866. Using cos θ = 25/(350t), we can solve for θ:

θ = cos−1
(

25
350 · 0.072

)
and cos−1

(
25

350 · 21.866

)
θ = 7.03◦ and 89.8◦.

Alex has two choices of angle. He can hold the rifle at an angle of about 7◦ with
the horizontal and hit his target 0.07s aŌer firing, or he can hold his rifle almost
straight up, with an angle of 89.8◦, where he’ll hit his target about 22s later. The
first opƟon is clearly the opƟon he should choose.

Distance Traveled
Consider a driverwho sets her cruise–control to 60mph, and travels at this speed
for an hour. We can ask:

1. How far did the driver travel?

2. How far from her starƟng posiƟon is the driver?

The first is easy to answer: she traveled 60 miles. The second is impossible to
answer with the given informaƟon. We do not know if she traveled in a straight
line, on an oval racetrack, or along a slowly–winding highway.

This highlights an important fact: to compute distance traveled, we need
only to know the speed, given by ∥⃗v(t)∥.

Theorem 98 Distance Traveled
Let v⃗(t) be a velocity funcƟon for amoving object. The distance traveled
by the object on [a, b] is:

distance traveled =

ˆ b

a
∥⃗v(t)∥ dt.

Note that this is just a restatement of Theorem 97: arc length is the same as
distance traveled, just viewed in a different context.

Example 7 Distance Traveled, Displacement, and Average Speed
AparƟclemoves in spacewith posiƟon funcƟon r⃗(t) =

⟨
t, t2, sin(πt)

⟩
on [−2, 2],

where t is measured in seconds and distances are in meters. Find:

Notes:
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1. The distance traveled by the parƟcle on [−2, 2].

2. The displacement of the parƟcle on [−2, 2].

3. The parƟcle’s average speed.

SÊ½çã®ÊÄ

1. We use Theorem 98 to establish the integral:

Figure 12.18: The path of the parƟcle in
Example 7.

distance traveled =

ˆ 2

−2
∥⃗v(t)∥ dt

=

ˆ 2

−2

√
1+ (2t)2 + π2 cos2(πt) dt.

This cannot be solved in terms of elementary funcƟons so we turn to nu-
merical integraƟon, finding the distance to be 12.88 m.

2. The displacement is the vector

r⃗(2)− r⃗(−2) = ⟨2, 4, 0⟩ − ⟨−2, 4, 0⟩ = ⟨4, 0, 0⟩ .

That is, the parƟcle ends with an x-value increased by 4 and with y- and
z-values the same (see Figure 12.18).

3. We found above that the parƟcle traveled 12.88 m over 4 seconds. We
can compute average speed by dividing: 12.88/4 = 3.22 m/s.
We should also consider DefiniƟon 25 of SecƟon 5.4, which says that the
average value of a funcƟon f on [a, b] is 1

b−a

´ b
a f(x) dx. In our context, the

average value of the speed is

average speed =
1

2− (−2)

ˆ 2

−2
∥⃗v(t)∥ dt ≈ 1

4
12.88 = 3.22m/s.

Note how the physical context of a parƟcle traveling gives meaning to a
more abstract concept learned earlier.

In DefiniƟon 25 of Chapter 5 we defined the average value of a funcƟon f(x)
on [a, b] to be

1
b− a

ˆ b

a
f(x) dx.

Note how in Example 7 we computed the average speed as

distance traveled
travel Ɵme

=
1

2− (−2)

ˆ 2

−2
∥⃗v(t)∥ dt;

Notes:
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that is, we just found the average value of ∥⃗v(t)∥ on [−2, 2].
Likewise, given posiƟon funcƟon r⃗(t), the average velocity on [a, b] is

displacement
travel Ɵme

=
1

b− a

ˆ b

a
r⃗ ′(t) dt =

r⃗(b)− r⃗(a)
b− a

;

that is, it is the average value of r⃗ ′(t), or v⃗(t), on [a, b].

Key Idea 58 Average Speed, Average Velocity
Let r⃗(t) be a conƟnuous posiƟon funcƟon on an open interval I con-
taining a < b.

The average speed is:

distance traveled
travel Ɵme

=

´ b
a ∥⃗v(t)∥ dt
b− a

=
1

b− a

ˆ b

a
∥⃗v(t)∥ dt.

The average velocity is:

displacement
travel Ɵme

=

´ b
a r⃗ ′(t) dt
b− a

=
1

b− a

ˆ b

a
r⃗ ′(t) dt.

The next two secƟons invesƟgate more properƟes of the graphs of vector–
valued funcƟons and we’ll apply these new ideas to what we just learned about
moƟon.

Notes:
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Exercises 12.3
Terms and Concepts

1. How is velocity different from speed?

2. What is the difference between displacement and distance
traveled?

3. What is the difference between average velocity and aver-
age speed?

4. Distance traveled is the same as , just
viewed in a different context.

5. Describe a scenario where an object’s average speed is a
large number, but the magnitude of the average velocity is
not a large number.

6. Explain why it is not possible to have an average velocity
with a large magnitude but a small average speed.

Problems

In Exercises 7–10, a posiƟon funcƟon r⃗(t) is given. Find v⃗(t)
and a⃗(t).

7. r⃗(t) = ⟨2t+ 1, 5t− 2, 7⟩
8. r⃗(t) =

⟨
3t2 − 2t+ 1,−t2 + t+ 14

⟩
9. r⃗(t) = ⟨cos t, sin t⟩

10. r⃗(t) = ⟨t/10,− cos t, sin t⟩

In Exercises 11–14, a posiƟon funcƟon r⃗(t) is given. Sketch r⃗(t)
on the indicated interval. Find v⃗(t) and a⃗(t), then add v⃗(t0)
and a⃗(t0) to your sketch, with their iniƟal points at r⃗(t0), for
the given value of t0.

11. r⃗(t) = ⟨t, sin t⟩ on [0, π/2]; t0 = π/4

12. r⃗(t) =
⟨
t2, sin t2

⟩
on [0, π/2]; t0 =

√
π/4

13. r⃗(t) =
⟨
t2 + t,−t2 + 2t

⟩
on [−2, 2]; t0 = 1

14. r⃗(t) =
⟨
2t+ 3
t2 + 1

, t2
⟩
on [−1, 1]; t0 = 0

In Exercises 15–24, a posiƟon funcƟon r⃗(t) of an object is given.
Find the speed of the object in terms of t, and find where the
speed is minimized/maximized on the indicated interval.

15. r⃗(t) =
⟨
t2, t
⟩
on [−1, 1]

16. r⃗(t) =
⟨
t2, t2 − t3

⟩
on [−1, 1]

17. r⃗(t) = ⟨5 cos t, 5 sin t⟩ on [0, 2π]

18. r⃗(t) = ⟨2 cos t, 5 sin t⟩ on [0, 2π]

19. r⃗(t) = ⟨sec t, tan t⟩ on [0, π/4]

20. r⃗(t) = ⟨t+ cos t, 1− sin t⟩ on [0, 2π]

21. r⃗(t) = ⟨12t, 5 cos t, 5 sin t⟩ on [0, 4π]

22. r⃗(t) =
⟨
t2 − t, t2 + t, t

⟩
on [0, 1]

23. r⃗(t) =
⟨
t, t2,

√
1− t2

⟩
on [−1, 1]

24. ProjecƟle MoƟon: r⃗(t) =⟨
(v0 cos θ)t,−

1
2
gt2 + (v0 sin θ)t

⟩
on
[
0, 2v0 sin θ

g

]

In Exercises 25–28, posiƟon funcƟons r⃗1(t) and r⃗2(s) for two
objects are given that follow the same path on the respecƟve
intervals.

(a) Show that the posiƟons are the same at the indicated
t0 and s0 values; i.e., show r⃗1(t0) = r⃗2(s0).

(b) Find the velocity, speed and acceleraƟon of the two ob-
jects at t0 and s0, respecƟvely.

25. r⃗1(t) =
⟨
t, t2
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
s2, s4

⟩
on [0, 1]; s0 = 1

26. r⃗1(t) = ⟨3 cos t, 3 sin t⟩ on [0, 2π]; t0 = π/2
r⃗2(s) = ⟨3 cos(4s), 3 sin(4s)⟩ on [0, π/2]; s0 = π/8

27. r⃗1(t) = ⟨3t, 2t⟩ on [0, 2]; t0 = 2
r⃗2(s) = ⟨6s− 6, 4s− 4⟩ on [1, 2]; s0 = 2

28. r⃗1(t) =
⟨
t,
√
t
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
sin t,

√
sin t

⟩
on [0, π/2]; s0 = π/2

In Exercises 29–32, find the posiƟon funcƟon of an object given
its acceleraƟon and iniƟal velocity and posiƟon.

29. a⃗(t) = ⟨2, 3⟩; v⃗(0) = ⟨1, 2⟩, r⃗(0) = ⟨5,−2⟩

30. a⃗(t) = ⟨2, 3⟩; v⃗(1) = ⟨1, 2⟩, r⃗(1) = ⟨5,−2⟩

31. a⃗(t) = ⟨cos t,− sin t⟩; v⃗(0) = ⟨0, 1⟩, r⃗(0) = ⟨0, 0⟩

32. a⃗(t) = ⟨0,−32⟩; v⃗(0) = ⟨10, 50⟩, r⃗(0) = ⟨0, 0⟩

In Exercises 33–36, find the displacement, distance traveled,
average velocity and average speed of the described object on
the given interval.

33. An object with posiƟon funcƟon r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩,
where distances are measured in feet and Ɵme is in sec-
onds, on [0, 2π].

34. An object with posiƟon funcƟon r⃗(t) = ⟨5 cos t,−5 sin t⟩,
where distances are measured in feet and Ɵme is in sec-
onds, on [0, π].

35. An object with velocity funcƟon v⃗(t) = ⟨cos t, sin t⟩, where
distances are measured in feet and Ɵme is in seconds, on
[0, 2π].

36. An object with velocity funcƟon v⃗(t) = ⟨1, 2,−1⟩, where
distances are measured in feet and Ɵme is in seconds, on
[0, 10].

Exercises 37–42 ask you to solve a variety of problems based
on the principles of projecƟle moƟon.

37. A boy whirls a ball, aƩached to a 3Ō string, above his head
in a counter–clockwise circle. The ball makes 2 revoluƟons
per second.
At what t-values should the boy release the string so that
the ball heads directly for a tree standing 10Ō in front of
him?
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38. David faces Goliath with only a stone in a 3Ō sling, which
he whirls above his head at 4 revoluƟons per second. They
stand 20Ō apart.

(a) At what t-values must David release the stone in his
sling in order to hit Goliath?

(b) What is the speed at which the stone is traveling
when released?

(c) Assume David releases the stone from a height of 6Ō
andGoliath’s forehead is 9Ō above the ground. What
angle of elevaƟon must David apply to the stone to
hit Goliath’s head?

39. A hunter aims at a deer which is 40 yards away. Her cross-
bow is at a height of 5Ō, and she aims for a spot on the
deer 4Ō above the ground. The crossbow fires her arrows
at 300Ō/s.

(a) At what angle of elevaƟon should she hold the cross-
bow to hit her target?

(b) If the deer is moving perpendicularly to her line of
sight at a rate of 20mph, by approximately howmuch
should she lead the deer in order to hit it in the de-
sired locaƟon?

40. A baseball player hits a ball at 100mph, with an iniƟal
height of 3Ō and an angle of elevaƟon of 20◦, at Boston’s
Fenway Park. The ball flies towards the famed “Green
Monster,” a wall 37Ō high located 310Ō from home plate.

(a) Show that as hit, the ball hits the wall.

(b) Show that if the angle of elevaƟon is 21◦, the ball
clears the Green Monster.

41. A Cessna flies at 1000Ō at 150mph and drops a box of sup-
plies to the professor (and his wife) on an island. Ignor-
ing wind resistance, how far horizontally will the supplies
travel before they land?

42. A football quarterback throws a pass from a height of 6Ō,
intending to hit his receiver 20yds away at a height of 5Ō.

(a) If the ball is thrown at a rate of 50mph, what angle
of elevaƟon is needed to hit his intended target?

(b) If the ball is thrown at with an angle of elevaƟon of
8◦, what iniƟal ball speed is needed to hit his target?
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Chapter 12 Vector Valued FuncƟons

12.4 Unit Tangent and Normal Vectors

Unit Tangent Vector
Given a smooth vector–valued funcƟon r⃗(t), we defined in DefiniƟon 74 that any
vector parallel to r⃗ ′(t0) is tangent to the graph of r⃗(t) at t = t0. It is oŌen useful
to consider just the direcƟon of r⃗ ′(t) and not its magnitude. Therefore we are
interested in the unit vector in the direcƟon of r⃗ ′(t). This leads to a definiƟon.

DefiniƟon 77 Unit Tangent Vector
Let r⃗(t) be a smooth funcƟon on an open interval I. The unit tangent
vector T⃗(t) is

T⃗(t) =
1

∥⃗r ′(t)∥
r⃗ ′(t).

Watch the video:
Tangent Line to a Parametrized Curve at
https://youtu.be/39LA5WyVgKY

Example 1 CompuƟng the unit tangent vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩. Find T⃗(t) and compute T⃗(0) and T⃗(1).

SÊ½çã®ÊÄ We apply DefiniƟon 77 to find T⃗(t).

T⃗(t) =
1

∥⃗r ′(t)∥
r⃗ ′(t)

=
1√(

− 3 sin t
)2

+
(
3 cos t

)2
+ 42

⟨−3 sin t, 3 cos t, 4⟩

=

⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
.

We can now easily compute T⃗(0) and T⃗(1):

T⃗(0) =
⟨
0,

3
5
,
4
5

⟩
; T⃗(1) =

⟨
−3
5
sin 1,

3
5
cos 1,

4
5

⟩
.

Notes:
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12.4 Unit Tangent and Normal Vectors

These are ploƩed in Figure 12.19with their iniƟal points at r⃗(0) and r⃗(1), respec-
Ɵvely. (They look rather “short” since they are only length 1.)

Figure 12.19: Ploƫng unit tangent vec-
tors in Example 1.

In many ways, the previous example was “too nice.” It turned out that r⃗ ′(t)
was always of length 5. In the next example the length of r⃗ ′(t) is variable, leaving
us with a formula that is not as clean.

Example 2 CompuƟng the unit tangent vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
. Find T⃗(t) and compute T⃗(0) and T⃗(1).

SÊ½çã®ÊÄ We find r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩, and

−2 2 4 6

2

4

6

x

y

Figure 12.20: Ploƫng unit tangent vec-
tors in Example 2.

∥⃗r ′(t)∥ =
√
(2t− 1)2 + (2t+ 1)2 =

√
8t2 + 2.

Therefore

T⃗(t) =
1√

8t2 + 2
⟨2t− 1, 2t+ 1⟩ =

⟨
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

When t = 0, we have T⃗(0) =
⟨
−1/
√
2, 1/
√
2
⟩
; when t = 1, we have T⃗(1) =⟨

1/
√
10, 3/

√
10
⟩
. We leave it to the reader to verify each of these is a unit

vector. They are ploƩed in Figure 12.20

Unit Normal Vector
Just as knowing the direcƟon tangent to a path is important, knowing a direcƟon
orthogonal to a path is important. When dealing with real-valued funcƟons, we
defined the normal line at a point to the be the line through the point that was
perpendicular to the tangent line at that point. We can do a similar thing with
vector–valued funcƟons. Given r⃗(t) in R2, we have 2 direcƟons perpendicular
to the tangent vector, as shown in Figure 12.21. It is good to wonder “Is one of
these two direcƟons preferable over the other?”

x

y

Figure 12.21: Given a direcƟon in the
plane, there are always two direcƟons or-
thogonal to it.

Given r⃗(t) in R3, there are infinite vectors orthogonal to the tangent vec-
tor at a given point. Again, we might wonder “Is one of these infinite choices
preferable over the others? Is one of these the ‘right’ choice?”

The answer in bothR2 andR3 is “Yes, there is one vector that is preferable.”
Recall Theorem 95, which states that if r⃗(t) has constant length, then r⃗(t) is or-
thogonal to r⃗ ′(t) for all t. We know T⃗(t), the unit tangent vector, has constant
length. Therefore T⃗(t) is orthogonal to T⃗ ′(t).

We’ll see that T⃗ ′(t) is more than just a convenient choice of vector that is
orthogonal to r⃗ ′(t); rather, it is the “right” choice. Since all we care about is the
direcƟon, we define this newly found vector to be a unit vector.

Note: T⃗(t) is a unit vector, by defini-
Ɵon. This does not imply that T⃗ ′(t) is
also a unit vector.

Notes:
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Chapter 12 Vector Valued FuncƟons

DefiniƟon 78 Unit Normal Vector
Let r⃗(t) be a vector–valued funcƟonwhere the unit tangent vector, T⃗(t),
is smooth on an open interval I. The unit normal vector N⃗(t) is

N⃗(t) =
1∥∥T⃗ ′(t)
∥∥ T⃗ ′(t).

Example 3 CompuƟng the unit normal vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Example 1. Sketch both T⃗(π/2) and N⃗(π/2)
with iniƟal points at r⃗(π/2).

SÊ½çã®ÊÄ In Example 1, we found T⃗(t) =
⟨
(−3/5) sin t, (3/5) cos t, 4/5

⟩
.

Therefore

T⃗ ′(t) =
⟨
−3
5
cos t,−3

5
sin t, 0

⟩
and

∥∥T⃗ ′(t)
∥∥ =

3
5
.

Thus

Figure 12.22: Ploƫng unit tangent and
normal vectors in Figure 12.22.

N⃗(t) =
T⃗ ′(t)
3/5

= ⟨− cos t,− sin t, 0⟩ .

We compute T⃗(π/2) = ⟨−3/5, 0, 4/5⟩ and N⃗(π/2) = ⟨0,−1, 0⟩. These are
sketched in Figure 12.22.

The previous example was once again “too nice.” In general, the expression
for T⃗(t) contains fracƟons of square–roots, hence the expression of T⃗ ′(t) is very
messy. We demonstrate this in the next example.

Example 4 CompuƟng the unit normal vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Example 2. Find N⃗(t) and sketch r⃗(t) with the

unit tangent and normal vectors at t = −1, 0 and 1.

SÊ½çã®ÊÄ In Example 2, we found

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

Finding T⃗ ′(t) requires two applicaƟons of the QuoƟent Rule:

Notes:
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12.4 Unit Tangent and Normal Vectors

T⃗ ′(t) =

⟨√
8t2 + 2(2)− (2t− 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2
,

√
8t2 + 2(2)− (2t+ 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2

⟩

=

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

This is not a unit vector; to find N⃗(t), we need to divide T⃗ ′(t) by it’s magni-
tude.

∥∥T⃗ ′(t)
∥∥ =

√
16(2t+ 1)2
(8t2 + 2)3

+
16(1− 2t)2
(8t2 + 2)3

=

√
16(8t2 + 2)
(8t2 + 2)3

=
4

8t2 + 2
.

Finally,

N⃗(t) =
1

4/(8t2 + 2)

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

=

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

Because we are normalizing T⃗ ′(t), it is usually easier to scale it first. We see that
T⃗ ′(t) is parallel to ⟨2t+ 1, 1− 2t⟩, which has length

√
(2t+ 1)2 + (1− 2t)2 =√

8t2 + 2, leading to the same N⃗(t).

−2 2 4 6
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4

6

x

y

Figure 12.23: Ploƫng unit tangent and
normal vectors in Example 4.

Using this formula for N⃗(t), we compute the unit tangent and normal vectors
for t = −1, 0 and 1 and sketch them in Figure 12.23.

The final result for N⃗(t) in Example 4 is suspiciously similar to T⃗(t). There is
a clear reason for this. If u⃗ = ⟨u1, u2⟩ is a unit vector in R2, then the only unit
vectors orthogonal to u⃗ are ⟨−u2, u1⟩ and ⟨u2,−u1⟩. Given T⃗(t), we can quickly
determine N⃗(t) if we know which term to mulƟply by (−1).

Consider again Figure 12.23, where we have ploƩed some unit tangent and
normal vectors. Note how N⃗(t) always points “inside” the curve, or to the con-
cave side of the curve. This is not a coincidence; this is true in general. Knowing
the direcƟon that r⃗(t) “turns” allows us to quickly find N⃗(t).

Notes:
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Theorem 99 Unit Normal Vectors in R2

Let r⃗(t) be a vector–valued funcƟon in R2 where T⃗ ′(t) is smooth on an
open interval I. Let t0 be in I and T⃗(t0) = ⟨t1, t2⟩ Then N⃗(t0) is either

N⃗(t0) = ⟨−t2, t1⟩ or N⃗(t0) = ⟨t2,−t1⟩ ,

whichever is the vector that points to the concave side of the graph of
r⃗.

ApplicaƟon to AcceleraƟon

Let r⃗(t) be a posiƟon funcƟon. It is a fact (stated later in Theorem 100) that
acceleraƟon, a⃗(t), lies in the plane defined by T⃗ and N⃗. That is, there are scalars
aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

The scalar aTmeasures “howmuch” acceleraƟon is in the direcƟon of travel, that
is, it measures the component of acceleraƟon that affects the speed. The scalar
aNmeasures “howmuch” acceleraƟon is perpendicular to the direcƟonof travel,
that is, it measures the component of acceleraƟon that affects the direcƟon of
travel.

We can find aT using the orthogonal projecƟon of a⃗(t) onto T⃗(t) (review Def-
iniƟon 62 in SecƟon 11.3 if needed). Recalling that since T⃗(t) is a unit vector,
T⃗(t) · T⃗(t) = 1, so we have

proj T⃗(t) a⃗(t) =
a⃗(t) · T⃗(t)
T⃗(t) · T⃗(t)

T⃗(t) =
(⃗
a(t) · T⃗(t)

)︸ ︷︷ ︸
aT

T⃗(t).

Thus the amount of a⃗(t) in the direcƟon of T⃗(t) is aT = a⃗(t) · T⃗(t). The same
logic gives aN = a⃗(t) · N⃗(t).

While this is a fine way of compuƟng aT, there are simpler ways of finding aN
(as finding N⃗ itself can be complicated). The following theorem gives alternate
formulas for aT and aN.

Note: Keep in mind that both aT and
aN are funcƟons of t; that is, the
scalar changes depending on t. It is
convenƟon to drop the “(t)” notaƟon
from aT(t) and simply write aT. Notes:
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12.4 Unit Tangent and Normal Vectors

Theorem 100 AcceleraƟon in the Plane Defined by T⃗ and N⃗
Let r⃗(t) be a posiƟon funcƟon with acceleraƟon a⃗(t) and unit tangent and
normal vectors T⃗(t) and N⃗(t). Then a⃗(t) lies in the plane defined by T⃗(t) and
N⃗(t); that is, there exists scalars aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Moreover,

aT = a⃗(t) · T⃗(t) = d
dt

(
∥⃗v(t)∥

)
aN = a⃗(t) · N⃗(t) =

√
∥a⃗(t)∥2 − a2T =

∥a⃗(t)× v⃗(t)∥
∥⃗v(t)∥

= ∥⃗v(t)∥
∥∥T⃗ ′(t)

∥∥

Note the second formula for aT:
d
dt

(
∥⃗v(t)∥

)
. This measures the rate of

change of speed, which again is the amount of acceleraƟon in the direcƟon of
travel.

Proof
We see that

a⃗(t) =
d
dt

v⃗(t) =
d
dt
(
∥⃗v(t)∥ T⃗(t)

)
=

(
d
dt
∥⃗v(t)∥

)
T⃗(t) + ∥⃗v(t)∥ T⃗ ′(t)

=

(
d
dt
∥⃗v(t)∥

)
T⃗(t) + ∥⃗v(t)∥

∥∥T⃗ ′(t)
∥∥ N⃗(t).

Since T⃗(t) and N⃗(t) are not parallel, this decomposiƟon is unique and the coef-
ficients tell us aT and aN.

Because
∥∥T⃗∥∥ = 1, Theorem 95 tells us that T⃗ and T⃗ ′ =

∥∥T⃗ ′
∥∥ N⃗ are orthogo-

nal. This means that

∥a⃗(t)× v⃗(t)∥ =
∥∥∥aNN⃗(t)× ∥⃗v(t)∥ T⃗(t)∥∥∥ = aN ∥⃗v(t)∥ .

Also, the Pythagorean theorem tells us that

∥a⃗(t)∥2 =
∥∥aTT⃗(t)∥∥2 + ∥∥∥aNN⃗(t)∥∥∥2 = a2T + a2N. □

Example 5 CompuƟng aT and aN
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Examples 1 and 3. Find aT and aN.

Notes:
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SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨−3 cos t,−3 sin t, 0⟩
and

T⃗(t) =
⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
and N⃗(t) = ⟨− cos t,− sin t, 0⟩ .

We can find aT and aN directly with dot products:

aT = a⃗(t) · T⃗(t) = 9
5
cos t sin t− 9

5
cos t sin t+ 0 = 0.

aN = a⃗(t) · N⃗(t) = 3 cos2 t+ 3 sin2 t+ 0 = 3.

Thus a⃗(t) = 0⃗T(t) + 3N⃗(t) = 3N⃗(t), which is clearly the case.
What is the pracƟcal interpretaƟon of these numbers? aT = 0 means the

object is moving at a constant speed, and hence all acceleraƟon comes in the
form of direcƟon change.

Example 6 CompuƟng aT and aN
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Examples 2 and 4. Find aT and aN.

SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨2, 2⟩ and

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
and N⃗(t) =

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

While we can compute aN using N⃗(t), we instead demonstrate using another
formula from Theorem 100.

aT = a⃗(t) · T⃗(t) = 4t− 2√
8t2 + 2

+
4t+ 2√
8t2 + 2

=
8t√

8t2 + 2
.

aN =

√
∥a⃗(t)∥2 − a2T =

√
8−

(
8t√

8t2 + 2

)2

=
4√

8t2 + 2
.

When t = 2, aT =
16√
34

and aN =
4√
34

. We interpret this to mean that at

t = 2, the parƟcle is acculturaƟng mostly by increasing speed, not by changing
direcƟon. As the path near t = 2 is relaƟvely straight, this should make intuiƟve
sense. Figure 12.24 gives a graph of the path for reference.

−2 2 4 6

2

4

6
t = 2

t = 0

r⃗(t)

x

y

Figure 12.24: Graphing r⃗(t) in Example 6.

Contrast this with t = 0, where aT = 0 and aN = 4/
√
2 = 2

√
2. Here the

parƟcle’s speed is not changing and all acceleraƟon is in the form of direcƟon
change.

Notes:
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Example 7 Analyzing projecƟle moƟon
A ball is thrown from a height of 240Ōwith an iniƟal speed of 64Ō/s and an angle
of elevaƟon of 30◦. Find the posiƟon funcƟon r⃗(t) of the ball and analyze aT and
aN.

SÊ½çã®ÊÄ Using EquaƟon (12.1) of SecƟon 12.3 we form the posiƟon
funcƟon of the ball:

r⃗(t) =
⟨(
64 cos 30◦

)
t,−16t2 +

(
64 sin 30◦

)
t+ 240

⟩
,

which we plot in Figure 12.25.

100 200 300

100

200
t = 0

t = 2

t = 3

t = 4

x

y t = 1

t = 5

Figure 12.25: Ploƫng the posiƟon of a
thrown ball, with 1s increments shown.

From thiswefind v⃗(t) = ⟨64 cos 30◦,−32t+ 64 sin 30◦⟩ and a⃗(t) = ⟨0,−32⟩.
CompuƟng T⃗(t) is not difficult, and with some simplificaƟon we find

T⃗(t) =
⟨ √

3√
t2 − 2t+ 4

,
1− t√

t2 − 2t+ 4

⟩
.

With a⃗(t) as simple as it is, finding aT is also simple:

aT = a⃗(t) · T⃗(t) = 32t− 32√
t2 − 2t+ 4

.

Wechoose to not find N⃗(t) andfindaN through the formulaaN =

√
∥a⃗(t)∥2 − a2T :

aN =

√
322 −

(
32t− 32√
t2 − 2t+ 4

)2

=
32
√
3√

t2 − 2t+ 4
.

Figure 12.26 gives a table of values of aT and aN. When t = 0, we see the
ball’s speed is decreasing; when t = 1 the speed of the ball is unchanged. This
corresponds to the fact that at t = 1 the ball reaches its highest point.

AŌer t = 1 we see that aN is decreasing in value. This is because as the ball
falls, it’s path becomes straighter and most of the acceleraƟon is in the form of
speeding up the ball, and not in changing its direcƟon.

t aT aN

0 −16 27.7
1 0 32
2 16 27.7
3 24.2 20.9
4 27.7 16
5 29.4 12.7

Figure 12.26: A table of values of aT and
aN in Example 7.

Our understanding of the unit tangent and normal vectors is aiding our un-
derstanding ofmoƟon. Thework in Example 7 gave quanƟtaƟve analysis of what
we intuiƟvely knew.

The next secƟon provides two more important steps towards this analysis.
We currently describe posiƟon only in terms of Ɵme. In everyday life, though,
we oŌen describe posiƟon in terms of distance (“The gas staƟon is about 2miles
ahead, on the leŌ.”). The arc length parameter allows us to reference posiƟon
in terms of distance traveled.

We also intuiƟvely know that some paths are straighter than others – and
some are curvier than others, but we lack a measurement of “curviness.” The
arc length parameter provides a way for us to compute curvature, a quanƟtaƟve
measurement of how curvy a curve is.
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Exercises 12.4
Terms and Concepts

1. If T⃗(t) is a unit tangent vector, what is
∥∥∥⃗T(t)∥∥∥?

2. If N⃗(t) is a unit normal vector, what is N⃗(t) · r⃗ ′(t)?

3. The acceleraƟon vector a⃗(t) lies in the plane defined by
what two vectors?

4. aT measures how much the acceleraƟon is affecƟng the
of an object.

Problems

In Exercises 5–8, given r⃗(t), find T⃗(t) and evaluate it at the in-
dicated value of t.

5. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

6. r⃗(t) = ⟨t, cos t⟩, t = π/4

7. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

8. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 9–12, find the equaƟon of the line tangent to the
curve at the indicated t-value using the unit tangent vector.
Note: these are the same problems as in Exercises 5 – 8.

9. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

10. r⃗(t) = ⟨t, cos t⟩, t = π/4

11. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

12. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 13–16, find N⃗(t) using DefiniƟon 78. Confirm the
result using Theorem 99.

13. r⃗(t) = ⟨3 cos t, 3 sin t⟩

14. r⃗(t) =
⟨
t, t2
⟩

15. r⃗(t) = ⟨cos t, 2 sin t⟩

16. r⃗(t) =
⟨
et, e−t⟩

In Exercises 17–20, a posiƟon funcƟon r⃗(t) is given along with
its unit tangent vector T⃗(t) evaluated at t = a, for some value
of a.

(a) Confirm that T⃗(a) is as stated.

(b) Using a graph of r⃗(t) and Theorem 99, find N⃗(a).

17. r⃗(t) = ⟨3 cos t, 5 sin t⟩; T⃗(π/4) =
⟨
− 3√

34
,

5√
34

⟩
.

18. r⃗(t) =
⟨
t, 1
t2 + 1

⟩
; T⃗(1) =

⟨
2√
5
,− 1√

5

⟩
.

19. r⃗(t) = (1+ 2 sin t) ⟨cos t, sin t⟩; T⃗(0) =
⟨

2√
5
,

1√
5

⟩
.

20. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
; T⃗(π/4) =

⟨
− 1√

2
,

1√
2

⟩
.

In Exercises 21–24, find N⃗(t).

21. r⃗(t) = ⟨4t, 2 sin t, 2 cos t⟩
22. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩
23. r⃗(t) = ⟨a cos t, a sin t, bt⟩; a > 0

24. r⃗(t) = ⟨cos(at), sin(at), t⟩

In Exercises 25–30, find aT and aN given r⃗(t). Sketch r⃗(t) on the
indicated interval, and comment on the relaƟve sizes of aT and
aN at the indicated t values.

25. r⃗(t) =
⟨
t, t2
⟩
on [−1, 1]; consider t = 0 and t = 1.

26. r⃗(t) = ⟨t, 1/t⟩ on (0, 4]; consider t = 1 and t = 2.

27. r⃗(t) = ⟨2 cos t, 2 sin t⟩ on [0, 2π]; consider t = 0 and
t = π/2.

28. r⃗(t) =
⟨
cos(t2), sin(t2)

⟩
on (0, 2π]; consider t =

√
π/2

and t =
√
π.

29. r⃗(t) = ⟨a cos t, a sin t, bt⟩ on [0, 2π], where a, b > 0; con-
sider t = 0 and t = π/2.

30. r⃗(t) = ⟨5 cos t, 4 sin t, 3 sin t⟩ on [0, 2π]; consider t = 0
and t = π/2.
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12.5 The Arc Length Parameter and Curvature

12.5 The Arc Length Parameter and Curvature
In normal conversaƟon we describe posiƟon in terms of both Ɵme and distance.
For instance, imagine driving to visit a friend. If she calls and asks where you
are, you might answer “I am 20 minutes from your house,” or you might say “I
am 10 miles from your house.” Both answers provide your friend with a general
idea of where you are.

Currently, our vector–valued funcƟons have defined pointswith a parameter
t, whichwe oŌen take to represent Ɵme. Consider Figure 12.27(a), where r⃗(t) =⟨
t2 − t, t2 + t

⟩
is graphed and the points corresponding to t = 0, 1 and 2 are

shown. Note how the arc length between t = 0 and t = 1 is smaller than the
arc length between t = 1 and t = 2; if the parameter t is Ɵme and r⃗ is posiƟon,
we can say that the parƟcle traveled faster on [1, 2] than on [0, 1].

−2 2 4 6

2

4

6

t = 0

t = 1

t = 2

r⃗(t)

x

y

(a)

−2 2 4 6

2

4

6

s = 0
s = 1

s = 2

s = 3

s = 4

s = 5

s = 6

r⃗(s)

x

y

(b)

Figure 12.27: Introducing the arc length
parameter.

Now consider Figure 12.27(b), where the same graph is parametrized by a
different variable s. Points corresponding to s = 0 through s = 6 are ploƩed.
The arc length of the graph between each adjacent pair of points is 1. We can
view this parameter s as distance; that is, the arc length of the graph from s = 0
to s = 3 is 3, the arc length from s = 2 to s = 6 is 4, etc. If one wants to find the
point 2.5 units from an iniƟal locaƟon (i.e., s = 0), one would compute r⃗(2.5).
This parameter s is very useful, and is called the arc length parameter.

How do we find the arc length parameter?
Start with any parametrizaƟon of r⃗. We can compute the arc length of the

graph of r⃗ on the interval [0, t] with

arc length =

ˆ t

0
∥⃗r ′(u)∥ du.

We can turn this into a funcƟon: as t varies, we find the arc length s from 0 to t.
This funcƟon is

s(t) =
ˆ t

0
∥⃗r ′(u)∥ du. (12.2)

This establishes a relaƟonship between s and t. Knowing this relaƟonship
explicitly, we can rewrite r⃗(t) as a funcƟon of s: r⃗(s). We demonstrate this in an
example.

Watch the video:
Parametrize a Curve with Respect to Arc Length at
https://youtu.be/G0R-qialKlE

Notes:
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Chapter 12 Vector Valued FuncƟons

Example 1 Finding the arc length parameter
Let r⃗(t) = ⟨3t− 1, 4t+ 2⟩. Parametrize r⃗ with the arc length parameter s.

SÊ½çã®ÊÄ Using EquaƟon (12.2), we write

s(t) =
ˆ t

0
∥⃗r ′(u)∥ du.

We can integrate this, explicitly finding a relaƟonship between s and t:

s(t) =
ˆ t

0
∥⃗r ′(u)∥ du

=

ˆ t

0

√
32 + 42 du

=

ˆ t

0
5 du

= 5t.

Since s = 5t, we can write t = s/5 and replace t in r⃗(t) with s/5:

r⃗(s) = ⟨3(s/5)− 1, 4(s/5) + 2⟩ =
⟨
3
5
s− 1,

4
5
s+ 2

⟩
.

Clearly, as shown in Figure 12.28, the graph of r⃗ is a line, where t = 0 corre-
sponds to the point (−1, 2). What point on the line is 2 units away from this
iniƟal point? We find it with s(2) = ⟨1/5, 18/5⟩.

1 2−1−2

2

4

6

t = 0

t = 1

s = 1
s = 2

s = 3
s = 4

s = 5

s = 0

x

y

Figure 12.28: Graphing r⃗ in Example 1
with parameters t and s.

Is the point (1/5, 18/5) really 2 units away from (−1, 2)? We use the Dis-
tance Formula to check:

d =

√(
1
5
− (−1)

)2

+

(
18
5
− 2
)2

=

√
36
25

+
64
25

=
√
4 = 2.

Yes, s(2) is indeed 2 units away, in the direcƟon of travel, from the iniƟal point.

Things worked out very nicely in Example 1; we were able to establish di-
rectly that s = 5t. Usually, the arc length parameter is much more difficult to
describe in terms of t, a result of integraƟng a square–root. There are a number
of things that we can learn about the arc length parameter from EquaƟon (12.2),
though, that are incredibly useful.

First, take the derivaƟve of s with respect to t. The Fundamental Theorem
of Calculus (see Theorem 38) states that

ds
dt

= s ′(t) = ∥⃗r ′(t)∥ . (12.3)

Notes:
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12.5 The Arc Length Parameter and Curvature

Leƫng t represent Ɵme and r⃗(t) represent posiƟon, we see that the rate of
change of s with respect to t is speed; that is, the rate of change of “distance
traveled” is speed, which should match our intuiƟon.

The Chain Rule states that

d⃗r
dt

=
d⃗r
ds
· ds
dt

r⃗ ′(t) = r⃗ ′(s) · ∥⃗r ′(t)∥ .

Solving for r⃗ ′(s), we have

r⃗ ′(s) =
r⃗ ′(t)
∥⃗r ′(t)∥

= T⃗(t), (12.4)

where T⃗(t) is the unit tangent vector. EquaƟon (12.4) is oŌen misinterpreted,
as one is tempted to think it states r⃗ ′(t) = T⃗(t), but there is a big difference be-
tween r⃗ ′(s) and r⃗ ′(t). The key to take from it is that r⃗ ′(s) is a unit vector. In fact,
the following theorem states that this characterizes the arc length parameter.

Theorem 101 Arc Length Parameter
Let r⃗(s) be a vector–valued funcƟon. The parameter s is the arc length
parameter if, and only if, ∥⃗r ′(s)∥ = 1.

Curvature

1 2 3

1

2

A
B

x

y

(a)

1 2 3

1

2

A
B

x

y

(b)

Figure 12.29: Establishing the concept of
curvature.

Consider pointsA and B on the curve graphed in Figure 12.29(a). One can readily
argue that the curve curves more sharply at A than at B. It is useful to use a
number to describe how sharply the curve bends; that number is the curvature
of the curve.

Wederive this number in the followingway. Consider Figure 12.29(b), where
unit tangent vectors are graphed around points A and B. NoƟce how the direc-
Ɵon of the unit tangent vector changes quite a bit near A, whereas it does not
change as much around B. This leads to an important concept: measuring the
rate of change of the unit tangent vector with respect to arc length gives us a
measurement of curvature.

Notes:
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Chapter 12 Vector Valued FuncƟons

DefiniƟon 79 Curvature
Let r⃗(s) be a vector–valued funcƟonwhere s is the arc length parameter.
The curvature κ of the graph of r⃗(s) is

κ =

∥∥∥∥∥ d⃗Tds
∥∥∥∥∥ =

∥∥T⃗ ′(s)
∥∥ .

If r⃗(s) is parametrized by the arc length parameter, then

T⃗(s) =
r⃗ ′(s)
∥⃗r ′(s)∥

and N⃗(s) =
T⃗ ′(s)∥∥T⃗ ′(s)

∥∥ .
Having defined

∥∥T⃗ ′(s)
∥∥ = κ, we can rewrite the second equaƟon as

T⃗ ′(s) = κN⃗(s). (12.5)

We already knew that T⃗ ′(s) is in the same direcƟon as N⃗(s); that is, we can think
of T⃗(s) as being “pulled” in the direcƟon of N⃗(s). How “hard” is it being pulled?
By a factor of κ. When the curvature is large, T⃗(s) is being “pulled hard” and the
direcƟon of T⃗(s) changes rapidly. When κ is small, T(s) is not being pulled hard
and hence its direcƟon is not changing rapidly.

We use DefiniƟon 79 to find the curvature of the line in Example 1.

Example 2 Finding the curvature of a line
Use DefiniƟon 79 to find the curvature of r⃗(t) = ⟨3t− 1, 4t+ 2⟩.

SÊ½çã®ÊÄ In Example 1, we found that the arc length parameter was
defined by s = 5t, so r⃗(s) = ⟨3s/5− 1, 4s/5+ 2⟩ parametrized r⃗ with the arc
length parameter. To find κ, we need to find T⃗ ′(s).

T⃗(s) = r⃗ ′(s) (recall this is a unit vector)
= ⟨3/5, 4/5⟩ .

Therefore

T⃗ ′(s) = ⟨0, 0⟩

and

κ =
∥∥T⃗ ′(s)

∥∥ = 0.

It probably comes as no surprise that the curvature of a line is 0. (How “curvy”
is a line? It is not curvy at all.)

Notes:
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12.5 The Arc Length Parameter and Curvature

While the definiƟonof curvature is a usefulmathemaƟcal concept, it is nearly
impossible to use most of the Ɵme; wriƟng r⃗ in terms of the arc length param-
eter is generally very hard. Fortunately, there are other methods of calculaƟng
this value that are much easier. There is a trade-off: the definiƟon is “easy” to
understand though hard to compute, whereas these other formulas are easy to
compute though it may be hard to understand why they work.

Theorem 102 Formulas for Curvature
Let C be a smooth curve on an open interval I in the plane or in space.

1. If C is defined by y = f(x), then

κ =
|f ′′(x)|(

1+
(
f ′(x)

)2)3/2 .
2. If C is defined as a vector–valued funcƟon in the plane, r⃗(t) =
⟨x(t), y(t)⟩, then

κ =
|x ′y ′′ − x ′′y ′|(
(x ′)2 + (y ′)2

)3/2 .
3. If C is defined in space by a vector–valued funcƟon r⃗(t), then

κ =

∥∥T⃗ ′(t)
∥∥

∥⃗r ′(t)∥
=
∥⃗r ′(t)× r⃗ ′′(t)∥
∥⃗r ′(t)∥3

=
a⃗(t) · N⃗(t)
∥⃗v(t)∥2

.

Proof
We’ll prove statement 3; statements 1 and 2 are applicaƟons that we leave to
the exercises. By the chain rule and then EquaƟon (12.3),

d⃗T(t)
dt

=
d⃗T(s)
ds

ds
dt

=
d⃗T(s)
ds
∥⃗r ′(t)∥ ,

so that

κ =

∥∥∥∥∥ d⃗T(s)ds

∥∥∥∥∥ =

∥∥∥∥∥
d⃗T(t)
dt

∥⃗r ′(t)∥

∥∥∥∥∥ =

∥∥∥ d⃗T(t)
dt

∥∥∥
∥⃗r ′(t)∥

=

∥∥T⃗ ′(t)
∥∥

∥⃗r ′(t)∥
.
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Chapter 12 Vector Valued FuncƟons

Now, r⃗ ′(t) = ∥⃗r ′(t)∥ T⃗(t) so that

r⃗ ′′(t) = (∥⃗r ′(t)∥)′ T⃗(t) + ∥⃗r ′(t)∥ T⃗ ′(t) and

r⃗ ′(t)× r⃗ ′′(t) = ∥⃗r ′(t)∥ T⃗(t)× ∥⃗r ′(t)∥ T⃗ ′(t) = ∥⃗r ′(t)∥2 T⃗(t)× T⃗ ′(t)

Because
∥∥T⃗∥∥ = 1, Theorem 95 tells us that T⃗ and T⃗ ′ are orthogonal. This means

that

∥⃗r ′(t)× r⃗ ′′(t)∥ = ∥⃗r ′(t)∥2
∥∥T⃗(t)∥∥∥∥T⃗ ′(t)

∥∥ = ∥⃗r ′(t)∥2
∥∥T⃗ ′(t)

∥∥ , and

κ =

∥∥T⃗ ′(t)
∥∥

∥⃗r ′(t)∥
=
∥⃗r ′(t)× r⃗ ′′(t)∥
∥⃗r ′(t)∥3

.

Theorem 100 tells us that r⃗ ′′(t) = aTT⃗(t)+ (⃗r ′′(t) · N⃗(t))N⃗(t). Since r⃗ ′(t) = v⃗(t)
and T(t) are parallel, their cross product is zero and

κ =

∥∥∥⃗v(t)× [aTT⃗(t) + (⃗r ′′(t) · N⃗(t))N⃗(t)]
∥∥∥

∥⃗v(t)∥3
=

∥∥∥⃗v(t)× (⃗a(t) · N⃗(t))N⃗(t)
∥∥∥

∥⃗v(t)∥3
.

Since v⃗(t) and N⃗(t) are orthogonal, the normof their cross product is the product
of their norms, and

κ =
∥⃗v(t)∥ (⃗a(t) · N⃗(t))

∥∥∥N⃗(t)∥∥∥
∥⃗v(t)∥3

=
a⃗(t) · N⃗(t)
∥⃗v(t)∥2

. □

We pracƟce using these formulas.

Example 3 Finding the curvature of a circle
Find the curvature of a circle with radius r, defined by c⃗(t) = ⟨r cos t, r sin t⟩.

SÊ½çã®ÊÄ Before we start, we should expect the curvature of a circle
to be constant, and not dependent on t. (Why?)

We compute κ using the second part of Theorem 102.

κ =
|(−r sin t)(−r sin t)− (−r cos t)(r cos t)|(

(−r sin t)2 + (r cos t)2
)3/2

=
r2(sin2 t+ cos2 t)(

r2(sin2 t+ cos2 t)
)3/2

=
r2

r3
=

1
r
.

We have found that a circle with radius r has curvature κ = 1/r.

Notes:
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12.5 The Arc Length Parameter and Curvature

Example 3 gives a great result. Before this example, if we were told “The
curve has a curvature of 5 at point A,” we would have no idea what this re-
ally meant. Is 5 “big” – does is correspond to a really sharp turn, or a not-so-
sharp turn? Now we can think of 5 in terms of a circle with radius 1/5. Knowing
the units (inches vs. miles, for instance) allows us to determine how sharply the
curve is curving.

Let a point P on a smooth curve C be given, and let κ be the curvature of the
curve at P. A circle that:

• passes through P,

• lies on the concave side of C,

• has a common tangent line as C at P and

1 2 3

1

2

A
B

x

y

Figure 12.30: IllustraƟng the osculaƟng
circles for the curve seen in Figure 12.29.

• has radius r = 1/κ (hence has curvature κ)

is the osculaƟng circle, or circle of curvature, to C at P, and r is the radius of
curvature. Figure 12.30 shows the graph of the curve seen earlier in Figure 12.29
and its osculaƟng circles at A and B. A sharp turn corresponds to a circle with
a small radius; a gradual turn corresponds to a circle with a large radius. Being
able to think of curvature in terms of the radius of a circle is very useful. (The
word “osculaƟng” comes froma LaƟnword related to kissing; an osculaƟng circle
“kisses” the graph at a parƟcular point. Many useful ideas in mathemaƟcs have
come from studying the osculaƟng circles to a curve.)

−10 −5

5

10

x

y

Figure 12.31: Examining the curvature of
y = x2.

Example 4 Finding curvature
Find the curvature of the parabola defined by y = x2 at the vertex and at x = 1.

SÊ½çã®ÊÄ We use the first formula found in Theorem 102.

κ(x) =
|2|(

1+ (2x)2
)3/2

=
2(

1+ 4x2
)3/2 .

At the vertex (x = 0), the curvature is κ = 2. At x = 1, the curvature is κ =
2/(5)3/2. So at x = 0, the curvature of y = x2 is that of a circle of radius 1/2;
at x = 1, the curvature is that of a circle with radius (5)3/2/2 ≈ 5.59. This is
illustrated in Figure 12.31. At x = 3, the curvature is 0.009; the graph is nearly
straight as the curvature is very close to 0.
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Example 5 Finding curvature
Find where the curvature of r⃗(t) =

⟨
t, t2, 2t3

⟩
is maximized.

SÊ½çã®ÊÄ We use the third formula in Theorem 102 as r⃗(t) is defined
in space. We leave it to the reader to verify that

r⃗ ′(t) =
⟨
1, 2t, 6t2

⟩
, r⃗ ′′(t) = ⟨0, 2, 12t⟩ , and r⃗ ′(t)×⃗r ′′(t) =

⟨
12t2,−12t, 2

⟩
.

Thus

κ(t) =
∥⃗r ′(t)× r⃗ ′′(t)∥
∥⃗r ′(t)∥3

=

∥∥⟨12t2,−12t, 2⟩∥∥
∥⟨1, 2t, 6t2⟩∥3

=

√
144t4 + 144t2 + 4(√
1+ 4t2 + 36t4

)3
While this is not a parƟcularly “nice” formula, it does explicitly tell us what the

−2 −1 1 2
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Figure 12.32: Understanding the curva-
ture of a curve in space. The top is κ as a
funcƟon of t; the boƩom is r⃗(t) as a func-
Ɵon of t.

curvature is at a given t value. To maximize κ(t), we should solve κ′(t) = 0 for
t. This is doable, but very Ɵme consuming. Instead, consider the graph of κ(t)
as given in Figure 12.32(a). We see that κ is maximized at two t values; using a
numerical solver, we find these values are t ≈ ±0.189. In part (b) of the figure
we graph r⃗(t) and indicate the points where curvature is maximized.

Curvature and MoƟon
Let r⃗(t) be a posiƟon funcƟon of an object, with velocity v⃗(t) = r⃗ ′(t) and accel-
eraƟon a⃗(t) = r⃗ ′′(t). In SecƟon 12.4 we established that acceleraƟon is in the
plane formed by T⃗(t) and N⃗(t), and that we can find scalars aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Theorem 100 gives formulas for aT and aN:

aT =
d
dt

(
∥⃗v(t)∥

)
and aN =

∥⃗v(t)× a⃗(t)∥
∥⃗v(t)∥

.

We understood that the amount of acceleraƟon in the direcƟon of T⃗ relates only
to how the speed of the object is changing, and that the amount of acceleraƟon
in the direcƟon of N⃗ relates to how the direcƟon of travel of the object is chang-
ing. (That is, if the object travels at constant speed, aT = 0; if the object travels
in a constant direcƟon, aN = 0.)

Notes:
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12.5 The Arc Length Parameter and Curvature

In EquaƟon (12.3) at the beginning of this secƟon, we found s ′(t) = ∥⃗v(t)∥.
We can combine this fact with the above formula for aT to write

aT =
d
dt

(
∥⃗v(t)∥

)
=

d
dt
(
s ′(t)

)
= s ′′(t).

Since s ′(t) is speed, s ′′(t) is the rate at which speed is changing with respect to
Ɵme. We see once more that the component of acceleraƟon in the direcƟon of
travel relates only to speed, not to a change in direcƟon.

Now compare the formula for aN above to the formula for curvature in The-
orem 102:

aN =
∥⃗v(t)× a⃗(t)∥
∥⃗v(t)∥

and κ =
∥⃗r ′(t)× r⃗ ′′(t)∥
∥⃗r ′(t)∥3

=
∥⃗v(t)× a⃗(t)∥
∥⃗v(t)∥3

.

Thus
aN = κ ∥⃗v(t)∥2 = κ

(
s ′(t)

)2
(12.6)

This last equaƟon shows that the component of acceleraƟon that changes
the object’s direcƟon is dependent on two things: the curvature of the path and
the speed of the object.

Imagine driving a car in a clockwise circle. Youwill naturally feel a force push-
ing you towards the door (more accurately, the door is pushing you as the car
is turning and you want to travel in a straight line). If you keep the radius of
the circle constant but speed up (i.e., increasing s ′(t)), the door pushes harder
against you (aN has increased). If you keep your speed constant but Ɵghten the
turn (i.e., increase κ), once again the door will push harder against you.

Puƫng our new formulas for aT and aN together, we have

a⃗(t) = s ′′(t)⃗T(t) + κ ∥⃗v(t)∥2 N⃗(t).

This is not a parƟcularly pracƟcal way of finding aT and aN, but it reveals some
great concepts about how acceleraƟon interacts with speed and the shape of a
curve.

Example 6 Curvature and road design
The minimum radius of the curve in a highway cloverleaf is determined by the
operaƟng speed, as given in the table in Figure 12.33. For each curve and speed,
compute aN.

SÊ½çã®ÊÄ Using EquaƟon (12.6), we can compute the acceleraƟon
OperaƟng

Speed (mph)
Minimum
Radius (Ō)

35 310
40 430
45 540

Figure 12.33: OperaƟng speed and mini-
mum radius in highway cloverleaf design.

normal to the curve in each case. We start by converƟng each speed from “miles
per hour” to “feet per second” by mulƟplying by 5280/3600.

Notes:
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Chapter 12 Vector Valued FuncƟons

35mph, 310Ō ⇒ 51.33Ō/s, κ = 1/310

aN = κ ∥⃗v(t)∥2

=
1

310
(
51.33

)2
= 8.50Ō/s2.

40mph, 430Ō ⇒ 58.67Ō/s, κ = 1/430

aN =
1

430
(
58.67

)2
= 8.00Ō/s2.

45mph,540Ō ⇒ 66Ō/s, κ = 1/540

aN =
1

540
(
66
)2

= 8.07Ō/s2.

Note that each acceleraƟon is similar; this is by design. Considering the classic
“Force=mass× acceleraƟon” formula, this acceleraƟon must be kept small in
order for the Ɵres of a vehicle to keep a “grip” on the road. If one travels on a
turn of radius 310Ō at a rate of 50mph, the acceleraƟon is double, at 17.35Ō/s2.
If the acceleraƟon is too high, the fricƟonal force created by the Ɵres may not
be enough to keep the car from sliding. Civil engineers rouƟnely compute a
“safe” design speed, then subtract 5-10mph to create the posted speed limit for
addiƟonal safety.

We end this chapter with a reflecƟon on what we’ve covered. We started
with vector–valued funcƟons, which may have seemed at the Ɵme to be just
another way of wriƟng parametric equaƟons. However, we have seen that the
vector perspecƟve has given us great insight into the behavior of funcƟons and
the study of moƟon. Vector–valued posiƟon funcƟons convey displacement,
distance traveled, speed, velocity, acceleraƟon and curvature informaƟon, each
of which has great importance in science and engineering.

Notes:
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Exercises 12.5
Terms and Concepts
1. It is common to describe posiƟon in terms of both

and/or .
2. A measure of the “curviness” of a curve is .
3. Give two shapes with constant curvature.
4. Describe in your own words what an “osculaƟng circle” is.
5. Complete the idenƟty: T⃗ ′(s) = N⃗(s).
6. Given a posiƟon funcƟon r⃗(t), how are aT and aN affected

by the curvature?

Problems
In Exercises 7–10, a posiƟon funcƟon r⃗(t) is given, where t = 0
corresponds to the iniƟal posiƟon. Find the arc length param-
eter s, and rewrite r⃗(t) in terms of s; that is, find r⃗(s).

7. r⃗(t) = ⟨2t, t,−2t⟩
8. r⃗(t) = ⟨7 cos t, 7 sin t⟩
9. r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩

10. r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩

In Exercises 11–22, a curve C is described along with 2 points
on C.

(a) Using a sketch, determine at which of these points the
curvature is greater.

(b) Find the curvature κ of C, and evaluate κ at each of the
2 given points.

11. C is defined by y = x3 − x; points given at x = 0 and
x = 1/2.

12. C is defined by y =
1

x2 + 1
; points given at x = 0 and

x = 2.
13. C is defined by y = cos x; points given at x = 0 and

x = π/2.

14. C is defined by y =
√
1− x2 on (−1, 1); points given at

x = 0 and x = 1/2.
15. C is defined by r⃗(t) = ⟨cos t, sin(2t)⟩; points given at t = 0

and t = π/4.

16. C is defined by r⃗(t) =
⟨
cos2 t, sin t cos t

⟩
; points given at

t = 0 and t = π/3.

17. C is definedby r⃗(t) =
⟨
t2 − 1, t3 − t

⟩
; points given at t = 0

and t = 5.

18. C is defined by r⃗(t) = ⟨tan t, sec t⟩; points given at t = 0
and t = π/6.

19. C is defined by r⃗(t) = ⟨4t+ 2, 3t− 1, 2t+ 5⟩; points given
at t = 0 and t = 1.

20. C is defined by r⃗(t) =
⟨
t3 − t, t3 − 4, t2 − 1

⟩
; points given

at t = 0 and t = 1.
21. C is defined by r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩; points given at

t = 0 and t = π/2.
22. C is defined by r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩; points

given at t = 0 and t = π/2.

In Exercises 23–26, find the value of x or t where curvature is
maximized.

23. y = 1
6
x3

24. y = sin x

25. r⃗(t) =
⟨
t2 + 2t, 3t− t2

⟩
26. r⃗(t) = ⟨t, 4/t, 3/t⟩

In Exercises 27–30, find the radius of curvature at the indicated
value.

27. y = tan x, at x = π/4

28. y = x2 + x− 3, at x = π/4

29. r⃗(t) = ⟨cos t, sin(3t)⟩, at t = 0

30. r⃗(t) = ⟨5 cos(3t), t⟩, at t = 0

In Exercises 31–34, find the equaƟon of the osculaƟng circle to
the curve at the indicated t-value.

31. r⃗(t) =
⟨
t, t2
⟩
, at t = 0

32. r⃗(t) = ⟨3 cos t, sin t⟩, at t = 0

33. r⃗(t) = ⟨3 cos t, sin t⟩, at t = π/2

34. r⃗(t) =
⟨
t2 − t, t2 + t

⟩
, at t = 0

35. For Theorem 102, use part 3 to prove part 2: If r⃗(t) =
⟨x(t), y(t)⟩ is a vector–valued funcƟon in the plane, then

κ =
|x ′y ′′ − x ′′y ′|(
(x ′)2 + (y ′)2

)3/2 .
36. For Theorem 102, use part 2 or 3 to prove part 1: If y =

f(x), then

κ =
|f ′′(x)|(

1+ (f ′(x))2
)3/2 .
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13: FçÄ�ã®ÊÄÝ Ê¥ S�ò�Ù�½
V�Ù®��½�Ý
A funcƟon of the form y = f(x) is a funcƟon of a single variable; given a value
of x, we can find a value y. Even the vector–valued funcƟons of Chapter 12 are
single–variable funcƟons; the input is a single variable though the output is a
vector.

There are many situaƟons where a desired quanƟty is a funcƟon of two or
more variables. For instance, wind chill ismeasuredby knowing the temperature
and wind speed; the volume of a gas can be computed knowing the pressure
and temperature of the gas; to compute a baseball player’s baƫng average, one
needs to know the number of hits and the number of at–bats.

This chapter studies mulƟvariable funcƟons, that is, funcƟons with more
than one input.

13.1 IntroducƟon to MulƟvariable FuncƟons

DefiniƟon 80 FuncƟon of Two Variables
Let D be a subset of R2. A funcƟon f of two variables is a rule that
assigns each pair (x, y) in D a value z = f(x, y) in R. The set D is the
domain of f; the set of all outputs of f is the range.

Watch the video:
Finding and Sketching the Domain of a MulƟvariable
FuncƟon at
https://youtu.be/q8ictFvAHLk

Example 1 Understanding a funcƟon of two variables
Let z = f(x, y) = x2 − y. Evaluate f(1, 2), f(2, 1), and f(−2, 4); find the domain
and range of f.

https://youtu.be/q8ictFvAHLk
https://youtu.be/q8ictFvAHLk
https://youtu.be/q8ictFvAHLk


Chapter 13 FuncƟons of Several Variables

SÊ½çã®ÊÄ Using the definiƟon f(x, y) = x2 − y, we have:

f(1, 2) = 12 − 2 = −1
f(2, 1) = 22 − 1 = 3

f(−2, 4) = (−2)2 − 4 = 0

The domain is not specified, so we take it to be all possible pairs in R2 for which
f is defined. In this example, f is defined for all pairs (x, y), so the domain D of f
is R2.

The output of f can be made as large or small as possible; any real number r
can be the output. (In fact, given any real number r, f(0,−r) = r.) So the range
R of f is R.

x2

9
+

y2

4
= 1

−5 5

−5

5

x

y

Figure 13.1: IllustraƟng the domain of
f(x, y) in Example 2.

Example 2 Understanding a funcƟon of two variables

Let f(x, y) =
√
1− x2

9
− y2

4
. Find the domain and range of f.

SÊ½çã®ÊÄ The domain is all pairs (x, y) allowable as input in f. Because
of the square–root, we need (x, y) such that 0 ≤ 1− x2

9 −
y2
4 :

x2

9
+

y2

4
≤ 1

The above equaƟon describes an ellipse and its interior as shown in Figure 13.1.
We can represent the domain D graphically with the figure; in set notaƟon, we
can write D = {(x, y)| x

2

9 + y2
4 ≤ 1}.

The range is the set of all possible output values. The square–root ensures
that all output is ≥ 0. Since the x and y terms are squared, then subtracted,
inside the square-root, the largest output value comes at x = 0, y = 0: f(0, 0) =
1. Thus the range R is the interval [0, 1].

Graphing FuncƟons of Two Variables

(a)

(b)

Figure 13.2: Graphing a funcƟon of two
variables.

The graph of a funcƟon f of two variables is the set of all points
(
x, y, f(x, y)

)
where (x, y) is in the domain of f. This creates a surface in space.

One can begin sketching a graph by ploƫng points, but this has limitaƟons.
Consider Figure 13.2(a)where 25points havebeenploƩedof f(x, y) =

1
x2 + y2 + 1

.
More points have been ploƩed than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the funcƟon looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading

Notes:
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13.1 IntroducƟon to MulƟvariable FuncƟons

to create a graph like Figure 13.2(b) which does a far beƩer job of illustraƟng the
behavior of f.

While technology is readily available to help us graph funcƟons of two vari-
ables, there is sƟll a paper–and–pencil approach that is useful to understand and
master as it, combined with high–quality graphics, gives one great insight into
the behavior of a funcƟon. This technique is known as sketching level curves.

Level Curves

It may be surprising to find that the problem of represenƟng a three dimen-
sional surface on paper is familiar to most people (they just don’t realize it).
Topographical maps, like the one shown in Figure 13.3, represent the surface
of Earth by indicaƟng points with the same elevaƟon with contour lines. The
elevaƟons marked are equally spaced; in this example, each thin line indicates
an elevaƟon change in 50Ō increments and each thick line indicates a change
of 200Ō. When lines are drawn close together, elevaƟon changes rapidly (as
one does not have to travel far to rise 50Ō). When lines are far apart, such as
near “Aspen Campground,” elevaƟon changesmore gradually as one has to walk
farther to rise 50Ō.

Figure 13.3: A topographicalmap displays
elevaƟon by drawing contour lines, along
with the elevaƟon is constant.
Sample taken from the public domain USGS Digital Raster Graphics,
http://topmaps.usgs.gove/drg/.

Given a funcƟon z = f(x, y), we can draw a “topographical map” of f by
drawing level curves (or, contour lines). A level curve at z = c is a curve in the
x-y plane such that for all points (x, y) on the curve, f(x, y) = c.

When drawing level curves, it helps to evenly space the c values as that gives
the best insight to how quickly the “elevaƟon” is changing. Examples will help
one understand this concept.

Example 3 Drawing Level Curves

Let f(x, y) =
√
1− x2

9
− y2

4
. Find the level curves of f for c = 0, 0.2, 0.4, 0.6,

0.8 and 1.

SÊ½çã®ÊÄ Consider first c = 0. The level curve for c = 0 is the set of
all points (x, y) such that 0 =

√
1− x2

9 −
y2
4 . Squaring both sides gives us

x2

9
+

y2

4
= 1,

an ellipse centered at (0, 0)with horizontal major axis of length 6 andminor axis
of length 4. Thus for any point (x, y) on this curve, f(x, y) = 0.

Notes:
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Chapter 13 FuncƟons of Several Variables

Now consider the level curve for c = 0.2

0.2 =

√
1− x2

9
− y2

4

0.04 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 0.96

x2

8.64
+

y2

3.84
= 1.

This is also an ellipse, where a =
√
8.64 ≈ 2.94 and b =

√
3.84 ≈ 1.96.

In general, for z = c, the level curve is:

c =
√
1− x2

9
− y2

4

c2 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 1− c2

x2

9(1− c2)
+

y2

4(1− c2)
= 1,

ellipses that are decreasing in size as c increases. A special case is when c = 1;
there the ellipse is just the point (0, 0).

−1 1 2−2 3−3

−1

1

−2

2

c = 1

c = 0.6

x

y

(a)

(b)

Figure 13.4: Graphing the level curves in
Example 3.

The level curves are shown in Figure 13.4(a). Note how the level curves for
c = 0 and c = 0.2 are very, very close together: this indicates that f is growing
rapidly along those curves.

In Figure 13.4(b), the curves are drawn on a graph of f in space. Note how
the elevaƟons are evenly spaced. Near the level curves of c = 0 and c = 0.2 we
can see that f indeed is growing quickly.

Example 4 Analyzing Level Curves
Let f(x, y) =

x+ y
x2 + y2 + 1

. Find the level curves for z = c.

SÊ½çã®ÊÄ We begin by seƫng f(x, y) = c for an arbitrary c and seeing
if algebraic manipulaƟon of the equaƟon reveals anything significant.

x+ y
x2 + y2 + 1

= c

x+ y = c(x2 + y2 + 1).

Notes:
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13.1 IntroducƟon to MulƟvariable FuncƟons

We recognize this as a circle, though the center and radius are not yet clear. By
compleƟng the square, we can obtain:

(
x− 1

2c

)2

+

(
y− 1

2c

)2

=
1
2c2
− 1,

a circle centered at
(
1/(2c), 1/(2c)

)
with radius

√
1/(2c2)− 1, where |c| <

1/
√
2. The level curves for c = ±0.2, ±0.4 and ±0.6 are sketched in Fig-

ure 13.5(a). To help illustrate “elevaƟon,” we use thicker lines for c values near
0, and dashed lines indicate where c < 0.

−5 5

−4

−2

2

4

c = 0

c = 0.2

c = 0.4

x

y

(a)

(b)

Figure 13.5: Graphing the level curves in
Example 4.

There is one special level curve, when c = 0. The level curve in this situaƟon
is x+ y = 0, the line y = −x.

In Figure 13.5(b) we see a graph of the surface. Note how the y-axis is point-
ing away from the viewer to more closely resemble the orientaƟon of the level
curves in (a).

Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = −x without
elevaƟon change, though the level curve does.

FuncƟons of Three Variables

We extend our study of mulƟvariable funcƟons to funcƟons of three variables.
(One canmake a funcƟon of as many variables as one likes; we limit our study to
three variables so that we are able to view the domain without exceeding three
dimensions.)

DefiniƟon 81 FuncƟon of Three Variables
Let D be a subset of R3. A funcƟon f of three variables is a rule that
assigns each triple (x, y, z) in D a value w = f(x, y, z) in R. The set D is
the domain of f; the set of all outputs of f is the range.

Note how this definiƟon closely resembles that of DefiniƟon 80.

Example 5 Understanding a funcƟon of three variables

Let f(x, y, z) =
x2 + z+ 3 sin y
x+ 2y− z

. Evaluate f at the point (3, 0, 2) and find the
domain and range of f.

Notes:
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Chapter 13 FuncƟons of Several Variables

SÊ½çã®ÊÄ f(3, 0, 2) =
32 + 2+ 3 sin 0
3+ 2(0)− 2

= 11.

As the domain of f is not specified, we take it to be the set of all triples (x, y, z)
for which f(x, y, z) is defined. As we cannot divide by 0, we find the domain D is

D = {(x, y, z) | x+ 2y− z ̸= 0}.

We recognize that the set of all points in R3 that are not in D form a plane in
space that passes through the origin (with normal vector ⟨1, 2,−1⟩).

We determine the range R isR; that is, all real numbers are possible outputs
of f. There is no set way of establishing this. Rather, to get numbers near 0 we
can let y = 0 and choose z ≈ −x2. To get numbers of arbitrarily largemagnitude,
we can let z ≈ x+ 2y.

Level Surfaces
It is very difficult to produce a meaningful graph of a funcƟon of three variables.
A funcƟon of one variable is a curve drawn in 2 dimensions; a funcƟon of two
variables is a surface drawn in 3 dimensions; a funcƟon of three variables is a
hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x, y, z), the level surface at w = c is the surface in space formed by all points
(x, y, z) where f(x, y, z) = c.

Example 6 Finding level surfaces
If a point source S is radiaƟng energy, the intensity I at a given point P in space
is inversely proporƟonal to the square of the distance between S and P. That is,
when S = (0, 0, 0), I(x, y, z) =

k
x2 + y2 + z2

for some constant k.

Let k = 1; find the level surfaces of I.

SÊ½çã®ÊÄ Wecan (mostly) answer this quesƟonusing “common sense.”
If energy (say, in the form of light) is emanaƟng from the origin, its intensity will
be the same at all points equidistant from the origin. That is, at any point on
the surface of a sphere centered at the origin, the intensity should be the same.
Therefore, the level surfaces are spheres.

We now find this mathemaƟcally. The level surface at I = c is defined by

c =
1

x2 + y2 + z2
.

Notes:
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13.1 IntroducƟon to MulƟvariable FuncƟons

taking reciprocals reveals

x2 + y2 + z2 =
1
c
.

Given an intensity c, the level surface I = c is a sphere of radius 1/
√
c, centered

at the origin.
c r

16. 0.25
8. 0.35
4. 0.5
2. 0.71
1. 1.
0.5 1.41
0.25 2.
0.125 2.83
0.0625 4.

Figure 13.6: A table of c values and the
corresponding radius r of the spheres of
constant value in Example 6.

Figure 13.6 gives a table of the radii of the spheres for given c values. Nor-
mally onewould use equally spaced c values, but these values have been chosen
purposefully. At a distance of 0.25 from the point source, the intensity is 16; to
move to a point of half that intensity, one just moves out 0.1 to 0.35 – not much
at all. To again halve the intensity, one moves 0.15, a liƩle more than before.

Note how each Ɵme the intensity if halved, the distance required to move
away grows. We conclude that the closer one is to the source, the more rapidly
the intensity changes.

In the next secƟon we apply the concepts of limits to funcƟons of two or
more variables.

Notes:
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Exercises 13.1
Terms and Concepts

1. Give two examples (other than those given in the text) of
“real world” funcƟons that require more than one input.

2. The graph of a funcƟon of two variables is a .

3. Most people are familiar with the concept of level curves
in the context of maps.

4. T/F: Along a level curve, the output of a funcƟon does not
change.

5. The analogue of a level curve for funcƟons of three vari-
ables is a level .

6. What does it mean when level curves are close together?
Far apart?

Problems

In Exercises 7–14, give the domain and range of the mulƟvari-
able funcƟon.

7. f(x, y) = x2 + y2 + 2

8. f(x, y) = x+ 2y

9. f(x, y) = x− 2y

10. f(x, y) = 1
x+ 2y

11. f(x, y) = 1
x2 + y2 + 1

12. f(x, y) = sin x cos y

13. f(x, y) =
√

9− x2 − y2

14. f(x, y) = 1√
x2 + y2 − 9

In Exercises 15–22, describe in words and sketch the level
curves for the funcƟon and given c values.

15. f(x, y) = 3x− 2y; c = −2, 0, 2

16. f(x, y) = x2 − y2; c = −1, 0, 1

17. f(x, y) = x− y2; c = −2, 0, 2

18. f(x, y) = 1− x2 − y2

2y− 2x
; c = −2, 0, 2

19. f(x, y) = 2x− 2y
x2 + y2 + 1

; c = −1, 0, 1

20. f(x, y) = y− x3 − 1
x

; c = −3,−1, 0, 1, 3

21. f(x, y) =
√

x2 + 4y2; c = 1, 2, 3, 4

22. f(x, y) = x2 + 4y2; c = 1, 2, 3, 4

In Exercises 23–26, give the domain and range of the funcƟons
of three variables.

23. f(x, y, z) = x
x+ 2y− 4z

24. f(x, y, z) = 1
1− x2 − y2 − z2

25. f(x, y, z) =
√

z− x2 + y2

26. f(x, y, z) = z2 sin x cos y

In Exercises 27–30, describe the level surfaces of the given
funcƟons of three variables.

27. f(x, y, z) = x2 + y2 + z2

28. f(x, y, z) = z− x2 + y2

29. f(x, y, z) = x2 + y2

z

30. f(x, y, z) = z
x− y

31. Compare the level curves of Exercises 21 and 22. How are
they similar, and how are they different? Each surface is a
quadric surface; describe how the level curves are consis-
tent with what we know about each surface.
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13.2 Limits andConƟnuity ofMulƟvariable FuncƟons

We conƟnue with the paƩern we have established in this text: aŌer defining a
new kind of funcƟon, we apply calculus ideas to it. The previous secƟon defined
funcƟons of two and three variables; this secƟon invesƟgates what it means for
these funcƟons to be “conƟnuous.”

We begin with a series of definiƟons. We are used to “open intervals” such
as (1, 3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 ≤ x ≤ 3.
We need analogous definiƟons for open and closed sets in the x-y plane.

P1

P2

x

y

(a)

P1

P2

x

y

(b)

P1

P2

x

y

(c)

Figure 13.7: IllustraƟng open and closed
sets in the x-y plane.

DefiniƟon82 Open Disk, Boundary and Interior Points, Open and
Closed Sets, Bounded Sets

An open disk B in R2 centered at (x0, y0) with radius r is the set of all
points (x, y) such that

√
(x− x0)2 + (y− y0)2 < r.

Let S be a set of points in R2. A point P in R2 is a boundary point of S
if all open disks centered at P contain both points in S and points not in S.

A point P in S is an interior point of S if there is an open disk centered
at P that contains only points in S.

A set S is open if every point in S is an interior point.

A set S is closed if it contains all of its boundary points.

A set S is bounded if there is anM > 0 such that the open disk, centered
at the origin with radius M, contains S. A set that is not bounded is
unbounded.

Figure 13.7 shows several sets in the x-y plane. In each set, point P1 lies on
the boundary of the set as all open disks centered there contain both points in,
and not in, the set. In contrast, point P2 is an interior point for there is an open
disk centered there that lies enƟrely within the set.

The set depicted in Figure 13.7(a) is a closed set as it contains all of its bound-
ary points. The set in (b) is open, for all of its points are interior points (or, equiv-
alently, it does not contain any of its boundary points). The set in (c) is neither
open nor closed as it contains some of its boundary points.

Notes:
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Example 1 Determining open/closed, bounded/unbounded
Determine if the domain of the funcƟon f(x, y) =

√
1− x2

9 −
y2
4 is open, closed,

or neither, and if it is bounded.

SÊ½çã®ÊÄ This domain of this funcƟon was found in Example 13.1.2 to
be D = {(x, y) | x

2

9 + y2
4 ≤ 1}, the region bounded by the ellipse x2

9 + y2
4 = 1.

Since the region includes the boundary (indicated by the use of “≤”), the set
contains all of its boundary points and hence is closed. The region is bounded
as a disk of radius 4, centered at the origin, contains D.

Example 2 Determining open/closed, bounded/unbounded
Determine if the domain of f(x, y) = 1

x−y is open, closed, or neither.

SÊ½çã®ÊÄ As we cannot divide by 0, we find the domain to be D =
{(x, y) | x− y ̸= 0}. In other words, the domain is the set of all points (x, y) not
on the line y = x.

x

y

Figure 13.8: Sketching the domain of the
funcƟon in Example 2.

The domain is sketched in Figure 13.8. Note how we can draw an open disk
around any point in the domain that lies enƟrely inside the domain, and also
note how the only boundary points of the domain are the points on the line
y = x. We conclude the domain is an open set. The set is unbounded.

Limits

Recall a pseudo–definiƟon of the limit of a funcƟon of one variable: “lim
x→c

f(x) =
L” means that if x is “really close” to c, then f(x) is “really close” to L. A similar
pseudo–definiƟon holds for funcƟons of two variables. We’ll say that

“ lim
(x,y)→(x0,y0)

f(x, y) = L”

means “if the point (x, y) is really close to the point (x0, y0), then f(x, y) is really
close to L.” The formal definiƟon is given below.

Notes:
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DefiniƟon 83 Limit of a FuncƟon of Two Variables
Let S be an open set containing (x0, y0), and let f be a funcƟon of two
variables defined on S, except possibly at (x0, y0). The limit of f(x, y) as
(x, y) approaches (x0, y0) is L, denoted

lim
(x,y)→(x0,y0)

f(x, y) = L,

means that given any ε > 0, there exists δ > 0 such that for all (x, y) ̸=
(x0, y0), if (x, y) is in the open disk centered at (x0, y0) with radius δ,
then |f(x, y)− L| < ε.

Figure 13.9: IllustraƟng the definiƟon of
a limit. The open disk in the x-y plane has
radius δ. Let (x, y) be any point in this
disk; f(x, y) is within ε of L.

The concept behind DefiniƟon 83 is sketched in Figure 13.9. Given ε > 0,
find δ > 0 such that if (x, y) is any point in the open disk centered at (x0, y0) in
the x-y plane with radius δ, then f(x, y) should be within ε of L.

CompuƟng limits using this definiƟon is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

Notes:
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Theorem 103 Basic Limit ProperƟes of FuncƟons of Two Variables
Let b, x0, y0, L and K be real numbers, let n be a posiƟve integer, and let
f and g be funcƟons with the following limits:

lim
(x,y)→(x0,y0)

f(x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = K.

The following limits hold.

1. Constants: lim
(x,y)→(x0,y0)

b = b

2. IdenƟty lim
(x,y)→(x0,y0)

x = x0; lim
(x,y)→(x0,y0)

y = y0

3. Sums/Differences: lim
(x,y)→(x0,y0)

(
f(x, y)± g(x, y)

)
= L± K

4. Scalar MulƟples: lim
(x,y)→(x0,y0)

b · f(x, y) = bL

5. Products: lim
(x,y)→(x0,y0)

f(x, y) · g(x, y) = LK

6. QuoƟents: lim
(x,y)→(x0,y0)

f(x, y)/g(x, y) = L/K, (K ̸= 0)

7. Powers: lim
(x,y)→(x0,y0)

f(x, y)n = Ln

8. Roots: lim
(x,y)→(x0,y0)

n
√

f(x, y) = n
√
L (when n is odd

or L ≥ 0)

This theorem can be proved by the same arguments as the analogous results
for funcƟons of one variable in Theorem 1. Combined with Theorems 3 and 4 of
SecƟon 1.3, this allows us to evaluate many limits.

Example 3 EvaluaƟng a limit
Evaluate the following limits:

1. lim
(x,y)→(1,π)

y
x
+ cos(xy) 2. lim

(x,y)→(0,0)

3xy
x2 + y2

SÊ½çã®ÊÄ

1. The aforemenƟoned theorems allow us to simply evaluate y/x+ cos(xy)
when x = 1 and y = π. If an indeterminate form is returned, we must do

Notes:
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13.2 Limits and ConƟnuity of MulƟvariable FuncƟons

more work to evaluate the limit; otherwise, the result is the limit. There-
fore

lim
(x,y)→(1,π)

y
x
+ cos(xy) =

π

1
+ cos π

= π − 1.

2. We aƩempt to evaluate the limit by subsƟtuƟng 0 in for x and y, but the
result is the indeterminate form “0/0.” To evaluate this limit, we must
“do more work,” but we have not yet learned what “kind” of work to do.
Therefore we cannot yet evaluate this limit.

When dealing with funcƟons of a single variable we also considered one–
sided limits and stated

lim
x→c

f(x) = L if and only if both lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.

That is, the limit is L if and only if f(x) approaches L when x approaches c from
either direcƟon, the leŌ or the right.

In the plane, there are infinite direcƟons from which (x, y) might approach
(x0, y0). In fact, we do not have to restrict ourselves to approaching (x0, y0) from
a parƟcular direcƟon, but rather we can approach that point along any possible
path. It is possible to arrive at different limiƟng values by approaching (x0, y0)
along different paths. If this happens, we say that lim

(x,y)→(x0,y0)
f(x, y) does not

exist (this is analogous to the leŌ and right hand limits of single variable funcƟons
not being equal).

Our theorems tell us that we can evaluate most limits quite simply, without
worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiƟng value is obtained regardless of the path chosen. The case where
the limit does not exist is oŌen easier to deal with, for we can oŌen pick two
paths along which the limit is different.

Watch the video:
Showing a Limit Does Not Exist at
https://youtu.be/q9xIdF33ql8

Notes:
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Example 4 Showing limits do not exist

1. Show lim
(x,y)→(0,0)

3xy
x2 + y2

does not exist by finding the limits along the lines
y = mx.

2. Show lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist by finding the limit along the path

y = − sin x.

SÊ½çã®ÊÄ

1. EvaluaƟng lim
(x,y)→(0,0)

3xy
x2 + y2

along the lines y = mxmeans replace all y’s

withmx and evaluaƟng the resulƟng limit:

lim
(x,mx)→(0,0)

3x(mx)
x2 + (mx)2

= lim
x→0

3mx2

x2(m2 + 1)

= lim
x→0

3m
m2 + 1

=
3m

m2 + 1
.

While the limit exists for each choice ofm, we get a different limit for each
choice of m. That is, along different lines we get differing limiƟng values,
meaning the limit does not exist.

2. Let f(x, y) = sin(xy)
x+y . We are to show that lim

(x,y)→(0,0)
f(x, y) does not exist

by finding the limit along the path y = − sin x. First, however, consider
the limits found along the lines y = mx as done above.

lim
(x,mx)→(0,0)

sin
(
x(mx)

)
x+mx

= lim
x→0

sin(mx2)
x(m+ 1)

= lim
x→0

sin(mx2)
x

· 1
m+ 1

.

By applying L’Hôpital’s Rule, we can show this limit is 0 except whenm =
−1, that is, along the line y = −x. This line is not in the domain of f, so
we have found the following fact: along every line y = mx in the domain
of f, lim

(x,y)→(0,0)
f(x, y) = 0.

Now consider the limit along the path y = − sin x:

lim
(x,− sin x)→(0,0)

sin
(
−x sin x

)
x− sin x

= lim
x→0

sin
(
−x sin x

)
x− sin x

Notes:
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13.2 Limits and ConƟnuity of MulƟvariable FuncƟons

Now apply L’Hôpital’s Rule twice:

= lim
x→0

cos
(
−x sin x

)
(− sin x− x cos x)

1− cos x
(“ = 0/0”)

= lim
x→0

− sin
(
−x sin x

)
(− sin x− x cos x)2 + cos

(
−x sin x

)
(−2 cos x+ x sin x)

sin x
= “−2/0” ⇒ the limit does not exist.

Step back and consider what we have just discovered. Along any line y =
mx in the domain of the f(x, y), the limit is 0. However, along the path
y = − sin x, which lies in the domain of f(x, y) for all x ̸= 0, the limit does
not exist. Since the limit is not the same along every path to (0, 0), we say

lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist.

Example 5 Finding a limit

Let f(x, y) =
5x2y2

x2 + y2
. Find lim

(x,y)→(0,0)
f(x, y).

SÊ½çã®ÊÄ It is relaƟvely easy to show that along any line y = mx, the
limit is 0. This is not enough to prove that the limit exists, as demonstrated in
the previous example, but it tells us that if the limit does exist then it must be 0.

To prove the limit is 0, we apply DefiniƟon 83. Let ε > 0 be given. We want
to find δ > 0 such that if

√
(x− 0)2 + (y− 0)2 < δ, then |f(x, y)− 0| < ε.

Set δ <
√

ε/5. Note that
∣∣∣∣ 5y2

x2 + y2

∣∣∣∣ < 5 for all (x, y) ̸= (0, 0), and that if√
x2 + y2 < δ, then x2 < δ2.
Let
√
(x− 0)2 + (y− 0)2 =

√
x2 + y2 < δ. Consider |f(x, y)− 0|:

|f(x, y)− 0| =
∣∣∣∣ 5x2y2x2 + y2

− 0
∣∣∣∣

=

∣∣∣∣x2 · 5y2

x2 + y2

∣∣∣∣
< δ2 · 5

<
ε

5
· 5

= ε.

Thus if
√
(x− 0)2 + (y− 0)2 < δ then |f(x, y)− 0| < ε, which is what we

wanted to show. Thus lim
(x,y)→(0,0)

5x2y2

x2 + y2
= 0.

Notes:
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ConƟnuity

DefiniƟon 7 defines what it means for a funcƟon of one variable to be conƟn-
uous. In brief, it meant that the funcƟon always equaled its limit. We define
conƟnuity for funcƟons of two variables in a similar way as we did for funcƟons
of one variable.

DefiniƟon 84 ConƟnuous
Let a funcƟon f(x, y) be defined on an open disk B containing the point
(x0, y0).

1. f is conƟnuous at (x0, y0) if lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

2. f is conƟnuous on an open set S if f is conƟnuous at each points
in S. (We say that f is conƟnuous everywhere if f is conƟnuous
on R2.)

Example 6 ConƟnuity of a funcƟon of two variables

Let f(x, y) =

{ cos y sin x
x x ̸= 0
cos y x = 0 . Is f conƟnuous at (0, 0)? Is f conƟnuous

everywhere?

SÊ½çã®ÊÄ To determine if f is conƟnuous at (0, 0), we need to compare
lim

(x,y)→(0,0)
f(x, y) to f(0, 0).

Applying the definiƟon of f, we see that f(0, 0) = cos 0 = 1.
We now consider the limit lim

(x,y)→(0,0)
f(x, y). SubsƟtuƟng 0 for x and y in

(cos y sin x)/x returns the indeterminate form “0/0”, so we need to do more
work to evaluate this limit.

Consider two related limits: lim
(x,y)→(0,0)

cos y and lim
(x,y)→(0,0)

sin x
x

. The first

limit does not contain x, and since cos y is conƟnuous,

lim
(x,y)→(0,0)

cos y = lim
y→0

cos y = cos 0 = 1.

The second limit does not contain y. By Theorem 6 we can say

lim
(x,y)→(0,0)

sin x
x

= lim
x→0

sin x
x

= 1.

Notes:
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Finally, Theorem 103 of this secƟon states that we can combine these two limits
as follows:

lim
(x,y)→(0,0)

cos y sin x
x

= lim
(x,y)→(0,0)

(cos y)
(
sin x
x

)
=

(
lim

(x,y)→(0,0)
cos y

)(
lim

(x,y)→(0,0)

sin x
x

)
= (1)(1)
= 1.

We have found that lim
(x,y)→(0,0)

cos y sin x
x

= f(0, 0), so f is conƟnuous at

(0, 0).

Figure 13.10: A graph of f(x, y) in Exam-
ple 6.

A similar analysis shows that f is conƟnuous at all points in R2. As long as
x ̸= 0, we can evaluate the limit directly; when x = 0, a similar analysis shows
that the limit is cos y. Thus we can say that f is conƟnuous everywhere. A graph
of f is given in Figure 13.10. NoƟce how it has no breaks, jumps, etc.

The following theorems are very similar to Theorems 10 and 11, giving us
ways to combine conƟnuous funcƟons to create other conƟnuous funcƟons.

Theorem 104 ProperƟes of ConƟnuous FuncƟons
Let f and g be conƟnuous on an open set S, let c be a real number, and
let n be a posiƟve integer. The following funcƟons are conƟnuous on S.

1. Sums/Differences: f± g

2. Constant MulƟples: c · f

3. Products: f · g

4. QuoƟents: f/g (as longs as g ̸= 0 on B)

5. Powers: f n

6. Roots: n
√
f (if f ≥ 0 on B or n is odd)

Notes:
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Theorem 105 ConƟnuity of ComposiƟons
Let f be conƟnuous on S, where the range of f on S is J, and let g be a
single variable funcƟon that is conƟnuous on J. Then

(g ◦ f)(x, y) = g(f(x, y)),

is conƟnuous on S.

Example 7 Establishing conƟnuity of a funcƟon
Let f(x, y) = sin(x2 cos y). Show f is conƟnuous everywhere.

SÊ½çã®ÊÄ We will apply Theorems 10, 104, and 105. Let f1(x, y) = x2.
Since y is not actually used in the funcƟon, and polynomials are conƟnuous (by
Theorem 10), we conclude f1 is conƟnuous everywhere. A similar statement can
be made about f2(x, y) = cos y. Part 3 of Theorem 104 states that f3 = f1 · f2 is
conƟnuous everywhere, and Theorem 105 states the composiƟon of sine with
f3 is conƟnuous: that is, sin(f3) = sin(x2 cos y) is conƟnuous everywhere.

FuncƟons of Three Variables

The definiƟons and theorems given in this secƟon can be extended in a natural
way to definiƟons and theorems about funcƟons of three (or more) variables.
We cover the key concepts here; some terms from DefiniƟons 82 and 84 are not
redefined but their analogous meanings should be clear to the reader.

Notes:
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DefiniƟon 85 Open Balls, Limit, ConƟnuous

1. An open ball in R3 centered at (x0, y0, z0) with radius r is the set of all
points (x, y, z) such that

√
(x− x0)2 + (y− y0)2 + (z− z0)2 = r.

2. Let D be an open set inR3 containing (x0, y0, z0), and let f(x, y, z) be a
funcƟon of three variables defined on D, except possibly at (x0, y0, z0).
The limit of f(x, y, z) as (x, y, z) approaches (x0, y0, z0) is L, denoted

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = L,

means that given any ε > 0, there is a δ > 0 such that for all
(x, y, z) ̸= (x0, y0, z0), if (x, y, z) is in the open ball centered at
(x0, y0, z0) with radius δ, then |f(x, y, z)− L| < ε.

3. Let f(x, y, z) be defined on an open ball B containing (x0, y0, z0). Then
f is conƟnuous at (x0, y0, z0) if lim

(x,y,z)→(x0,y0,z0)
f(x, y, z) = f(x0, y0, z0).

These definiƟons can also be extended naturally to apply to funcƟons of four
or more variables. Theorems 104 and 105 also applies to funcƟon of three or
more variables, allowing us to say that the funcƟon

f(x, y, z) =
ex

2+y
√

y2 + z2 + 3
sin(xyz) + 5

is conƟnuous everywhere.
When considering single variable funcƟons, we studied limits, then conƟnu-

ity, then the derivaƟve. In our current study of mulƟvariable funcƟons, we have
studied limits and conƟnuity. In the next secƟon we study derivaƟon, which
takes on a slight twist as we are in a mulƟvarible context.
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Exercises 13.2
Terms and Concepts
1. Describe in your own words the difference between

boundary and interior point of a set.
2. Use your own words to describe (informally) what

lim
(x,y)→(1,2)

f(x, y) = 17 means.

3. Give an example of a closed, bounded set.
4. Give an example of a closed, unbounded set.
5. Give an example of a open, bounded set.
6. Give an example of a open, unbounded set.

Problems
In Exercises 7–10, a set S is given.

(a) Give one boundary point and one interior point, when
possible, of S.

(b) State whether S is open, closed, or neither.
(c) State whether S is bounded or unbounded.

7. S =
{
(x, y)

∣∣∣∣ (x− 1)2

4
+

(y− 3)2

9
≤ 1

}
8. S =

{
(x, y) | y ̸= x2

}
9. S =

{
(x, y) | x2 + y2 = 1

}
10. S = {(x, y)|y > sin x}

In Exercises 11–14:
(a) Find the domain D of the given funcƟon.
(b) State whether D is an open or closed set.
(c) State whether D is bounded or unbounded.

11. f(x, y) =
√

9− x2 − y2

12. f(x, y) =
√

y− x2

13. f(x, y) = 1√
y− x2

14. f(x, y) = x2 − y2

x2 + y2

In Exercises 15–20, a limit is given. Evaluate the limit along the
paths given, then state why these results show the given limit
does not exist.

15. lim
(x,y)→(0,0)

x2 − y2

x2 + y2

(a) Along the path y = 0.

(b) Along the path x = 0.

16. lim
(x,y)→(0,0)

x+ y
x− y

(a) Along the path y = mx.

17. lim
(x,y)→(0,0)

xy− y2

y2 + x
(a) Along the path y = mx.

(b) Along the path x = 0.

18. lim
(x,y)→(0,0)

sin(x2)
y

(a) Along the path y = mx.

(b) Along the path y = x2.

19. lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

(a) Along the path y = 2.

(b) Along the path y = x+ 1.

20. lim
(x,y)→(π,π/2)

sin x
cos y

(a) Along the path x = π.

(b) Along the path y = x− π/2.
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13.3 ParƟal DerivaƟves
Let y be a funcƟon of x. We have studied in great detail the derivaƟve of y with
respect to x, that is, dy

dx , whichmeasures the rate at which y changes with respect
to x. Consider now z = f(x, y). It makes sense to want to know how z changes
with respect to x and/or y. This secƟon begins our invesƟgaƟon into these rates
of change.

(a)

(b)

Figure 13.11: By fixing y = 2, the surface
f(x, y) = x2 + 2y2 is a curve in space.

Consider the funcƟon z = f(x, y) = x2 + 2y2, as graphed in Figure 13.11(a).
By fixing y = 2, we focus our aƩenƟon to all points on the surface where the
y-value is 2, shown in both parts (a) and (b) of the figure. These points form a
curve in space: z = f(x, 2) = x2 + 8 which is a funcƟon of just one variable. We
can take the derivaƟve of zwith respect to x along this curve and find equaƟons
of tangent lines, etc.

The key noƟon to extract from this example is: by treaƟng y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of parƟal derivaƟves. We state the formal,
limit–based definiƟon first, then show how to compute these parƟal derivaƟves
without directly taking limits.

DefiniƟon 86 ParƟal DerivaƟve
Let z = f(x, y) be a conƟnuous funcƟon on an open set S in R2.

1. The parƟal derivaƟve of f with respect to x is:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

.

2. The parƟal derivaƟve of f with respect to y is:

fy(x, y) = lim
h→0

f(x, y+ h)− f(x, y)
h

.

Alternate notaƟons for fx(x, y) in-
clude:

∂

∂x
f(x, y),

∂f
∂x

,
∂z
∂x

, and zx,

with similar notaƟons for fy(x, y). For
ease of notaƟon, fx(x, y) is oŌen ab-
breviated fx.

Watch the video:
ParƟal DerivaƟves at
https://youtu.be/SbfRDBmyAMI

Notes:
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Example 1 CompuƟng parƟal derivaƟves with the limit definiƟon
Let f(x, y) = x2y+ 2x+ y3. Find fx(x, y) using the limit definiƟon.

SÊ½çã®ÊÄ Using DefiniƟon 86, we have:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

= lim
h→0

(x+ h)2y+ 2(x+ h) + y3 − (x2y+ 2x+ y3)
h

= lim
h→0

x2y+ 2xhy+ h2y+ 2x+ 2h+ y3 − (x2y+ 2x+ y3)
h

= lim
h→0

2xhy+ h2y+ 2h
h

= lim
h→0

2xy+ hy+ 2

= 2xy+ 2.

We have found fx(x, y) = 2xy+ 2.

Example 1 found a parƟal derivaƟve using the formal, limit–based definiƟon.
Using limits is not necessary, though, as we can rely on our previous knowledge
of derivaƟves to compute parƟal derivaƟves easily. When compuƟng fx(x, y), we
hold y fixed – it does not vary. Therefore we can compute the derivaƟve with
respect to x by treaƟng y as a constant or coefficient.

Just as d
dx

(
5x2
)
= 10x, we compute ∂

∂x

(
x2y
)
= 2xy. Here we are treaƟng y

as a coefficient.
Just as d

dx

(
53
)
= 0, we compute ∂

∂x

(
y3
)
= 0. Here we are treaƟng y as a

constant. More examples will help make this clear.

Example 2 Finding parƟal derivaƟves
Find fx(x, y) and fy(x, y) in each of the following.

1. f(x, y) = x3y2 + 5y2 − x+ 7

2. f(x, y) = cos(xy2) + sin x

3. f(x, y) = ex
2y3
√
x2 + 1

SÊ½çã®ÊÄ
1. We have f(x, y) = x3y2 + 5y2 − x+ 7.

Begin with fx(x, y). Keep y fixed, treaƟng it as a constant or coefficient, as
appropriate:

fx(x, y) = 3x2y2 − 1.

Notes:
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Note how the 5y2 and 7 terms go to zero.
To compute fy(x, y), we hold x fixed:

fy(x, y) = 2x3y+ 10y.

Note how the−x and 7 terms go to zero.

2. We have f(x, y) = cos(xy2) + sin x.
Begin with fx(x, y). We need to apply the Chain Rule with the cosine term;
y2 is the coefficient of the x-term inside the cosine funcƟon.

fx(x, y) = − sin(xy2)(y2) + cos x = −y2 sin(xy2) + cos x.

To find fy(x, y), note that x is the coefficient of the y2 term inside of the
cosine term; also note that since x is fixed, sin x is also fixed, and we treat
it as a constant.

fy(x, y) = − sin(xy2)(2xy) = −2xy sin(xy2).

3. We have f(x, y) = ex
2y3
√
x2 + 1.

Beginning with fx(x, y), note how we need to apply the Product Rule.

fx(x, y) = ex
2y3(2xy3)

√
x2 + 1+ ex

2y3 1
2
(
x2 + 1

)−1/2
(2x)

= 2xy3ex
2y3
√

x2 + 1+
xex

2y3

√
x2 + 1

.

Note that when finding fy(x, y)we do not have to apply the Product Rule;
since

√
x2 + 1 does not contain y, we treat it as fixed and hence becomes

a coefficient of the ex2y3 term.

fy(x, y) = ex
2y3(3x2y2)

√
x2 + 1 = 3x2y2ex

2y3
√

x2 + 1.

We have shown how to compute a parƟal derivaƟve, but it may sƟll not be
clear what a parƟal derivaƟve means. Given z = f(x, y), fx(x, y) measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your locaƟon, you might walk up, sharply down, or perhaps not
change elevaƟon at all. This is similar to measuring zx: you are moving only east
(in the “x”-direcƟon) and not north/south at all. Going back to your original lo-
caƟon, imagine now walking due north (in the “y”-direcƟon). Perhaps walking
due north does not change your elevaƟon at all. This is analogous to zy = 0: z
does not change with respect to y. We can see that zx and zy do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

The following example helps us visualize this more.

Notes:
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Example 3 EvaluaƟng parƟal derivaƟves
Let z = f(x, y) = −x2 − 1

2y
2 + xy + 10. Find fx(2, 1) and fy(2, 1) and interpret

their meaning.

SÊ½çã®ÊÄ We begin by compuƟng fx(x, y) = −2x + y and fy(x, y) =
−y+ x. Thus

fx(2, 1) = −3 and fy(2, 1) = 1.

It is also useful to note that f(2, 1) = 7.5. What does each of these numbers
mean?

(a)

(b)

Figure 13.12: IllustraƟng the meaning of
parƟal derivaƟves.

Consider fx(2, 1) = −3, along with Figure 13.12(a). If one “stands” on the
surface at the point (2, 1, 7.5) and moves parallel to the x-axis (i.e., only the x-
value changes, not the y-value), then the instantaneous rate of change is −3.
Increasing the x-value will decrease the z-value; decreasing the x-value will in-
crease the z-value.

Now consider fy(2, 1) = 1, illustrated in Figure 13.12(b). Moving along the
curve drawn on the surface, i.e., parallel to the y-axis and not changing the x-
values, increases the z-value instantaneously at a rate of 1. Increasing the y-
value by 1 would increase the z-value by approximately 1.

Since the magnitude of fx is greater than the magnitude of fy at (2, 1), it is
“steeper” in the x-direcƟon than in the y-direcƟon.

Second ParƟal DerivaƟves

Let z = f(x, y). We have learned to find the parƟal derivaƟves fx(x, y) and
fy(x, y), which are each funcƟons of x and y. Thereforewe can take parƟal deriva-
Ɵves of these, each with respect to x and y. We define these “second parƟals”
along with the notaƟon, give examples, then discuss their meaning.

Notes:
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DefiniƟon 87 Second ParƟal DerivaƟve, Mixed ParƟal DerivaƟve
Let z = f(x, y) be conƟnuous on an open set S.

1. The second parƟal derivaƟve of f with respect to x then x is

∂

∂x

(
∂f
∂x

)
=

∂2f
∂x2

=
(
fx
)
x = fxx

2. The second parƟal derivaƟve of f with respect to x then y is

∂

∂y

(
∂f
∂x

)
=

∂2f
∂y∂x

=
(
fx
)
y = fxy

Similar definiƟons hold for
∂2f
∂y2

= fyy and
∂2f
∂x∂y

= fyx.

The second parƟal derivaƟves fxy and fyx aremixed parƟal derivaƟves.

Note: The terms in DefiniƟon 87 all
depend on limits, so each definiƟon
comes with the caveat “where the
limit exists.”
The way to keep track of the order
is to start with the variable nearest
to the funcƟon. Unfortunately, this
means that while ∂2f

∂y∂x = fxy both
mean “differenƟate with respect to x
first”, the x and y appear in a differ-
ent order. Fortunately Theorem 106
will soon tell us that the order doesn’t
usually maƩer.

The notaƟon of second parƟal derivaƟves gives some insight into the nota-
Ɵon of the second derivaƟve of a funcƟon of a single variable. If y = f(x), then

f ′′(x) =
d2y
dx2

. The “d2y” porƟon means “take the derivaƟve of y twice,” while
“dx2” means “with respect to x both Ɵmes.” When we only know of funcƟons of
a single variable, this laƩer phrase seems silly: there is only one variable to take
the derivaƟve with respect to. Now that we understand funcƟons of mulƟple
variables, we see the importance of specifying which variables we are referring
to.

Example 4 Second parƟal derivaƟves
For each of the following, find all six first and second parƟal derivaƟves. That is,
find

fx, fy, fxx, fyy, fxy and fyx .

1. f(x, y) = x3y2 + 2xy3 + cos x

2. f(x, y) =
x3

y2

SÊ½çã®ÊÄ In each, we give fx and fy immediately and then spend Ɵme
deriving the second parƟal derivaƟves.

Notes:
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1.
f(x, y) = x3y2 + 2xy3 + cos x
fx(x, y) = 3x2y2 + 2y3 − sin x
fy(x, y) = 2x3y+ 6xy2

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
3x2y2 + 2y3 − sin x

)
= 6xy2 − cos x

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
2x3y+ 6xy2

)
= 2x3 + 12xy

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(
3x2y2 + 2y3 − sin x

)
= 6x2y+ 6y2

fyx(x, y) =
∂

∂x
(
fy
)
=

∂

∂x
(
2x3y+ 6xy2

)
= 6x2y+ 6y2

2.
f(x, y) =

x3

y2
= x3y−2

fx(x, y) =
3x2

y2

fy(x, y) = −
2x3

y3

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(3x2
y2
)
=

6x
y2

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
− 2x3

y3
)
=

6x3

y4

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(3x2
y2
)
= −6x2

y3

fyx(x, y) =
∂

∂x
(
fy
)
=

∂

∂x
(
− 2x3

y3
)
= −6x2

y3
.

NoƟce how in both of the funcƟons in Example 4, fxy = fyx. Due to the com-
plexity of the examples, this likely is not a coincidence. The following theorem
states that it is not.

Theorem 106 Mixed ParƟal DerivaƟves
Let f be defined such that fxy and fyx are conƟnuous on an open set S.
Then for each point (x, y) in S, fxy(x, y) = fyx(x, y).

Finding fxy and fyx independently and comparing the results provides a con-
venient way of checking our work.

Notes:
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Understanding Second ParƟal DerivaƟves
Now that we know how to find second parƟals, we invesƟgatewhat they tell us.

Again we refer back to a funcƟon y = f(x) of a single variable. The second
derivaƟve of f is “the derivaƟve of the derivaƟve,” or “the rate of change of the
rate of change.” The second derivaƟve measures how much the derivaƟve is
changing. If f ′′(x) < 0, then the derivaƟve is geƫng smaller (so the graph of f is
concave down); if f ′′(x) > 0, then the derivaƟve is growing, making the graph
of f concave up.

Now consider z = f(x, y). Similar statements can be made about fxx and fyy
as could be made about f ′′(x) above. When taking derivaƟves with respect to
x twice, we measure how much fx changes with respect to x. If fxx(x, y) < 0,
it means that as x increases, fx decreases, and the graph of f will be concave
down in the x-direcƟon. Using the analogy of standing in the rolling meadow
used earlier in this secƟon, fxx measures whether one’s path is concave up/down
when walking due east.

Similarly, fyy measures the concavity in the y-direcƟon. If fyy(x, y) > 0, then
fy is increasing with respect to y and the graph of f will be concave up in the y-
direcƟon. Appealing to the rollingmeadow analogy again, fyy measures whether
one’s path is concave up/down when walking due north.

We now consider the mixed parƟals fxy and fyx. The mixed parƟal fxy mea-
sures howmuch fx changeswith respect to y. Once again using the rollingmeadow
analogy, fx measures the slope if one walks due east. Looking east, begin walk-
ing north (side–stepping). Is the path towards the east geƫng steeper? If so,
fxy > 0. Is the path towards the east not changing in steepness? If so, then
fxy = 0. A similar thing can be said about fyx: consider the steepness of paths
heading north while side–stepping to the east.

The following example examines these ideas with concrete numbers and
graphs.

Example 5 Understanding second parƟal derivaƟves
Let z = x2 − y2 + xy. Evaluate the 6 first and second parƟal derivaƟves at
(−1/2, 1/2) and interpret what each of these numbers mean.

SÊ½çã®ÊÄ We find that:
fx(x, y) = 2x+ y, fy(x, y) = −2y+ x, fxx(x, y) = 2, fyy(x, y) = −2 and

fxy(x, y) = fyx(x, y) = 1. Thus at (−1/2, 1/2) we have

fx(−1/2, 1/2) = −1/2, fy(−1/2, 1/2) = −3/2.

The slope of the tangent line at (−1/2, 1/2,−1/4) in the direcƟon of x is−1/2:
if one moves from that point parallel to the x-axis, the instantaneous rate of
change will be−1/2. The slope of the tangent line at this point in the direcƟon

Notes:
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of y is−3/2: if onemoves from this point parallel to the y-axis, the instantaneous
rate of change will be−3/2. These tangents lines are graphed in Figure 13.13(a)
and (b), respecƟvely, where the tangent lines are drawn in a solid line.

(a)

(b)

Figure 13.13: Understanding the second
parƟal derivaƟves in Example 5.

Now consider only Figure 13.13(a). Three directed tangent lines are drawn
(two are dashed), each in the direcƟon of x; that is, each has a slope determined
by fx. Note how as y increases, the slope of these lines get closer to 0. Since the
slopes are all negaƟve, geƫng closer to 0 means the slopes are increasing. The
slopes given by fx are increasing as y increases, meaning fxy must be posiƟve.

Since fxy = fyx, we also expect fy to increase as x increases. Consider Fig-
ure 13.13(b) where again three directed tangent lines are drawn, this Ɵme each
in the direcƟon of y with slopes determined by fy. As x increases, the slopes
become less steep (closer to 0). Since these are negaƟve slopes, this means the
slopes are increasing.

Thus far we have a visual understanding of fx, fy, and fxy = fyx. We now inter-
pret fxx and fyy. In Figure 13.13(a), we see a curve drawnwhere x is held constant
at x = −1/2: only y varies. This curve is clearly concave down, corresponding
to the fact that fyy < 0. In part (b) of the figure, we see a similar curve where y
is constant and only x varies. This curve is concave up, corresponding to the fact
that fxx > 0.

ParƟal DerivaƟves and FuncƟons of Three Variables
The concepts underlying parƟal derivaƟves can be easily extend to more than
two variables. We give some definiƟons and examples in the case of three
variables and trust the reader can extend these definiƟons to more variables
if needed.

DefiniƟon 88 ParƟal DerivaƟves with Three Variables
Let w = f(x, y, z) be a conƟnuous funcƟon on an open set S in R3.
The parƟal derivaƟve of f with respect to x is:

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)
h

.

Similar definiƟons hold for fy(x, y, z) and fz(x, y, z).

By taking parƟal derivaƟves of parƟal derivaƟves, we can find second parƟal
derivaƟves of f with respect to z then y, for instance, just as before.

Notes:
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Example 6 ParƟal derivaƟves of funcƟons of three variables
For each of the following, find fx, fy, fz, fxz, fyz, and fzz.

1. f(x, y, z) = x2y3z4 + x2y2 + x3z3 + y4z4

2. f(x, y, z) = x sin(yz)

SÊ½çã®ÊÄ

1.
fx = 2xy3z4 + 2xy2 + 3x2z3 fy = 3x2y2z4 + 2x2y+ 4y3z4

fz = 4x2y3z3 + 3x3z2 + 4y4z3 fxz = 8xy3z3 + 9x2z2

fyz = 12x2y2z3 + 16y3z3 fzz = 12x2y3z2 + 6x3z+ 12y4z2

2.
fx = sin(yz) fy = xz cos(yz) fz = xy cos(yz)
fxz = y cos(yz) fyz = x cos(yz)− xyz sin(yz) fzz = −xy2 sin(xy)

Higher Order ParƟal DerivaƟves

We can conƟnue taking parƟal derivaƟves of parƟal derivaƟves of parƟal deriva-
Ɵves of …; we do not have to stop with second parƟal derivaƟves. These higher
order parƟal derivaƟves do not have a Ɵdy graphical interpretaƟon; neverthe-
less they are not hard to compute and worthy of some pracƟce.

We do not formally define each higher order derivaƟve, but rather give just
a few examples of the notaƟon.

fxyx(x, y) =
∂

∂x

(
∂

∂y

(
∂f
∂x

))
and

fxyz(x, y, z) =
∂

∂z

(
∂

∂y

(
∂f
∂x

))
.

Example 7 Higher order parƟal derivaƟves

1. Let f(x, y) = x2y2 + sin(xy). Find fxxy and fyxx.

2. Let f(x, y, z) = x3exy + cos(z). Find fxyz.

Notes:
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SÊ½çã®ÊÄ
1. To find fxxy, we first find fx, then fxx, then fxxy:

fx = 2xy2 + y cos(xy) fxx = 2y2 − y2 sin(xy)
fxxy = 4y− 2y sin(xy)− xy2 cos(xy).

To find fyxx, we first find fy, then fyx, then fyxx:

fy = 2x2y+ x cos(xy) fyx = 4xy+ cos(xy)− xy sin(xy)
fyxx = 4y− y sin(xy)−

(
y sin(xy) + xy2 cos(xy)

)
= 4y− 2y sin(xy)− xy2 cos(xy).

Note how fxxy = fyxx.

2. To find fxyz, we find fx, then fxy, then fxyz:

fx = 3x2exy + x3yexy fxy = 3x3exy + x3exy + x4yexy = 4x3exy + x4yexy

fxyz = 0.

In the previous example we saw that fxxy = fyxx; this is not a coincidence.
While we do not state this as a formal theorem, as long as each parƟal derivaƟve
is conƟnuous, it does not maƩer the order in which the parƟal derivaƟves are
taken. For instance, fxxy = fxyx = fyxx.

This can be useful at Ɵmes. Hadwe known this, the second part of Example 7
would have been much simpler to compute. Instead of compuƟng fxyz in the x,
y then z orders, we could have applied the z, then x then y order (as fxyz = fzxy).
It is easy to see that fz = − sin z; then fzx and fzxy are clearly 0 as fz does not
contain an x or y.

We have seen that parƟal derivaƟves measure the instantaneous rate of
change of amulƟvariable funcƟonwith respect to one variable. With z = f(x, y),
the parƟal derivaƟves fx and fy measure the instantaneous rate of change of z
whenmoving parallel to the x- and y-axes, respecƟvely. How dowemeasure the
rate of change at a point when we do not move parallel to one of these axes?
What if we move in the direcƟon given by the vector ⟨2, 1⟩? Can we measure
that rate of change? The answer is, of course, yes, we can. This is the topic
of SecƟon 13.6. First, we need to define what it means for a funcƟon of two
variables to be differenƟable.
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Exercises 13.3
Terms and Concepts
1. What is the difference between a constant and a coeffi-

cient?
2. Given a funcƟon z = f(x, y), explain in your own words

how to compute fx.
3. In the expression fxy, which is computed first, fx or fy?

4. In the expression ∂2f
∂x∂y

, which is computed first, fx or fy?

Problems
In Exercises 5–8, evaluate fx(x, y) and fy(x, y) at the indicated
point.

5. f(x, y) = x2y− x+ 2y+ 3 at (1, 2)
6. f(x, y) = x3 − 3x+ y2 − 6y at (−1, 3)
7. f(x, y) = sin y cos x at (π/3, π/3)
8. f(x, y) = ln(xy) at (−2,−3)

In Exercises 9–26, find fx, fy, fxx, fyy, fxy and fyx.

9. f(x, y) = x2y+ 3x2 + 4y− 5
10. f(x, y) = y3 + 3xy2 + 3x2y+ x3

11. f(x, y) = x
y

12. f(x, y) = 4
xy

13. f(x, y) = ex
2+y2

14. f(x, y) = ex+2y

15. f(x, y) = sin x cos y
16. f(x, y) = (x+ y)3

17. f(x, y) = cos(5xy3)

18. f(x, y) = sin(5x2 + 2y3)

19. f(x, y) =
√

4xy2 + 1

20. f(x, y) = (2x+ 5y)
√
y

21. f(x, y) = 1
x2 + y2 + 1

22. f(x, y) = 5x− 17y

23. f(x, y) = 3x2 + 1

24. f(x, y) = ln(x2 + y)

25. f(x, y) = ln x
4y

26. f(x, y) = 5ex sin y+ 9

In Exercises 27–30, form a funcƟon z = f(x, y) such that fx and
fy match those given.

27. fx = sin y+ 1, fy = x cos y

28. fx = x+ y, fy = x+ y

29. fx = 6xy− 4y2, fy = 3x2 − 8xy+ 2

30. fx =
2x

x2 + y2
, fy =

2y
x2 + y2

In Exercises 31–34, find fx, fy, fz, fyz and fzy.

31. f(x, y, z) = x2e2y−3z

32. f(x, y, z) = x3y2 + x3z+ y2z

33. f(x, y, z) = 3x
7y2z

34. f(x, y, z) = ln(xyz)
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Chapter 13 FuncƟons of Several Variables

13.4 DifferenƟability and the Total DifferenƟal
WestudieddifferenƟals in SecƟon 4.3, whereDefiniƟon 20 states that if y = f(x)
and f is differenƟable, thendy = f ′(x)dx. One important use of this differenƟal is
in IntegraƟon by SubsƟtuƟon. Another important applicaƟon is approximaƟon.
Let ∆x = dx represent a change in x. When dx is small, dy ≈ ∆y, the change
in y resulƟng from the change in x. Fundamental in this understanding is this:
as dx gets small, the difference between ∆y and dy goes to 0. Another way of
staƟng this: as dx goes to 0, the error in approximaƟng∆y with dy goes to 0.

We extend this idea to funcƟons of two variables. Let z = f(x, y), and let
∆x = dx and ∆y = dy represent changes in x and y, respecƟvely. Let ∆z =
f(x+dx, y+dy)− f(x, y) be the change in z over the change in x and y. Recalling
that fx and fy give the instantaneous rates of z-change in the x- and y-direcƟons,
respecƟvely, we can approximate∆z with dz = fxdx + fydy; in words, the total
change in z is approximately the change caused by changing x plus the change
caused by changing y. In a moment we give an indicaƟon of whether or not this
approximaƟon is any good. First we give a name to dz.

DefiniƟon 89 Total DifferenƟal
Let z = f(x, y) be conƟnuous on an open set S. Let dx and dy represent
changes in x and y, respecƟvely. Where the parƟal derivaƟves fx and fy
exist, the total differenƟal of z is

dz = fx(x, y)dx+ fy(x, y)dy.

Watch the video:
DifferenƟals of FuncƟons of Two Variables at
https://youtu.be/C1Xcj5Xmngc

Example 1 Finding the total differenƟal
Let z = x4e3y. Find dz.

SÊ½çã®ÊÄ We compute the parƟal derivaƟves: fx = 4x3e3y and fy =
3x4e3y. Following DefiniƟon 89, we have

dz = 4x3e3ydx+ 3x4e3ydy.

Notes:
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13.4 DifferenƟability and the Total DifferenƟal

We can approximate ∆z with dz, but as with all approximaƟons, there is
error involved. A good approximaƟon is one in which the error is small. At a
given point (x0, y0), let Ex and Ey be funcƟons of dx and dy such that Exdx+Eydy
describes this error. Then

∆z = dz+ Exdx+ Eydy
= fx(x0, y0)dx+ fy(x0, y0)dy+ Exdx+ Eydy.

If the approximaƟon of ∆z by dz is good, then as dx and dy get small, so does
Exdx+ Eydy. The approximaƟon of∆z by dz is even beƩer if, as dx and dy go to
0, so do Ex and Ey. This leads us to our definiƟon of differenƟability.

DefiniƟon 90 MulƟvariable DifferenƟability
Let z = f(x, y) be defined on an open set S containing (x0, y0) where
fx(x0, y0) and fy(x0, y0) exist. Let dz be the total differenƟal of z at
(x0, y0), let ∆z = f(x0 + dx, y0 + dy) − f(x0, y0), and let Ex and Ey be
funcƟons of dx and dy such that

∆z = dz+ Exdx+ Eydy.

1. f is differenƟable at (x0, y0) if

lim
(dx,dy)→(0,0)

∥⟨Ex, Ey⟩∥ = 0.

2. f is differenƟable on S if f is differenƟable at every point in S. If f is
differenƟable on R2, we say that f is differenƟable everywhere.

Example 2 Showing a funcƟon is differenƟable
Show f(x, y) = xy+ 3y2 is differenƟable using DefiniƟon 90.

SÊ½çã®ÊÄ We begin by finding f(x+ dx, y+ dy),∆z, fx and fy.

f(x+ dx, y+ dy) = (x+ dx)(y+ dy) + 3(y+ dy)2

= xy+ xdy+ ydx+ dxdy+ 3y2 + 6ydy+ 3dy2.

∆z = f(x+ dx, y+ dy)− f(x, y), so

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2.

Notes:
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It is straighƞorward to compute fx = y and fy = x+6y. Consider once more∆z:

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2 (now reorder)
= ydx+ xdy+ 6ydy+ dxdy+ 3dy2

= (y)︸︷︷︸
fx

dx+ (x+ 6y)︸ ︷︷ ︸
fy

dy+ (dy)︸︷︷︸
Ex

dx+ (3dy)︸ ︷︷ ︸
Ey

dy

= fxdx+ fydy+ Exdx+ Eydy.

With Ex = dy and Ey = 3dy, it is clear that as dx and dy go to 0, Ex and Ey also go
to 0. Since this did not depend on a specific point (x0, y0), we can say that f(x, y)
is differenƟable for all pairs (x, y) in R2, or, equivalently, that f is differenƟable
everywhere.

Our intuiƟve understanding of differenƟability of funcƟons y = f(x) of one
variable was that the graph of f was “smooth.” A similar intuiƟve understand-
ing of funcƟons z = f(x, y) of two variables is that the surface defined by f is
also “smooth,” not containing cusps, edges, breaks, etc. The following theorem
states that differenƟable funcƟons are conƟnuous, followed by another theo-
rem that provides a more tangible way of determining whether a great number
of funcƟons are differenƟable or not.

Theorem 107 ConƟnuity and DifferenƟability of MulƟvariable
FuncƟons

Let z = f(x, y) be defined on an open set S containing (x0, y0). If f is
differenƟable at (x0, y0), then f is conƟnuous at (x0, y0).

Theorem 108 DifferenƟability of MulƟvariable FuncƟons
Let z = f(x, y) be defined on an open set S containing (x0, y0). If fx and
fy are both conƟnuous on S, then f is differenƟable on S.

The theorems assure us that essenƟally all funcƟons thatwe see in the course
of our studies here are differenƟable (and hence conƟnuous) on their natural do-
mains. There is a difference between DefiniƟon 90 and Theorem 108, though: it
is possible for a funcƟon f to be differenƟable yet fx or fy is not conƟnuous. Such
strange behavior of funcƟons is a source of delight for many mathemaƟcians.
When this happens, we need to use other methods to determine whether or
not f is differenƟable at that point.

Notes:
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13.4 DifferenƟability and the Total DifferenƟal

ApproximaƟng with the Total DifferenƟal
By the definiƟon, when f is differenƟable dz is a good approximaƟon for∆zwhen
dx and dy are small. We give some simple examples of how this is used here.

Example 3 ApproximaƟng with the total differenƟal
Let f(x, y) =

√
x sin y. Approximate f(4.1, 0.2).

SÊ½çã®ÊÄ We can approximate f(4.1, 0.2) using f(4, 0) = 0. Without
calculus, this is the best approximaƟon we could reasonably come up with. The
total differenƟal gives us awayof adjusƟng this iniƟal approximaƟon tohopefully
get a more accurate answer.

We let∆z = f(4.1, 0.2) − f(4, 0). The total differenƟal dz is approximately
equal to∆z, so

f(4.1, 0.2)− f(4, 0) ≈ dz ⇒ f(4.1, 0.2) ≈ dz+ f(4, 0). (13.1)

To find dz, we need fx and fy.

fx(x, y) =
sin y
2
√
x
⇒ fx(4, 0) =

sin 0
2
√
4
= 0

fy(x, y) =
√
x cos y ⇒ fy(4, 0) =

√
4 cos 0 = 2

ApproximaƟng 4.1 with 4 gives dx = 0.1; approximaƟng 0.2 with 0 gives dy =
0.2. Thus

dz(4, 0) = fx(4, 0)(0.1) + fy(4, 0)(0.2) = 0(0.1) + 2(0.2) = 0.4.

Returning to EquaƟon (13.1), we have

f(4.1, 0.2) ≈ 0.4+ 0 = .4.

We, of course, can compute the actual value of f(4.1, 0.2) with a calculator; to
5 places aŌer the decimal, this is 0.40228. Obviously our approximaƟon is quite
good.

The point of the previous example was not to develop an approximaƟon
method for known funcƟons. AŌer all, we can very easily compute f(4.1, 0.2)
using readily available technology. Rather, it serves to illustrate how well this
method of approximaƟon works, and to reinforce the following concept:

“New posiƟon = old posiƟon+ amount of change,” so
“New posiƟon≈ old posiƟon + approximate amount of change.”

Notes:
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In the previous example, we could easily compute f(4, 0) and could approx-
imate the amount of z-change when compuƟng f(4.1, 0.2), leƫng us approxi-
mate the new z-value.

It may be surprising to learn that it is not uncommon to know the values of f,
fx and fy at a parƟcular point without actually knowing the funcƟon f. The total
differenƟal gives a good method of approximaƟng f at nearby points.

Example 4 ApproximaƟng an unknown funcƟon
Given that f(2,−3) = 6, fx(2,−3) = 1.3 and fy(2,−3) = −0.6, approximate
f(2.1,−3.03).

SÊ½çã®ÊÄ The total differenƟal approximates howmuch f changes from
the point (2,−3) to the point (2.1,−3.03). With dx = 0.1 and dy = −0.03, we
have

dz = fx(2,−3)dx+ fy(2,−3)dy
= 1.3(0.1) + (−0.6)(−0.03)
= 0.148.

The change in z is approximately 0.148, so we approximate f(2.1,−3.03) ≈
6.148.

Error/SensiƟvity Analysis
The total differenƟal gives an approximaƟonof the change in z given small changes
in x and y. We can use this to approximate error propagaƟon; that is, if the input
is a liƩle off fromwhat it should be, how far from correct will the output be? We
demonstrate this in an example.

Example 5 SensiƟvity analysis
A cylindrical steel storage tank is to be built that is 10Ō tall and 4Ō across in diam-
eter. It is known that the steel will expand/contract with temperature changes;
is the overall volume of the tank more sensiƟve to changes in the diameter or in
the height of the tank?

SÊ½çã®ÊÄ A cylindrical solid with height h and radius r has volume V =
πr2h. We can view V as a funcƟon of two variables, r and h. We can compute
parƟal derivaƟves of V:

∂V
∂r

= Vr(r, h) = 2πrh and
∂V
∂h

= Vh(r, h) = πr2.

Notes:
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13.4 DifferenƟability and the Total DifferenƟal

The total differenƟal is dV = (2πrh)dr + (πr2)dh.When h = 10 and r = 2, we
have dV = 40πdr+4πdh. Note that the coefficient of dr is 40π; the coefficient of
dh is a tenth of that. A small change in radius will be mulƟplied by 40π, whereas
a small change in height will be mulƟplied by 4π. Thus the volume of the tank is
more sensiƟve to changes in radius than in height.

The previous example showed that the volume of a parƟcular tankwasmore
sensiƟve to changes in radius than in height. Keep in mind that this analysis only
applies to a tank of those dimensions. A tank with a height of 1Ō and radius of
5Ō would be more sensiƟve to changes in height than in radius.

One could make a chart of small changes in radius and height and find exact
changes in volume given specific changes. While this provides exact numbers, it
does not give as much insight as the error analysis using the total differenƟal.

DifferenƟability of FuncƟons of Three Variables

The definiƟon of differenƟability for funcƟons of three variables is very similar
to that of funcƟons of two variables. We again start with the total differenƟal.

DefiniƟon 91 Total DifferenƟal
Letw = f(x, y, z) be conƟnuous on an open set S. Let dx, dy and dz rep-
resent changes in x, y and z, respecƟvely. Where the parƟal derivaƟves
fx, fy and fz exist, the total differenƟal of w is

dz = fx(x, y, z)dx+ fy(x, y, z)dy+ fz(x, y, z)dz.

This differenƟal can be a good approximaƟon of the change in w when w =
f(x, y, z) is differenƟable.

Notes:
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DefiniƟon 92 MulƟvariable DifferenƟability
Let w = f(x, y, z) be defined on an open set S containing (x0, y0, z0)
where fx(x0, y0, z0), fy(x0, y0, z0) and fz(x0, y0, z0) exist. Let dw be the
total differenƟal of w at (x0, y0, z0), let ∆w = f(x0 + dx, y0 + dy, z0 +
dz)− f(x0, y0, z0), and let Ex, Ey and Ez be funcƟons of dx, dy and dz such
that

∆w = dw+ Exdx+ Eydy+ Ezdz.

1. f is differenƟable at (x0, y0, z0) if, given ε > 0, there is a δ > 0
such that if ∥⟨dx, dy, dz⟩∥ < δ, then ∥⟨Ex, Ey, Ez⟩∥ < ε.

2. f is differenƟable on S if f is differenƟable at every point in S. If f is
differenƟable on R3, we say that f is differenƟable everywhere.

Just as before, this definiƟon gives a rigorous statement about what it means
to be differenƟable that is not very intuiƟve. We follow it with a theorem similar
to Theorem 108.

Theorem109 ConƟnuity andDifferenƟability of FuncƟons of Three
Variables

Let w = f(x, y, z) be defined on an open set S containing (x0, y0, z0).

1. If f is differenƟable at (x0, y0, z0), then f is conƟnuous at
(x0, y0, z0).

2. If fx, fy and fz are conƟnuous on S, then f is differenƟable on B.

This set of definiƟon and theorem extends to funcƟons of any number of
variables. The theorem again gives us a simple way of verifying that most func-
Ɵons that we encounter are differenƟable on their natural domains.

This secƟon has given us a formal definiƟon of what it means for a funcƟons
to be “differenƟable,” along with a theorem that gives a more accessible un-
derstanding. The following secƟons return to noƟons prompted by our study of
parƟal derivaƟves that make use of the fact that most funcƟons we encounter
are differenƟable.

Notes:
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Exercises 13.4
Terms and Concepts
1. T/F: If f(x, y) is differenƟable on S, the f is conƟnuous on S.
2. T/F: If fx and fy are conƟnuous on S, then f is differenƟable

on S.
3. T/F: If z = f(x, y) is differenƟable, then the change in z over

small changes dx and dy in x and y is approximately dz.
4. Finish the sentence: “The new z-value is approximately the

old z-value plus the approximate .”

Problems
In Exercises 5–8, find the total differenƟal dz.

5. z = x sin y+ x2

6. z = (2x2 + 3y)2

7. z = 5x− 7y
8. z = xex+y

In Exercises 9–12, a funcƟon z = f(x, y) is given. Give the indi-
cated approximaƟon using the total differenƟal.

9. f(x, y) =
√
x2 + y. Approximate f(2.95, 7.1) knowing

f(3, 7) = 4.
10. f(x, y) = sin x cos y. Approximate f(0.1,−0.1) knowing

f(0, 0) = 0.
11. f(x, y) = x2y − xy2. Approximate f(2.04, 3.06) knowing

f(2, 3) = −6.
12. f(x, y) = ln(x − y). Approximate f(5.1, 3.98) knowing

f(5, 4) = 0.

Exercises 13–16 ask a variety of quesƟons dealing with approx-
imaƟng error and sensiƟvity analysis.

13. A cylindrical storage tank is to be 2Ō tall with a radius of
1Ō. Is the volume of the tank more sensiƟve to changes in
the radius or the height?

14. ProjecƟle MoƟon: The x-value of an object mov-
ing under the principles of projecƟle moƟon is
x(θ, v0, t) = (v0 cos θ)t. A parƟcular projecƟle is
fired with an iniƟal velocity of v0 = 250Ō/s and an angle
of elevaƟon of θ = 60◦. It travels a distance of 375Ō in 3
seconds.

Is the projecƟle more sensiƟve to errors in iniƟal speed or
angle of elevaƟon?

15. The length ℓ of a longwall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to
be 85◦, and the distance x is measured to be 30’. Assume
that the triangle formed is a right triangle.

Is the measurement of the length of ℓ more sensiƟve to
errors in the measurement of x or in θ?

ℓ =?

θ

x

16. It is “common sense” that it is far beƩer to measure a long
distance with a long measuring tape rather than a short
one. A measured distance D can be viewed as the product
of the length ℓ of a measuring tape Ɵmes the number
n of Ɵmes it was used. For instance, using a 3’ tape 10
Ɵmes gives a length of 30’. To measure the same distance
with a 12’ tape, we would use the tape 2.5 Ɵmes. (I.e.,
30 = 12× 2.5.) Thus D = nℓ.

Suppose each Ɵme a measurement is taken with the tape,
the recorded distance is within 1/16” of the actual dis-
tance. (I.e., dℓ = 1/16′′ ≈ 0.005Ō). Using differenƟals,
show why common sense proves correct in that it is beƩer
to use a long tape to measure long distances.

In Exercises 17–18, find the total differenƟal dw.

17. w = x2yz3

18. w = ex sin y ln z

In Exercises 19–22, use the informaƟon provided and the total
differenƟal to make the given approximaƟon.

19. f(3, 1) = 7, fx(3, 1) = 9, fy(3, 1) = −2. Approximate
f(3.05, 0.9).

20. f(−4, 2) = 13, fx(−4, 2) = 2.6, fy(−4, 2) = 5.1. Ap-
proximate f(−4.12, 2.07).

21. f(2, 4, 5) = −1, fx(2, 4, 5) = 2, fy(2, 4, 5) = −3,
fz(2, 4, 5) = 3.7. Approximate f(2.5, 4.1, 4.8).

22. f(3, 3, 3) = 5, fx(3, 3, 3) = 2, fy(3, 3, 3) = 0,
fz(3, 3, 3) = −2. Approximate f(3.1, 3.1, 3.1).

23. Find where the funcƟon z =
√
x2 + y2 is differenƟable.

803



Chapter 13 FuncƟons of Several Variables

13.5 The MulƟvariable Chain Rule

TheChain Rule, as learned in SecƟon2.5, states that
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
g ′(x).

If t = g(x), we can express the Chain Rule as

df
dx

=
df
dt

dt
dx

.

In this secƟon we extend the Chain Rule to funcƟons of more than one variable.

Theorem 110 MulƟvariable Chain Rule, Part I
Let z = f(x, y), x = g(t) and y = h(t), where f, g and h are differenƟable
funcƟons. Then z = f(x, y) = f

(
g(t), h(t)

)
is a funcƟon of t, and

dz
dt

=
df
dt

= fx(x, y)
dx
dt

+ fy(x, y)
dy
dt

=
∂f
∂x

dx
dt

+
∂f
∂y

dy
dt

.

Proof
By definiƟon,

df
dt
(x, y) = lim

h→0

f(x(t+ h), y(t+ h))− f(x, y)
h

.

Let

∆f = f(x(t+ h), y(t+ h))− f(x, y),
dx = x(t+ h)− x(t), and
dy = y(t+ h)− y(t).

Because f is differenƟable, DefiniƟon 90 gives us funcƟons Ex and Ey so that

Exdx+ Eydy = ∆f− fx(x, y)dx− fy(x, y)dy
and lim

⟨dx,dy⟩→0
⟨Ex, Ey⟩ = 0.

This means that
df
dt
(x, y) = lim

h→0

fx(x, y)dx+ fy(x, y)dy+ Exdx+ Eydy
h

= fx(x, y) lim
h→0

dx
h

+ fy(x, y) lim
h→0

dy
h

+ lim
h→0

Ex lim
h→0

dx
h

+ lim
h→0

Ey lim
h→0

dy
h

= fx(x, y)x′(t) + fy(x, y)y′(t) + 0x′(t) + 0y′(t). □

Notes:
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It is good to understand what the situaƟon of z = f(x, y), x = g(t) and
y = h(t) describes. We know that z = f(x, y) describes a surface; we also
recognize that x = g(t) and y = h(t) are parametric equaƟons for a curve in
the x-y plane. Combining these together, we are describing a curve that lies on
the surface described by f. The parametric equaƟons for this curve are x = g(t),
y = h(t) and z = f

(
g(t), h(t)

)
.

Figure 13.14: Understanding the applica-
Ɵon of the MulƟvariable Chain Rule.

Consider Figure 13.14 in which a surface is drawn, along with a dashed curve
in the x-y plane. RestricƟng f to just the points on this circle gives the curve
shown on the surface. The derivaƟve df

dt gives the instantaneous rate of change
of f with respect to t. If we consider an object traveling along this path, df

dt gives
the rate at which the object rises/falls.

We now pracƟce applying the MulƟvariable Chain Rule.

Example 1 Using the MulƟvariable Chain Rule
Let z = x2y+ x, where x = sin t and y = e5t. Find

dz
dt

using the Chain Rule.

SÊ½çã®ÊÄ Following Theorem 110, we find

fx(x, y) = 2xy+ 1, fy(x, y) = x2,
dx
dt

= cos t,
dy
dt

= 5e5t.

Applying the theorem, we have

dz
dt

= (2xy+ 1) cos t+ 5x2e5t.

This may look odd, as it seems that dz
dt is a funcƟon of x, y and t. Since x and y

are funcƟons of t, dz
dt is really just a funcƟon of t, and we can replace x with sin t

and y with e5t:

dz
dt

= (2xy+ 1) cos t+ 5x2e5t = (2 sin(t)e5t + 1) cos t+ 5e5t sin2 t.

The previous example can make us wonder: if we subsƟtuted for x and y at
the end to show that dz

dt is really just a funcƟon of t, why not subsƟtute before
differenƟaƟng, showing clearly that z is a funcƟon of t?

That is, z = x2y + x = (sin t)2e5t + sin t. Applying the Chain and Product
Rules, we have

dz
dt

= 2 sin t cos t e5t + 5 sin2 t e5t + cos t,

which matches the result from the example.

Notes:
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This may nowmake one wonder “What’s the point? If we could already find
the derivaƟve, why learn another way of finding it?” In some cases, applying
this rule makes deriving simpler, but this is hardly the power of the Chain Rule.
Rather, in the case where z = f(x, y), x = g(t) and y = h(t), the Chain Rule is
extremely powerful whenwe do not knowwhat f, g and/or h are. It may be hard
to believe, but oŌen in “the real world” we know rate–of–change informaƟon
(i.e., informaƟon about derivaƟves) without explicitly knowing the underlying
funcƟons. The Chain Rule allows us to combine several rates of change to find
another rate of change. The Chain Rule also has theoreƟc use, giving us insight
into the behavior of certain construcƟons (as we’ll see in the next secƟon).

We demonstrate this in the next example.

Example 2 Applying the MulƟvarible Chain Rule
An object travels along a path on a surface. The exact path and surface are not
known, but at Ɵme t = t0 it is known that :

∂z
∂x

= 5,
∂z
∂y

= −2, dx
dt

= 3 and
dy
dt

= 7.

Find dz
dt at Ɵme t0.

SÊ½çã®ÊÄ The MulƟvariable Chain Rule states that

dz
dt

=
∂z
∂x

dx
dt

+
∂z
∂y

dy
dt

= 5(3) + (−2)(7)
= 1.

By knowing certain rates–of–change informaƟon about the surface and about
the path of the parƟcle in the x-yplane, we can determine howquickly the object
is rising/falling.

We next apply the Chain Rule to solve a max/min problem.

Example 3 Applying the MulƟvariable Chain Rule
Consider the surface z = x2 + y2 − xy, a paraboloid, on which a parƟcle moves
with x and y coordinates given by x = cos t and y = sin t. Find dz

dt when t = 0,
and find where the parƟcle reaches its maximum/minimum z-values.

SÊ½çã®ÊÄ It is straighƞorward to compute

fx(x, y) = 2x− y, fy(x, y) = 2y− x,
dx
dt

= − sin t,
dy
dt

= cos t.

Notes:
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Combining these according to the Chain Rule gives:

dz
dt

= −(2x− y) sin t+ (2y− x) cos t.

When t = 0, x = 1 and y = 0. Thus
dz
dt

= −(2)(0) + (−1)(1) = −1. When
t = 0, the parƟcle is moving down, as shown in Figure 13.15.

Figure 13.15: Ploƫng the path of a parƟ-
cle on a surface in Example 3.

To find where z-value is maximized/minimized on the parƟcle’s path, we set
dz
dt = 0 and solve for t:

dz
dt

= 0 = −(2x− y) sin t+ (2y− x) cos t

0 = −(2 cos t− sin t) sin t+ (2 sin t− cos t) cos t
0 = sin2 t− cos2 t

cos2 t = sin2 t

t = n
π

4
(for odd n)

We can use the First DerivaƟve Test to find that on [0, 2π], z has reaches its
absolute minimum at t = π/4 and 5π/4; it reaches its absolute maximum at
t = 3π/4 and 7π/4, as shown in Figure 13.15.

We can extend the Chain Rule to include the situaƟon where z is a funcƟon
of more than one variable, and each of these variables is also a funcƟon of more
than one variable. The basic case of this is where z = f(x, y), and x and y are
funcƟons of two variables, say s and t.

Notes:
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Theorem 111 MulƟvariable Chain Rule, Part II

1. Let z = f(x, y), x = g(s, t) and y = h(s, t), where f, g and h are
differenƟable funcƟons. Then z is a funcƟon of s and t, and

•
∂z
∂s

=
∂f
∂x

∂x
∂s

+
∂f
∂y

∂y
∂s

, and

•
∂z
∂t

=
∂f
∂x

∂x
∂t

+
∂f
∂y

∂y
∂t

.

2. Let z = f(x1, x2, . . . , xm) be a differenƟable funcƟon of m vari-
ables, where each of the xi is a differenƟable funcƟon of the vari-
ables t1, t2, . . . , tn. Then z is a funcƟon of the ti, and

∂z
∂ti

=
∂f
∂x1

∂x1
∂ti

+
∂f
∂x2

∂x2
∂ti

+ · · ·+ ∂f
∂xm

∂xm
∂ti

.

The proof of Part II follows quickly from Part I, because ∂
∂ti means that we

hold the other variables constant and we are back to the one variable case al-
ready proved. A helpful way to remember the derivaƟves is to examine the fol-
lowing chart

z

x1 x2 · · · xm

t1 t2 · · · tn
Each possible path from f to the variable ti contributes a term to the sum, and
each line segment in a path contributes a factor to that term.

Notes:
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13.5 The MulƟvariable Chain Rule

Watch the video:
Generalized Chain Rule — Part 1 at
https://youtu.be/HOYA0-pOHsg

Example 4 Using the MulƟvarible Chain Rule, Part II
Let z = x2y+ x, x = s2 + 3t and y = 2s− t. Find ∂z

∂s and
∂z
∂t , and evaluate each

when s = 1 and t = 2.

SÊ½çã®ÊÄ Following Theorem 111, we compute the following parƟal
derivaƟves:

∂f
∂x

= 2xy+ 1
∂f
∂y

= x2,

∂x
∂s

= 2s
∂x
∂t

= 3
∂y
∂s

= 2
∂y
∂t

= −1.

Thus

∂z
∂s

= (2xy+ 1)(2s) + (x2)(2) = 4xys+ 2s+ 2x2, and

∂z
∂t

= (2xy+ 1)(3) + (x2)(−1) = 6xy− x2 + 3.

When s = 1 and t = 2, x = 7 and y = 0, so

∂z
∂s

= 100 and
∂z
∂t

= −46.

Example 5 Using the MulƟvarible Chain Rule, Part II
Letw = xy+ z2, where x = t2es, y = t cos s, and z = s sin t. Find ∂w

∂t when s = 0
and t = π.

SÊ½çã®ÊÄ Following Theorem 111, we compute the following parƟal
derivaƟves:

∂f
∂x

= y
∂f
∂y

= x
∂f
∂z

= 2z,

∂x
∂t

= 2tes
∂y
∂t

= cos s
∂z
∂t

= s cos t.

Notes:
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Thus
∂w
∂t

= y(2tes) + x(cos s) + 2z(s cos t).

When s = 0 and t = π, we have x = π2, y = π and z = 0. Thus

∂w
∂t

= π(2π) + π2 = 3π2.

Implicit DifferenƟaƟon
We studied finding dy

dx when y is given as an implicit funcƟon of x in detail in Sec-
Ɵon 2.6. We find here that the MulƟvariable Chain Rule gives a simpler method
of finding dy

dx .
For instance, consider the implicit funcƟon x2y−xy3 = 3.We learned to use

the following steps to find dy
dx :

d
dx

(
x2y− xy3

)
=

d
dx

(
3
)

2xy+ x2
dy
dx
− y3 − 3xy2

dy
dx

= 0

dy
dx

= − 2xy− y3

x2 − 3xy2
. (13.2)

Instead of using this method, consider z = x2y − xy3. The implicit funcƟon
above describes the level curve z = 3. Considering x and y as funcƟons of x, the
MulƟvariable Chain Rule states that

dz
dx

=
∂z
∂x

dx
dx

+
∂z
∂y

dy
dx

. (13.3)

Since z is constant (in our example, z = 3), dz
dx = 0. We also know dx

dx = 1.
EquaƟon (13.3) becomes

0 =
∂z
∂x

(1) +
∂z
∂y

dy
dx

dy
dx

= −∂z
∂x

/∂z
∂y

= − fx
fy
.

Note how our soluƟon for dy
dx in EquaƟon (13.2) is just the parƟal derivaƟve

of z with respect to x, divided by the parƟal derivaƟve of z with respect to y.
We state the above as a theorem for two and three variables.

Notes:

810



13.5 The MulƟvariable Chain Rule

Theorem 112 Implicit DifferenƟaƟon
If f is a differenƟable funcƟon of x and y, where f(x, y) = c defines y as
an implicit funcƟon of x for some constant c, then

dy
dx

= − fx(x, y)
fy(x, y)

.

If f is a differenƟable funcƟon of x, y, and z, where f(x, y, z) = c defines
z as an implicit funcƟon of x and y for some constant c, then

∂z
∂x

= − fx(x, y, z)
fz(x, y, z)

and
∂z
∂y

= − fy(x, y, z)
fz(x, y, z)

.

WepracƟce using Theorem 112 by applying it to a problem from SecƟon 2.6.

Example 6 Implicit DifferenƟaƟon
Given the implicitly defined funcƟon sin(x2y2) + y3 = x+ y, find y ′. Note: this
is the same problem as given in Example 2.6.4 of SecƟon 2.6.

SÊ½çã®ÊÄ Let f(x, y) = sin(x2y2) + y3 − x − y; the implicitly defined
funcƟon above is equivalent to f(x, y) = 0. We find dy

dx by applying Theorem 112.
We find

fx(x, y) = 2xy2 cos(x2y2)− 1 and fy(x, y) = 2x2y cos(x2y2) + 3y2 − 1,

so
dy
dx

= −2xy2 cos(x2y2) + 3y2 − 1
2x2y cos(x2y2)− 1

,

which matches our soluƟon from Example 2.6.4.

Notes:
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Exercises 13.5
Terms and Concepts
1. Let a level curve of z = f(x, y) be described by x = g(t),

y = h(t). Explain why dz
dt = 0.

2. Fill in the blank: The single variable Chain Rule states
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
· .

3. Fill in the blank: The MulƟvariable Chain Rule states
df
dt

=
∂f
∂x

· + · dy
dt

.

4. If z = f(x, y), where x = g(t) and y = h(t), we can subsƟ-
tute and write z as an explicit funcƟon of t.
T/F: Using the MulƟvariable Chain Rule to find dz

dt is some-
Ɵmes easier than first subsƟtuƟng and then taking the
derivaƟve.

5. T/F: TheMulƟvariable Chain Rule is only useful when all the
related funcƟons are known explicitly.

6. TheMulƟvariable Chain Rule allows us to compute implicit
derivaƟves easily by just compuƟng two deriva-
Ɵves.

Problems
In Exercises 7–12, funcƟons z = f(x, y), x = g(t) and y = h(t)
are given.

(a) Use the MulƟvariable Chain Rule to compute dz
dt

.

(b) Evaluate dz
dt

at the indicated t-value.

7. z = 3x+ 4y, x = t2, y = 2t; t = 1
8. z = x2 − y2, x = t, y = t2 − 1; t = 1
9. z = 5x + 2y, x = 2 cos t + 1, y = sin t − 3;

t = π/4

10. z = x
y2 + 1

, x = cos t, y = sin t; t = π/2

11. z = x2 + 2y2, x = sin t, y = 3 sin t; t = π/4
12. z = cos x sin y, x = πt, y = 2πt+ π/2; t = 3

In Exercises 13–18, funcƟons z = f(x, y), x = g(t) and y =
h(t) are given. Find the values of t where dz

dt = 0. Note: these
are the same surfaces/curves as found in Exercises 7 – 12.

13. z = 3x+ 4y, x = t2, y = 2t
14. z = x2 − y2, x = t, y = t2 − 1

15. z = 5x+ 2y, x = 2 cos t+ 1, y = sin t− 3

16. z = x
y2 + 1

, x = cos t, y = sin t

17. z = x2 + 2y2, x = sin t, y = 3 sin t

18. z = cos x sin y, x = πt, y = 2πt+ π/2

In Exercises 19–22, funcƟons z = f(x, y), x = g(s, t) and
y = h(s, t) are given.

(a) Use the MulƟvariable Chain Rule to compute ∂z
∂s

and
∂z
∂t

.

(b) Evaluate ∂z
∂s

and ∂z
∂t

at the indicated s and t values.

19. z = x2y, x = s− t, y = 2s+ 4t; s = 1, t = 0

20. z = cos
(
πx+ π

2
y
)
, x = st2, y = s2t; s = 1, t = 1

21. z = x2 + y2, x = s cos t, y = s sin t; s = 2, t = π/4

22. z = e−(x2+y2), x = t, y = st2; s = 1, t = 1

In Exercises 23–26, find dy
dx

using Implicit DifferenƟaƟon and
Theorem 112.

23. x2 tan y = 50

24. (3x2 + 2y3)4 = 2

25. x2 + y
x+ y2

= 17

26. ln(x2 + xy+ y2) = 1

In Exercises 27–30, find dz
dt

, or ∂z
∂s

and ∂z
∂t

, using the supplied
informaƟon.

27. ∂z
∂x

= 2, ∂z
∂y

= 1, dx
dt

= 4, dy
dt

= −5

28. ∂z
∂x

= 1, ∂z
∂y

= −3, dx
dt

= 6, dy
dt

= 2

29. ∂z
∂x

= −4, ∂z
∂y

= 9,
∂x
∂s

= 5, ∂x
∂t

= 7, ∂y
∂s

= −2, ∂y
∂t

= 6

30. ∂z
∂x

= 2, ∂z
∂y

= 1,
∂x
∂s

= −2, ∂x
∂t

= 3, ∂y
∂s

= 2, ∂y
∂t

= −1
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13.6 DirecƟonal DerivaƟves

ParƟal derivaƟves give us an understanding of how a surface changes when we
move in the x and y direcƟons. Wemade the comparison to standing in a rolling
meadow and heading due east: the amount of rise/fall in doing so is comparable
to fx. Likewise, the rise/fall in moving due north is comparable to fy. The steeper
the slope, the greater in magnitude fy.

But what if we didn’t move due north or east? What if we needed to move
northeast and wanted to measure the amount of rise/fall? ParƟal derivaƟves
alone cannot measure this. This secƟon invesƟgates direcƟonal derivaƟves,
which do measure this rate of change.

We begin with a definiƟon.

DefiniƟon 93 DirecƟonal DerivaƟves
Let z = f(x, y) be conƟnuous on an open set S and let u⃗ = ⟨u1, u2⟩ be a
unit vector. For all points (x, y), the direcƟonal derivaƟve of f at (x, y)
in the direcƟon of u⃗ is

Du⃗ f(x, y) = lim
h→0

f(x+ hu1, y+ hu2)− f(x, y)
h

.

The parƟal derivaƟves fx and fy are defined with similar limits, but only x or
y varies with h, not both. Here both x and y vary with a weighted h, determined
by a parƟcular unit vector u⃗. This may look a bit inƟmidaƟng but in reality it is
not too difficult to deal with; it oŌen just requires extra algebra. However, the
following theorem reduces this algebraic load.

Theorem 113 DirecƟonal DerivaƟves
Let z = f(x, y) be differenƟable at (x0, y0), and let u⃗ = ⟨u1, u2⟩ be a unit
vector. The direcƟonal derivaƟve of f at (x0, y0) in the direcƟon of u⃗ is

Du⃗ f(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2.

Proof
This is really a quick applicaƟon of DefiniƟon 90. Because f is differenƟable at

Notes:
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(x0, y0),

Du⃗ f(x0, y0) = lim
h→0

fx(x0, y0)hu1 + fy(x0, y0)hu2 + Ex(x0, y0)hu1 + Ey(x0, y0)hu2
h

= fx(x0, y0)u1 + fy(x0, y0)u2 + lim
h→0

Ex(x0, y0)u1 + Ey(x0, y0)u2

= fx(x0, y0)u1 + fy(x0, y0)u2. □

Watch the video:
Finding the DirecƟonal DerivaƟve — Ex 1 at
https://youtu.be/uCY0XYXgYQo

Example 1 CompuƟng direcƟonal derivaƟves
Let z = 14− x2 − y2 and let P = (1, 2). Find the direcƟonal derivaƟve of f, at P,
in the following direcƟons:

1. toward the point Q = (3, 4),

2. in the direcƟon of ⟨2,−1⟩, and

3. toward the origin.

SÊ½çã®ÊÄ The surface is ploƩed in Figure 13.16, where the point P =

Figure 13.16: Understanding the direc-
Ɵonal derivaƟve in Example 1.

(1, 2) is indicated in the x, y-plane as well as the point (1, 2, 9)which lies on the
surface of f. We find that fx(x, y) = −2x and fx(1, 2) = −2; fy(x, y) = −2y and
fy(1, 2) = −4.

1. Let u⃗1 be the unit vector that points from the point (1, 2) to the point
Q = (3, 4), as shown in the figure. The vector #  ‰PQ = ⟨2, 2⟩; the unit vector
in this direcƟon is u⃗1 =

⟨
1/
√
2, 1/
√
2
⟩
. Thus the direcƟonal derivaƟve of

f at (1, 2) in the direcƟon of u⃗1 is

Du⃗1 f(1, 2) = −2(1/
√
2) + (−4)(1/

√
2) = −6/

√
2.

Thus the instantaneous rate of change in moving from the point (1, 2, 9)
on the surface in the direcƟon of u⃗1 (which points toward the point Q) is
−3
√
2. Moving in this direcƟon moves one steeply downward.

Notes:
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13.6 DirecƟonal DerivaƟves

2. We seek the direcƟonal derivaƟve in the direcƟon of ⟨2,−1⟩. The unit
vector in this direcƟon is u⃗2 =

⟨
2/
√
5,−1/

√
5
⟩
. Thus the direcƟonal

derivaƟve of f at (1, 2) in the direcƟon of u⃗2 is

Du⃗2 f(1, 2) = −2(2/
√
5) + (−4)(−1/

√
5) = 0.

StarƟng on the surface of f at (1, 2) andmoving in the direcƟon of ⟨2,−1⟩
(or u⃗2) results in no instantaneous change in z-value. This is analogous to
standing on the side of a hill and choosing a direcƟon towalk that does not
change the elevaƟon. One neither walks up nor down, rather just “along
the side” of the hill.
Finding these direcƟons of “no elevaƟon change” is important.

3. At P = (1, 2), the direcƟon towards the origin is given by the vector
⟨−1,−2⟩; the unit vector in this direcƟon is u⃗3 =

⟨
−1/
√
5,−2/

√
5
⟩
.

The direcƟonal derivaƟve of f at P in the direcƟon of the origin is

Du⃗3 f(1, 2) = −2(−1/
√
5) + (−4)(−2/

√
5) = 10/

√
5.

Moving towards the origin means “walking uphill” quite steeply, with an
iniƟal slope of 2

√
5.

As we study direcƟonal derivaƟves, it will help to make an important con-
necƟon between the unit vector u⃗ = ⟨u1, u2⟩ that describes the direcƟon and
the parƟal derivaƟves fx and fy. We start with a definiƟon and follow this with a
Key Idea.

DefiniƟon 94 Gradient
Let z = f(x, y) be differenƟable on an open set S that contains the point
(x0, y0).

1. The gradient of f is∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩.

2. The gradient of f at (x0, y0) is∇f(x0, y0) = ⟨fx(x0, y0), fy(x0, y0)⟩.

Note: The symbol “∇” is named
“nabla,” derived from the Greek
name of a Jewish harp. Oddly
enough, in mathemaƟcs the expres-
sion∇f is pronounced “del f.”

To simplify notaƟon, we oŌen express the gradient as ∇f = ⟨fx, fy⟩. It is
oŌen useful to think of the gradient∇ as an operator:

∇ =

⟨
∂

∂x
,
∂

∂y

⟩
.

The operator∇ only has any meaning when it operates on a funcƟon; it doesn’t
mean anything by itself. But this notaƟon does help us to apply it correctly to
find the gradient. The gradient allows us to compute direcƟonal derivaƟves in
terms of a dot product.

Notes:
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Key Idea 59 The Gradient and DirecƟonal DerivaƟves
The direcƟonal derivaƟve of z = f(x, y) in the direcƟon of the unit vec-
tor u⃗ is

Du⃗ f = ∇f · u⃗.

The properƟes of the dot product previously studied allow us to invesƟgate
the properƟes of the direcƟonal derivaƟve. Given that the direcƟonal derivaƟve
gives the instantaneous rate of change of z when moving in the direcƟon of u⃗,
three quesƟons naturally arise:

1. In what direcƟon(s) is the change in z the greatest (i.e., the “steepest up-
hill”)?

2. In what direcƟon(s) is the change in z the least (i.e., the “steepest down-
hill”)?

3. In what direcƟon(s) is there no change in z?

Using the key property of the dot product, we have

∇f · u⃗ = ∥∇f∥ ∥u⃗∥ cos θ = ∥∇f∥ cos θ, (13.4)

where θ is the angle between the gradient and u⃗. (Since u⃗ is a unit vector, ∥u⃗∥ =
1.) This equaƟon allows us to answer the three quesƟons stated previously.

1. EquaƟon (13.4) is maximized when cos θ = 1, i.e., when the gradient and
u⃗ have the same direcƟon. We conclude the gradient points in the direc-
Ɵon of greatest z change.

2. EquaƟon (13.4) is minimized when cos θ = −1, i.e., when the gradient
and u⃗ have opposite direcƟons. We conclude the gradient points in the
opposite direcƟon of the least z change.

3. EquaƟon (13.4) is 0 when cos θ = 0, i.e., when the gradient and u⃗ are
orthogonal to each other. We conclude the gradient is orthogonal to di-
recƟons of no z change.

This result is rather amazing. Once again imagine standing in a rollingmeadow
and face the direcƟon that leads you steepest uphill. Then the direcƟon that
leads steepest downhill is directly behind you, and side–stepping either leŌ or
right (i.e., moving perpendicularly to the direcƟon you face) does not change
your elevaƟon at all.

Recall that a level curve is defined as a curve in the x-y plane along which the
z-values of a funcƟon do not change. Let a surface z = f(x, y) be given, and let’s
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13.6 DirecƟonal DerivaƟves

represent one such level curve as a vector–valued funcƟon, r⃗(t) = ⟨x(t), y(t)⟩.
As the output of f does not change along this curve, f

(
x(t), y(t)

)
= c for all t, for

some constant c.
Since f is constant for all t, df

dt = 0. By the MulƟvariable Chain Rule, we also
know

df
dt

= fx(x, y)x ′(t) + fy(x, y)y ′(t)

= ⟨fx(x, y), fy(x, y)⟩ · ⟨x ′(t), y ′(t)⟩
= ∇f · r⃗ ′(t)
= 0.

This last equality states∇f·⃗r ′(t) = 0: the gradient is orthogonal to the derivaƟve
of r⃗. Our conclusion: at any point on a surface, the gradient at that point is
orthogonal to the level curve that passes through that point.

We restate these ideas in a theorem, then use them in an example.

Theorem 114 The Gradient and DirecƟonal DerivaƟves
Let z = f(x, y) be differenƟable on an open set S with gradient ∇f, let
P = (x0, y0) be a point in S and let u⃗ be a unit vector.

1. The maximum value of Du⃗ f(x0, y0) is ∥∇f(x0, y0)∥; the direcƟon
of maximal z increase is∇f(x0, y0).

2. Theminimum value ofDu⃗ f(x0, y0) is−∥∇f(x0, y0)∥; the direcƟon
of minimal z increase is−∇f(x0, y0).

3. At P, ∇f(x0, y0) is orthogonal to the level curve passing through(
x0, y0, f(x0, y0)

)
.

Example 2 Finding direcƟons of maximal and minimal increase
Let f(x, y) = sin x cos y and let P = (π/3, π/3). Find the direcƟons of max-
imal/minimal increase, and find a direcƟon where the instantaneous rate of z
change is 0.

SÊ½çã®ÊÄ Webegin by finding the gradient. We see that fx = cos x cos y
and fy = − sin x sin y, thus

∇f = ⟨cos x cos y,− sin x sin y⟩ and, at P, ∇f
(π
3
,
π

3

)
=

⟨
1
4
,−3

4

⟩
.
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Thus the direcƟon of maximal increase is ⟨1/4,−3/4⟩. In this direcƟon, the
instantaneous rate of z change is ∥⟨1/4,−3/4⟩∥ =

√
10/4.

Figure 13.17 shows the surface ploƩed from two different perspecƟves. In
each, the gradient is drawn at P with a dashed line (because of the nature of
this surface, the gradient points “into” the surface). Let u⃗ = ⟨u1, u2⟩ be the
unit vector in the direcƟon of ∇f at P. Each graph of the figure also contains
the vector ⟨u1, u2, ∥∇f ∥⟩. This vector has a “run” of 1 (because in the x-y plane
it moves 1 unit) and a “rise” of ∥∇f∥, hence we can think of it as a vector with
slope of ∥∇f∥ in the direcƟon of∇f, helping us visualize how “steep” the surface
is in its steepest direcƟon.

(a)

(b)

Figure 13.17: Graphing the surface and
important direcƟons in Example 2.

The direcƟon ofminimal increase is ⟨−1/4, 3/4⟩; in this direcƟon the instan-
taneous rate of z change is−

√
10/4.

Any direcƟon orthogonal to ∇f is a direcƟon of no z change. We have two
choices: the direcƟon of ⟨3, 1⟩ and the direcƟon of ⟨−3,−1⟩. The unit vector
in the direcƟon of ⟨3, 1⟩ is shown in each graph of the figure as well. The level
curve at z =

√
3/4 is drawn: recall that along this curve the z-values do not

change. Since ⟨3, 1⟩ is a direcƟon of no z-change, this vector is tangent to the
level curve at P.

Example 3 Understanding when∇f = 0⃗
Let f(x, y) = −x2 + 2x− y2 + 2y+ 1. Find the direcƟonal derivaƟve of f in any
direcƟon at P = (1, 1).

SÊ½çã®ÊÄ Wefind∇f = ⟨−2x+ 2,−2y+ 2⟩. AtP, wehave∇f(1, 1) =
⟨0, 0⟩. According to Theorem 114, this is the direcƟon of maximal increase.
However, ⟨0, 0⟩ is direcƟonless; it has no displacement. And regardless of the
unit vector u⃗ chosen, Du⃗ f = 0.

Figure 13.18: At the top of a paraboloid,
all direcƟonal derivaƟves are 0.

Figure 13.18 helps us understand what this means. We can see that P lies at
the top of a paraboloid. In all direcƟons, the instantaneous rate of change is 0.

So what is the direcƟon of maximal increase? It is fine to give an answer of
0⃗ = ⟨0, 0⟩, as this indicates that all direcƟonal derivaƟves are 0.

The fact that the gradient of a surface always points in the direcƟon of steep-
est increase/decrease is very useful, as illustrated in the following example.

Example 4 The flow of water downhill
Consider the surface given by f(x, y) = 20 − x2 − 2y2. Water is poured on the
surface at (1, 1/4). What path does it take as it flows downhill?

SÊ½çã®ÊÄ Let r⃗(t) = ⟨x(t), y(t)⟩ be the vector–valued funcƟon de-
scribing the path of the water in the x-y plane; we seek x(t) and y(t). We know
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that water will always flow downhill in the steepest direcƟon; therefore, at any
point on its path, it will be moving in the direcƟon of−∇f. (We ignore the phys-
ical effects of momentum on the water.) Thus r⃗ ′(t) will be parallel to ∇f, and
there is some constant c such that c∇f = r⃗ ′(t) = ⟨x ′(t), y ′(t)⟩.

We find∇f = ⟨−2x,−4y⟩ and write x ′(t) as dx
dt and y ′(t) as dy

dt . Then

c∇f = ⟨x ′(t), y ′(t)⟩

⟨−2cx,−4cy⟩ =
⟨
dx
dt

,
dy
dt

⟩
.

This implies

−2cx = dx
dt

and − 4cy =
dy
dt

, i.e.,

c = − 1
2x

dx
dt

and c = − 1
4y

dy
dt

.

As c equals both expressions, we have

1
2x

dx
dt

=
1
4y

dy
dt

.

To find an explicit relaƟonship between x and y, we can integrate both sides with
respect to t. Recall from our study of differenƟals that

dx
dt

dt = dx. Thus:
ˆ

1
2x

dx
dt

dt =
ˆ

1
4y

dy
dt

dt
ˆ

1
2x

dx =
ˆ

1
4y

dy

1
2
ln |x| = 1

4
ln |y|+ C1

2 ln |x| = ln |y|+ C1
ln
∣∣x2∣∣ = ln |y|+ C1

Now raise both sides as a power of e:

x2 = eln|y|+C1

x2 = eln|y|eC1 (Note that eC1 is just a constant.)
x2 = yC2

1
C2

x2 = y (Note that 1/C2 is just a constant.)

Cx2 = y.
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As the water started at the point (1, 1/4), we can solve for C:

C(1)2 =
1
4
⇒ C =

1
4
.

Thus the water follows the curve y = x2/4 in the x-y plane. The surface and

(a)

−4 −2 2 4

−2

2

x

y

(b)

Figure 13.19: A graph of the surface de-
scribed in Example 4 along with the path
in the x-y plane with the level curves.

the path of the water is graphed in Figure 13.19(a). In part (b) of the figure,
the level curves of the surface are ploƩed in the x-y plane, along with the curve
y = x2/4. NoƟce how the path intersects the level curves at right angles. As the
path follows the gradient downhill, this reinforces the fact that the gradient is
orthogonal to level curves.

FuncƟons of Three Variables

The concepts of direcƟonal derivaƟves and the gradient are easily extended to
three (andmore) variables. We combine the concepts behind DefiniƟons 93 and
94 and Theorem 113 into one set of definiƟons.

DefiniƟon 95 DirecƟonal DerivaƟves and Gradient with Three
Variables

Let w = F(x, y, z) be differenƟable on an open ball B and let u⃗ be a unit
vector in R3.

1. The gradient of F is∇F = ⟨Fx, Fy, Fz⟩.

2. The gradient of F at (x0, y0, z0) is

∇F(x0, y0, z0) = ⟨fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)⟩ .

3. The direcƟonal derivaƟve of F in the direcƟon of u⃗ is

Du⃗ F = ∇F · u⃗.

The same properƟes of the gradient given in Theorem 114, when f is a func-
Ɵon of two variables, hold for F, a funcƟon of three variables.

Notes:
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Theorem115 The Gradient and DirecƟonal DerivaƟves with Three
Variables

Let w = F(x, y, z) be differenƟable on an open set S with gradient∇F,
let P = (x0, y0, z0) be a point in S, and let u⃗ be a unit vector.

1. The maximum value of Du⃗ F(x0, y0, z0) is ∥∇F(x0, y0, z0)∥; the di-
recƟon of maximal increase is∇F(x0, y0, z0).

2. The minimum value of Du⃗ F(x0, y0, z0) is −∥∇F(x0, y0, z0)∥; the
direcƟon of minimal increase is−∇F(x0, y0, z0).

3. At P, Du⃗ F(x0, y0, z0) = 0 when ∇F(x0, y0, z0) and u⃗ are orthogo-
nal.

We interpret the third statement of the theorem as “the gradient is orthog-
onal to level surfaces,” the three–variable analogue to level curves.

Example 5 Finding direcƟonal derivaƟves with funcƟons of three vari-
ables
If a point source S is radiaƟng energy, the intensity I at a given point P in space
is inversely proporƟonal to the square of the distance between S and P. That is,
when S = (0, 0, 0), I(x, y, z) =

k
x2 + y2 + z2

for some constant k.

Let k = 1, let u⃗ = ⟨2/3, 2/3, 1/3⟩ be a unit vector, and let P = (2, 5, 3).
Measure distances in inches. Find the direcƟonal derivaƟve of I at P in the di-
recƟon of u⃗, and find the direcƟon of greatest intensity increase at P.

SÊ½çã®ÊÄ Weneed the gradient∇I, meaningweneed Ix, Iy and Iz. Each
parƟal derivaƟve requires a simple applicaƟon of the QuoƟent Rule, giving

∇I =
⟨

−2x
(x2 + y2 + z2)2

,
−2y

(x2 + y2 + z2)2
,

−2z
(x2 + y2 + z2)2

⟩
∇I(2, 5, 3) =

⟨
−4
1444

,
−10
1444

,
−6
1444

⟩
Du⃗ I = ∇I(2, 5, 3) · u⃗

= − 17
2166

.

The direcƟonal derivaƟve tells us that moving in the direcƟon of u⃗ from P results
in a slight decrease in intensity. (The intensity is decreasing as u⃗ moves one
farther from the origin than P.)
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The gradient gives the direcƟon of greatest intensity increase. NoƟce that

∇I(2, 5, 3) =
⟨
−4
1444

,
−10
1444

,
−6
1444

⟩
=

2
1444

⟨−2,−5,−3⟩ .

That is, the gradient at (2, 5, 3) is poinƟng in the direcƟon of ⟨−2,−5,−3⟩, that
is, towards the origin. That should make intuiƟve sense: the greatest increase
in intensity is found by moving towards to source of the energy.

The direcƟonal derivaƟve allows us to find the instantaneous rate of z change
in any direcƟon at a point. We can use these instantaneous rates of change to
define lines and planes that are tangent to a surface at a point, which is the topic
of the next secƟon.
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Exercises 13.6
Terms and Concepts
1. What is the difference between a direcƟonal derivaƟve and

a parƟal derivaƟve?
2. For what u⃗ is D⃗u f = fx?

3. For what u⃗ is D⃗u f = fy?

4. The gradient is to level curves.

5. The gradient points in the direcƟon of increase.

6. It is generally more informaƟve to view the direcƟonal
derivaƟve not as the result of a limit, but rather as the re-
sult of a product.

Problems
In Exercises 7–12, a funcƟon z = f(x, y) is given. Find∇f.

7. f(x, y) = −x2y+ xy2 + xy

8. f(x, y) = sin x cos y

9. f(x, y) = 1
x2 + y2 + 1

10. f(x, y) = −4x+ 3y

11. f(x, y) = x2 + 2y2 − xy− 7x

12. f(x, y) = x2y3 − 2x

In Exercises 13–18, a funcƟon z = f(x, y) and a point P are
given. Find the direcƟonal derivaƟve of f in the indicated di-
recƟons. Note: these are the same funcƟons as in Exercises
7–12.

13. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

(a) In the direcƟon of v⃗ = ⟨3, 4⟩
(b) In the direcƟon toward the point Q = (1,−1).

14. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
(a) In the direcƟon of v⃗ = ⟨1, 1⟩.
(b) In the direcƟon toward the point Q = (0, 0).

15. f(x, y) = 1
x2 + y2 + 1

, P = (1, 1).

(a) In the direcƟon of v⃗ = ⟨1,−1⟩.
(b) In the direcƟon toward the point Q = (−2,−2).

16. f(x, y) = −4x+ 3y, P = (5, 2)

(a) In the direcƟon of v⃗ = ⟨3, 1⟩ .
(b) In the direcƟon toward the point Q = (2, 7).

17. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

(a) In the direcƟon of v⃗ = ⟨−2, 5⟩
(b) In the direcƟon toward the point Q = (4, 0).

18. f(x, y) = x2y3 − 2x, P = (1, 1)

(a) In the direcƟon of v⃗ = ⟨3, 3⟩
(b) In the direcƟon toward the point Q = (1, 2).

In Exercises 19–24, a funcƟon z = f(x, y) and a point P are
given.

(a) Find the direcƟon of maximal increase of f at P.

(b) What is the maximal value of D⃗u f at P?

(c) Find the direcƟon of minimal increase of f at P.

(d) Give a direcƟon u⃗ such that D⃗u f = 0 at P.

Note: these are the same funcƟons and points as in Exercises
13 – 18.

19. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

20. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
21. f(x, y) = 1

x2 + y2 + 1
, P = (1, 1).

22. f(x, y) = −4x+ 3y, P = (5, 4).

23. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

24. f(x, y) = x2y3 − 2x, P = (1, 1)

In Exercises 25–28, a funcƟon w = F(x, y, z), a vector v⃗ and a
point P are given.

(a) Find∇F(x, y, z).

(b) Find D⃗u F at P.

25. F(x, y, z) = 3x2z3 + 4xy− 3z2, v⃗ = ⟨1, 1, 1⟩, P = (3, 2, 1)

26. F(x, y, z) = sin(x) cos(y)ez, v⃗ = ⟨2, 2, 1⟩, P = (0, 0, 0)

27. F(x, y, z) = x2y2 − y2z2, v⃗ = ⟨−1, 7, 3⟩, P = (1, 0,−1)

28. F(x, y, z) = 2
x2 + y2 + z2

, v⃗ = ⟨1, 1,−2⟩, P = (1, 1, 1)
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13.7 Tangent Lines, Normal Lines, and Tangent Planes

DerivaƟves and tangent lines go hand–in–hand. Given y = f(x), the line tangent
to the graph of f at x = x0 is the line through

(
x0, f(x0)

)
with slope f ′(x0); that

is, the slope of the tangent line is the instantaneous rate of change of f at x0.
When dealing with funcƟons of two variables, the graph is no longer a curve

but a surface. At a given point on the surface, it seems there are many lines that
fit our intuiƟon of being “tangent” to the surface.

Figure 13.20: Showing various lines tan-
gent to a surface.

In Figure 13.20 we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to
the surface. The next definiƟon formally defines what it means to be “tangent
to a surface.”

DefiniƟon 96 DirecƟonal Tangent Line
Let z = f(x, y) be differenƟable on an open set S containing (x0, y0) and
let u⃗ = ⟨u1, u2⟩ be a unit vector. The line ℓ⃗u through

(
x0, y0, f(x0, y0)

)
parallel to ⟨u1, u2,Du⃗ f(x0, y0)⟩ is the tangent line to f in the direcƟon
of u⃗ at (x0, y0).

We will also follow the convenƟon that

ℓ⟨1,0⟩ = ℓx and ℓ⟨0,1⟩ = ℓy.

It is instrucƟve to consider each of three direcƟons given in the definiƟon in
terms of “slope.” The direcƟon of ℓx is ⟨1, 0, fx(x0, y0)⟩; that is, the “run” is one
unit in the x-direcƟon and the “rise” is fx(x0, y0) units in the z-direcƟon. Note
how the slope is just the parƟal derivaƟve with respect to x. A similar statement
can be made for ℓy. The direcƟon of ℓ⃗u is ⟨u1, u2,Du⃗ f(x0, y0)⟩; the “run” is one
unit in the u⃗ direcƟon (where u⃗ is a unit vector) and the “rise” is the direcƟonal
derivaƟve of z in that direcƟon.

DefiniƟon 96 leads to the following parametric equaƟons of direcƟonal tan-
gent lines:

ℓx(t) =


x = x0 + t
y = y0
z = z0 + fx(x0, y0)t

, ℓy(t) =


x = x0
y = y0 + t
z = z0 + fy(x0, y0)t

and ℓ⃗u(t) =


x = x0 + u1t
y = y0 + u2t
z = z0 + Du⃗ f(x0, y0)t

Notes:
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Watch the video:
Determining a Unit Normal Vector to a Surface at
https://youtu.be/DRBNp7SZCvU

Example 1 Finding direcƟonal tangent lines
Find the lines tangent to the surface z = sin x cos y at (π/2, π/2) in the x and y
direcƟons and also in the direcƟon of v⃗ = ⟨−1, 1⟩ .

SÊ½çã®ÊÄ The parƟal derivaƟves with respect to x and y are:

fx(x, y) = cos x cos y ⇒ fx(π/2, π/2) = 0
fy(x, y) = − sin x sin y ⇒ fy(π/2, π/2) = −1.

At (π/2, π/2), the z-value is 0.
Thus the parametric equaƟons of the line tangent to f at (π/2, π/2) in the

direcƟons of x and y are:

(a)

(b)

Figure 13.21: A surface and direcƟonal
tangent lines in Example 1.

ℓx(t) =


x = π/2+ t
y = π/2
z = 0

and ℓy(t) =


x = π/2
y = π/2+ t
z = −t

.

The two lines are shown with the surface in Figure 13.21(a). To find the equa-
Ɵon of the tangent line in the direcƟon of v⃗, we first find the unit vector in the
direcƟon of v⃗: u⃗ =

⟨
−1/
√
2, 1/
√
2
⟩
. The direcƟonal derivaƟve at (π/2, π, 2) in

the direcƟon of u⃗ is

Du⃗ f(π/2, π, 2) = ⟨0,−1⟩ ·
⟨
−1/
√
2, 1/
√
2
⟩
= −1/

√
2.

Thus the direcƟonal tangent line is

ℓ⃗u(t) =


x = π/2− t/

√
2

y = π/2+ t/
√
2

z = −t/
√
2

.

The curve through (π/2, π/2, 0) in the direcƟon of v⃗ is shown in Figure 13.21(b)
along with ℓ⃗u(t).

Notes:
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Example 2 Finding direcƟonal tangent lines
Let f(x, y) = 4xy− x4 − y4. Find the equaƟons of all direcƟonal tangent lines to
f at (1, 1).

SÊ½çã®ÊÄ First note that f(1, 1) = 2. We need to compute direcƟonal
derivaƟves, so we need∇f. We begin by compuƟng parƟal derivaƟves.

fx = 4y− 4x3 ⇒ fx(1, 1) = 0; fy = 4x− 4y3 ⇒ fy(1, 1) = 0.

Thus ∇f(1, 1) = ⟨0, 0⟩. Let u⃗ = ⟨u1, u2⟩ be any unit vector. The direcƟonal
derivaƟve of f at (1, 1)will beDu⃗ f(1, 1) = ⟨0, 0⟩·⟨u1, u2⟩ = 0. It does notmaƩer
what direcƟon we choose; the direcƟonal derivaƟve is always 0. Therefore

Figure 13.22: Graphing f in Example 2.

ℓ⃗u(t) =


x = 1+ u1t
y = 1+ u2t
z = 2

.

Figure 13.22 shows a graph of f and the point (1, 1, 2). Note that this point
comes at the top of a “hill,” and therefore every tangent line through this point
will have a “slope” of 0.

That is, consider any curve on the surface that goes through this point. Each
curve will have a relaƟve maximum at this point, hence its tangent line will have
a slope of 0. The following secƟon invesƟgates the points on surfaces where all
tangent lines have a slope of 0.

Normal Lines
When dealing with a funcƟon y = f(x) of one variable, we stated that a line
through (c, f(c))was tangent to f if the line had a slope of f ′(c) and was normal
(or, perpendicular, orthogonal) to f if it had a slope of −1/f ′(c). We extend the
concept of normal, or orthogonal, to funcƟons of two variables.

Let z = f(x, y) be a differenƟable funcƟon of two variables. By DefiniƟon 96,
at (x0, y0), ℓx(t) is a line parallel to the vector d⃗x = ⟨1, 0, fx(x0, y0)⟩ and ℓy(t) is
a line parallel to d⃗y = ⟨0, 1, fy(x0, y0)⟩. Since lines in these direcƟons through(
x0, y0, f(x0, y0)

)
are tangent to the surface, a line through this point and orthog-

onal to these direcƟons would be orthogonal, or normal, to the surface. We can
use this direcƟon to create a normal line.

The direcƟon of the normal line is orthogonal to d⃗x and d⃗y, hence the direc-
Ɵon is parallel to d⃗n = d⃗x × d⃗y. It turns out this cross product has a very simple
form:

d⃗x × d⃗y = ⟨1, 0, fx⟩ × ⟨0, 1, fy⟩ = ⟨−fx,−fy, 1⟩ .
It is oŌen more convenient to refer to the opposite of this direcƟon, namely
⟨fx, fy,−1⟩. This leads to a definiƟon.

Notes:

826




13.7 Tangent Lines, Normal Lines, and Tangent Planes

DefiniƟon 97 Normal Line
Let z = f(x, y) be differenƟable on an open set S containing (x0, y0).

1. A nonzero vector parallel to n⃗ = ⟨fx(x0, y0), fy(x0, y0),−1⟩ is or-
thogonal to f at P =

(
x0, y0, f(x0, y0)

)
.

2. The line ℓn through P with direcƟon parallel to n⃗ is the normal
line to f at P.

Thus the parametric equaƟons of the normal line to a surface f at
(
x0, y0, f(x0, y0)

)
is:

ℓn(t) =


x = x0 + fx(x0, y0)t
y = y0 + fy(x0, y0)t
z = f(x0, y0)− t.

Example 3 Finding a normal line
Find the equaƟon of the normal line to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ We find zx(x, y) = −2x and zy(x, y) = −2y; at (0, 1), we
have zx = 0 and zy = −2. We take the direcƟon of the normal line, following
DefiniƟon 97, to be n⃗ = ⟨0,−2,−1⟩. The line with this direcƟon going through
the point (0, 1, 1) is

Figure 13.23: Graphing a surface with a
normal line from Example 3.

ℓn(t) =


x = 0
y = −2t+ 1
z = −t+ 1

or ℓn(t) = ⟨0,−2,−1⟩ t+ ⟨0, 1, 1⟩ .

The surface z = −x2 − y2 + 2, along with the found normal line, is graphed
in Figure 13.23.

The direcƟon of the normal line has many uses, one of which is the defini-
Ɵon of the tangent plane which we define shortly. Another use is in measuring
distances from the surface to a point. Given a point Q in space, it is a general
geometric concept to define the distance from Q to the surface as being the
length of the shortest line segment PQ over all points P on the surface. This, in
turn, implies that #  ‰PQ will be orthogonal to the surface at P. Therefore we can
measure the distance from Q to the surface f by finding a point P on the surface
such that #  ‰PQ is parallel to the normal line to f at P.

Example 4 Finding the distance from a point to a surface
Let f(x, y) = 2 − x2 − y2 and let Q = (2, 2, 2). Find the distance from Q to the
surface defined by f.

Notes:
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SÊ½çã®ÊÄ This surface is used in Example 2, so we know that at (x, y),
the direcƟon of the normal line will be d⃗n = ⟨−2x,−2y,−1⟩. A point P on the
surface will have coordinates (x, y, 2−x2−y2), so #  ‰PQ =

⟨
2− x, 2− y, x2 + y2

⟩
.

To find where #  ‰PQ is parallel to d⃗n, we need to find x, y and c such that c #  ‰PQ = d⃗n.

c #  ‰PQ = d⃗n
c
⟨
2− x, 2− y, x2 + y2

⟩
= ⟨−2x,−2y,−1⟩ .

This implies

c(2− x) = −2x
c(2− y) = −2y

c(x2 + y2) = −1

In each equaƟon, we can solve for c:

c =
−2x
2− x

=
−2y
2− y

=
−1

x2 + y2
.

The first two fracƟons imply x = y, and so the last fracƟon can be rewriƩen as
c = −1/(2x2). Then

−2x
2− x

=
−1
2x2

−2x(2x2) = −1(2− x)
4x3 = 2− x

4x3 + x− 2 = 0.

This last equaƟon is a cubic, which is not difficult to solve with a numeric solver.
We find that x = 0.689, hence P = (0.689, 0.689, 1.051). We find the distance
from Q to the surface of f is∥∥ #  ‰PQ

∥∥ =
√

(2− 0.689)2 + (2− 0.689)2 + (2− 1.051)2 = 2.083.

We can take the concept of measuring the distance from a point to a surface
to find a point Q a parƟcular distance from a surface at a given point P on the
surface.

Example 5 Finding a point a set distance from a surface
Let f(x, y) = x−y2+3. Let P =

(
2, 1, f(2, 1)

)
= (2, 1, 4). Find pointsQ in space

that are 4 units from the surface of f at P. That is, find Q such that
∥∥ #  ‰PQ

∥∥ = 4
and #  ‰PQ is orthogonal to f at P.

Notes:
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SÊ½çã®ÊÄ We begin by finding parƟal derivaƟves:

fx(x, y) = 1 ⇒ fx(2, 1) = 1
fy(x, y) = −2y ⇒ fy(2, 1) = −2

The vector n⃗ = ⟨1,−2,−1⟩ is orthogonal to f at P. For reasons that will become
more clear in a moment, we find the unit vector in the direcƟon of n⃗:

u⃗ =
n⃗
∥n⃗∥

=
⟨1,−2,−1⟩√

6
.

Thus a the normal line to f at P can be wriƩen as

ℓn(t) = ⟨2, 1, 4⟩+
t√
6
⟨1,−2,−1⟩ .

An advantage of this parametrizaƟon of the line is that leƫng t = t0 gives a
point on the line that is |t0| units from P. (This is because the direcƟon of the
line is given in terms of a unit vector.) There are thus two points in space 4 units
from P:

Figure 13.24: Graphing the surface in Ex-
ample 5 alongwith points 4 units from the
surface.

Q1 = ℓn(4) Q2 = ℓn(−4)

=

⟨
2+

4√
6
, 1− 8√

6
, 4− 4√

6

⟩
=

⟨
2− 4√

6
, 1+

8√
6
, 4+

4√
6

⟩
The surface is graphed along with points P, Q1, Q2 and a porƟon of the normal
line to f at P.

Tangent Planes
Wecanuse thedirecƟonof the normal line to define aplane. With a = fx(x0, y0),
b = fy(x0, y0) and P =

(
x0, y0, f(x0, y0)

)
, the vector n⃗ = ⟨a, b,−1⟩ is orthogonal

to f at P. The plane through P with normal vector n⃗ is therefore tangent to f at
P.

DefiniƟon 98 Tangent Plane
Let z = f(x, y) be differenƟable on an open set S containing
(x0, y0), where a = fx(x0, y0), b = fy(x0, y0), n⃗ = ⟨a, b,−1⟩ and
P =

(
x0, y0, f(x0, y0)

)
.

The plane through P with normal vector n⃗ is the tangent plane to f at
P. The standard form of this plane is

a(x− x0) + b(y− y0)−
(
z− f(x0, y0)

)
= 0.

Notes:
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Example 6 Finding tangent planes
Find the equaƟon of the tangent plane to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ Note that this is the same surface and point used in Exam-
ple 3. There we found n⃗ = ⟨0,−2,−1⟩ and P = (0, 1, 1). Therefore the equa-

Figure 13.25: Graphing a surfacewith tan-
gent plane from Example 6.

Ɵon of the tangent plane is

−2(y− 1)− (z− 1) = 0.

The surface z = −x2 − y2 + 2 and tangent plane are graphed in Figure 13.25.

Example 7 Using the tangent plane to approximate funcƟon values
The point (3,−1, 4) lies on the surface of an unknown differenƟable funcƟon f
where fx(3,−1) = 2 and fy(3,−1) = −1/2. Find the equaƟon of the tangent
plane to f at P, and use this to approximate the value of f(2.9,−0.8).

SÊ½çã®ÊÄ Knowing the parƟal derivaƟves at (3,−1) allows us to form
the normal vector to the tangent plane, n⃗ = ⟨2,−1/2,−1⟩. Thus the equaƟon
of the tangent line to f at P is:

2(x−3)−1/2(y+1)−(z−4) = 0 ⇒ z = 2(x−3)−1/2(y+1)+4. (13.5)

Just as tangent lines provide excellent approximaƟons of curves near their point
of intersecƟon, tangent planes provide excellent approximaƟons of surfaces near
their point of intersecƟon. So f(2.9,−0.8) ≈ z(2.9,−0.8) = 3.7.

This is not a newmethod of approximaƟon. Compare the right hand expres-
sion for z in EquaƟon (13.5) to the total differenƟal:

dz = fxdx+ fydy and z = 2︸︷︷︸
fx

(x− 3)︸ ︷︷ ︸
dx

+−1/2︸ ︷︷ ︸
fy

(y+ 1)︸ ︷︷ ︸
dy︸ ︷︷ ︸

dz

+4.

Thus the “new z-value” is the sum of the change in z (i.e., dz) and the old z-
value (4). AsmenƟonedwhen studying the total differenƟal, it is not uncommon
to know parƟal derivaƟve informaƟon about a unknown funcƟon, and tangent
planes are used to give accurate approximaƟons of the funcƟon.

The Gradient and Normal Lines, Tangent Planes
The methods developed in this secƟon so far give a straighƞorward method of
finding equaƟons of normal lines and tangent planes for surfaces with explicit

Notes:
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equaƟons of the form z = f(x, y). However, they do not handle implicit equa-
Ɵons well, such as x2 + y2 + z2 = 1. There is a technique that allows us to find
vectors orthogonal to these surfaces based on the gradient.

Recall that when z = f(x, y), the gradient∇f = ⟨fx, fy⟩ is orthogonal to level
curves of f. Theorem 115 part 3 made an analogous statement about the gradi-
ent ∇F, where w = F(x, y, z). Given a point (x0, y0, z0), let c = F(x0, y0, z0).
Then F(x, y, z) = c is a level surface that contains the point (x0, y0, z0) and
∇F(x0, y0, z0) is orthogonal to this level surface. This direcƟon can be used to
find tangent planes and normal lines.

Example 8 Using the gradient to find a tangent plane

Find the equaƟon of the plane tangent to the ellipsoid
x2

12
+

y2

6
+

z2

4
= 1 at

P = (1, 2, 1).

SÊ½çã®ÊÄ We consider the equaƟon of the ellipsoid as a level surface
of a funcƟon F of three variables, where F(x, y, z) = x2

12 +
y2
6 + z2

4 . The gradient
is:

Figure 13.26: An ellipsoid and its tangent
plane at a point.

∇F(x, y, z) = ⟨Fx, Fy, Fz⟩

=
⟨ x
6
,
y
3
,
z
2

⟩
.

At P, the gradient is ∇F(1, 2, 1) = ⟨1/6, 2/3, 1/2⟩. Thus the equaƟon of the
plane tangent to the ellipsoid at P is

1
6
(x− 1) +

2
3
(y− 2) +

1
2
(z− 1) = 0.

The ellipsoid and tangent plane are graphed in Figure 13.26.

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approximaƟons. Normal lines also
have many uses. In this secƟon we focused on using them to measure distances
from a surface. Another interesƟng applicaƟon is in computer graphics, where
the effects of light on a surface are determined using normal vectors.

The next secƟon invesƟgates another use of parƟal derivaƟves: determining
relaƟve extrema. When dealing with funcƟons of the form y = f(x), we found
relaƟve extrema by finding x where f ′(x) = 0. We can start finding relaƟve
extrema of z = f(x, y) by seƫng fx and fy to 0, but it turns out that there is more
to consider.

Notes:
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Exercises 13.7
Terms and Concepts
1. Explain how the vector v⃗ = ⟨1, 0, 3⟩ can be thought of as

having a “slope” of 3.
2. Explain how the vector v⃗ = ⟨0.6, 0.8,−2⟩ can be thought

of as having a “slope” of−2.
3. T/F: Let z = f(x, y) be differenƟable at P. If n⃗ is a normal

vector to the tangent plane of f at P, then n⃗ is orthogonal
to fx and fy at P.

4. Explain in your own words why we do not refer to the tan-
gent line to a surface at a point, but rather to direcƟonal
tangent lines to a surface at a point.

Problems
In Exercises 5–8, a funcƟon z = f(x, y), a vector v⃗ and a point
P are given. Give the parametric equaƟons of the following
direcƟonal tangent lines to f at P:

(a) ℓx(t)

(b) ℓy(t)

(c) ℓ⃗u (t), where u⃗ is the unit vector in the direcƟon of v⃗.

5. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

6. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

7. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

8. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

In Exercises 9–12, a funcƟon z = f(x, y) and a point P are given.
Find the equaƟon of the normal line to f at P. Note: these are
the same funcƟons as in Exercises 5 – 8.

9. f(x, y) = 2x2y− 4xy2, P = (2, 3).

10. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

11. f(x, y) = 3x− 5y, P = (4, 2).

12. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 13–16, a funcƟon z = f(x, y) and a point P are
given. Find the two points that are 2 units from the surface f
at P. Note: these are the same funcƟons as in Exercises 5 – 8.

13. f(x, y) = 2x2y− 4xy2, P = (2, 3).

14. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

15. f(x, y) = 3x− 5y, P = (4, 2).

16. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 17–20, a funcƟon z = f(x, y) and a point P are
given. Find the equaƟon of the tangent plane to f at P. Note:
these are the same funcƟons as in Exercises 5 – 8.

17. f(x, y) = 2x2y− 4xy2, P = (2, 3).

18. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

19. f(x, y) = 3x− 5y, P = (4, 2).

20. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 21–24, an implicitly defined funcƟon of x, y and z
is given along with a point P that lies on the surface. Use the
gradient∇F to:

(a) find the equaƟon of the normal line to the surface at P,
and

(b) find the equaƟon of the plane tangent to the surface at
P.

21. x2

8
+

y2

4
+

z2

16
= 1, at P = (1,

√
2,
√
6)

22. z2 − x2

4
− y2

9
= 0, at P = (4,−3,

√
5)

23. xy2 − xz2 = 0, at P = (2, 1,−1)

24. sin(xy) + cos(yz) = 0, at P = (2, π/12, 4)
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13.8 Extreme Values

Given a funcƟon z = f(x, y), we are oŌen interested in points where z takes on
the largest or smallest values. For instance, if z represents a cost funcƟon, we
would likely want to know what (x, y) values minimize the cost. If z represents
the raƟo of a volume to surface area, we would likely want to know where z is
greatest. This leads to the following definiƟon.

DefiniƟon 99 RelaƟve and Absolute Extrema
Let z = f(x, y) be defined on a set S containing the point P = (x0, y0).

1. If there is an open disk D containing P such that f(x0, y0) ≥ f(x, y)
for all (x, y) inD, then f has a relaƟvemaximum at P; if f(x0, y0) ≤
f(x, y) for all (x, y) in D, then f has a relaƟve minimum at P.

2. If f(x0, y0) ≥ f(x, y) for all (x, y) in S, then f has an absolute max-
imum at P; if f(x0, y0) ≤ f(x, y) for all (x, y) in S, then f has an
absolute minimum at P.

3. If f has a relaƟvemaximum orminimum at P, then f has a relaƟve
extrema at P; if f has an absolute maximum or minimum at P,
then f has an absolute extrema at P.

If f has a relaƟve or absolute maximum at P = (x0, y0), it means every curve
on the surface of f through Pwill also have a relaƟve or absolute maximum at P.
Recalling what we learned in SecƟon 3.1, the slopes of the tangent lines to these
curves at Pmust be 0 or undefined. Since direcƟonal derivaƟves are computed
using fx and fy, we are led to the following definiƟon and theorem.

DefiniƟon 100 CriƟcal Point
Let z = f(x, y) be conƟnuous on an open set S. A criƟcal point P =
(x0, y0) of f is a point in S such that

• fx(x0, y0) = 0 and fy(x0, y0) = 0, or

• fx(x0, y0) or fy(x0, y0) is undefined.

Notes:
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Theorem 116 CriƟcal Points and RelaƟve Extrema
Let z = f(x, y) be defined on an open set S containing P = (x0, y0). If f
has a relaƟve extrema at P, then P is a criƟcal point of f.

Therefore, to find relaƟve extrema, we find the criƟcal points of f and deter-
mine which correspond to relaƟve maxima, relaƟve minima, or neither.

Watch the video:
Local Maximum and Minimum Values / FuncƟon of
Two Variables at
https://youtu.be/Hm5QnuDjNmY

The following examples demonstrate this process.

Example 1 Finding criƟcal points and relaƟve extrema
Let f(x, y) = x2 + y2 − xy− x− 2. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ We start by compuƟng the parƟal derivaƟves of f:

fx(x, y) = 2x− y− 1 and fy(x, y) = 2y− x.

Each is never undefined. A criƟcal point occurswhen fx and fy are simultaneously
0, leading us to solve the following system of linear equaƟons:

2x− y− 1 = 0 and − x+ 2y = 0.

This soluƟon to this system is x = 2/3, y = 1/3. (Check that at (2/3, 1/3), both
fx and fy are 0.)

Figure 13.27: The surface in Example 1
with its absolute minimum indicated.

The graph in Figure 13.27 shows f alongwith this criƟcal point. It is clear from
the graph that this is a relaƟve minimum; further consideraƟon of the funcƟon
shows that this is actually the absolute minimum.

Example 2 Finding criƟcal points and relaƟve extrema
Let f(x, y) = −

√
x2 + y2 + 2. Find the relaƟve extrema of f.

Notes:
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SÊ½çã®ÊÄ We start by compuƟng the parƟal derivaƟves of f:

fx(x, y) =
−x√
x2 + y2

and fy(x, y) =
−y√
x2 + y2

.

It is clear that fx = 0 when x = 0 & y ̸= 0, and that fy = 0 when y = 0 & x ̸= 0.
At (0, 0), both fx and fy are not 0, but rather undefined. The point (0, 0) is sƟll a
criƟcal point, though, because the parƟal derivaƟves are undefined. This is the
only criƟcal point of f.

Figure 13.28: The surface in Example 2
with its absolute maximum indicated.

The surface of f is graphed in Figure 13.28 along with the point (0, 0, 2). The
graph shows that this point is the absolute maximum of f.

In each of the previous two examples, we found a criƟcal point of f and then
determinedwhether or not it was a relaƟve (or absolute)maximumorminimum
by graphing. It would be nice to be able to determine whether a criƟcal point
corresponded to amax or amin without a graph. Before we develop such a test,
we do one more example that sheds more light on the issues our test needs to
consider.

Example 3 Finding criƟcal points and relaƟve extrema
Let f(x, y) = x3 − 3x− y2 + 4y. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ Once again we start by finding the parƟal derivaƟves of f:

fx(x, y) = 3x2 − 3 and fy(x, y) = −2y+ 4.

Each is always defined. Seƫng each equal to 0 and solving for x and y, we find

fx(x, y) = 0 ⇒ x = ±1
fy(x, y) = 0 ⇒ y = 2.

We have two criƟcal points: (−1, 2) and (1, 2). To determine if they correspond
to a relaƟve maximum or minimum, we consider the graph of f in Figure 13.29.

Figure 13.29: The surface in Example 3
with both criƟcal points marked.

The criƟcal point (−1, 2) clearly corresponds to a relaƟve maximum. How-
ever, the criƟcal point at (1, 2) is neither a maximum nor a minimum, displaying
a different, interesƟng characterisƟc.

If one walks parallel to the y-axis towards this criƟcal point, then this point
becomes a relaƟvemaximumalong this path. But if onewalks towards this point
parallel to the x-axis, this point becomes a relaƟve minimum along this path. A
point that seems to act as both a max and a min is a saddle point. A formal
definiƟon follows.

Notes:
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DefiniƟon 101 Saddle Point
Let P = (x0, y0) be in the domain of f where fx = 0 and fy = 0 at P. We
say P is a saddle point of f if, for every open disk D containing P, there
are points (x1, y1) and (x2, y2) in D such that f(x0, y0) > f(x1, y1) and
f(x0, y0) < f(x2, y2).

At a saddle point, the instantaneous rate of change in all direcƟons is 0 and
there are points nearbywith z-values both less than and greater than the z-value
of the saddle point.

Before Example 3 wemenƟoned the need for a test to differenƟate between
relaƟve maxima and minima. We now recognize that our test also needs to ac-
count for saddle points. To do so, we consider the second parƟal derivaƟves of
f.

Recall that with single variable funcƟons, such as y = f(x), if f ′′(c) > 0, then
f is concave up at c, and if f ′(c) = 0, then f has a relaƟveminimum at x = c. (We
called this the Second DerivaƟve Test.) Note that at a saddle point, it seems the
graph is “both” concave up and concave down, depending on which direcƟon
you are considering.

It would be nice if the following were true:

fxx and fyy > 0 ⇒ relaƟve minimum
fxx and fyy < 0 ⇒ relaƟve maximum

fxx and fyy have opposite signs ⇒ saddle point.

However, this is not the case. FuncƟons f exist where fxx and fyy are both
posiƟve but a saddle point sƟll exists. In such a case, while the concavity in the
x-direcƟon is up (i.e., fxx > 0) and the concavity in the y-direcƟon is also up (i.e.,
fyy > 0), the concavity switches somewhere in between the x- and y-direcƟons.

To account for this, consider D = fxxfyy − fxyfyx. Since fxy and fyx are equal
when conƟnuous (refer back to Theorem106), we can rewrite this asD = fxxfyy−
f 2xy. ThenD can be used to test whether the concavity at a point changes depend-
ing on direcƟon. If D > 0, the concavity does not switch (i.e., at that point, the
graph is concave up or down in all direcƟons). If D < 0, the concavity does
switch. If D = 0, our test fails to determine whether concavity switches or not.
We state the use of D in the following theorem.

Notes:
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Theorem 117 Second DerivaƟve Test
Let z = f(x, y) be defined on an open set containing a criƟcal point
P = (x0, y0)where all second order derivaƟves of f are conƟnuous at P.
Define

D = fxx(x0, y0)fyy(x0, y0)− f 2xy(x0, y0).

1. If D > 0 and fxx(x0, y0) > 0, then P is a relaƟve minimum of f.

2. If D > 0 and fxx(x0, y0) < 0, then P is a relaƟve maximum of f.

3. If D < 0, then P is a saddle point of f.

4. If D = 0, the test is inconclusive.

Proof
Let u⃗ = ⟨h, k⟩ be a unit vector. Then at the criƟcal point P, Du⃗ f = 0. This means
that along the line h(y− y0) = k(x− x0), P is a criƟcal point that is a maximum
or minimum according to the sign of D2

u⃗ f. Now,

D2
u⃗ f = Du⃗(fxh+ fyk)

= (fxh)xh+ (fxh)yk+ (fyk)xh+ (fyk)
= fxxh2 + 2fxyhk+ fyyk2

because fxy and fyx are conƟnuous and therefore equal.
Suppose now that D > 0. Then we must have fxx ̸= 0, and we can complete

the square to see that

D2
u⃗ f = fxx

(
h+

fxyk
fxx

)2

+ fyyk2 −
f 2xyk2

fxx
= fxx

[(
h+

fxyk
fxx

)2

+
Dk2

f 2xx

]
.

Because we assumed D > 0, everything in the brackets is posiƟve, and D2
u⃗ f

always has the same sign as fxx. This shows parts 1 and 2.
If D < 0, our task is easier because we only need to find two different u⃗ that

give D2
u⃗ f opposite signs. If fxx ̸= 0, let v⃗ = ⟨−fxy, fxx⟩ and we can choose

u⃗1 =
1
∥⃗v∥

v⃗

u⃗2 = ⟨1, 0⟩
⇒

D2
u⃗1 f =

1
∥⃗v∥2

fxxD

D2
u⃗2 f = fxx.
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Similarly, if fyy ̸= 0, let v⃗ = ⟨fyy,−fxy⟩ and we can choose

u⃗1 =
1
∥⃗v∥

v⃗

u⃗2 = ⟨0, 1⟩
⇒

D2
u⃗1 f =

1
∥⃗v∥2

fyyD

D2
u⃗2 f = fyy.

Finally, if fxx = fyy = 0, then D2
u⃗ f = 2fxyhk has opposite signs for the vectors

u⃗1 = 1√
2 ⟨1, 1⟩ and u⃗2 = 1√

2 ⟨1,−1⟩. □

We first pracƟce using this test with the funcƟon in the previous example,
where we visually determined we had a relaƟve maximum and a saddle point.

Example 4 Using the Second DerivaƟve Test
Let f(x, y) = x3−3x− y2+4y as in Example 3. Determine whether the funcƟon
has a relaƟve minimum, maximum, or saddle point at each criƟcal point.

SÊ½çã®ÊÄ We determined previously that the criƟcal points of f are
(−1, 2) and (1, 2). To use the Second DerivaƟve Test, we must find the second
parƟal derivaƟves of f:

fxx = 6x; fyy = −2; fxy = 0.

Thus D(x, y) = −12x.
At (−1, 2): D(−1, 2) = 12 > 0, and fxx(−1, 2) = −6. By the Second Deriva-

Ɵve Test, f has a relaƟve maximum at (−1, 2).
At (1, 2): D(1, 2) = −12 < 0. The Second DerivaƟve Test states that f has a

saddle point at (1, 2).
The Second DerivaƟve Test confirmed what we determined visually.

Example 5 Using the Second DerivaƟve Test
Find the relaƟve extrema of f(x, y) = x2y+ y2 + xy.

SÊ½çã®ÊÄ We start by finding the first and second parƟal derivaƟves of
f:

fx = 2xy+ y fy = x2 + 2y+ x
fxx = 2y fyy = 2
fxy = 2x+ 1 fyx = 2x+ 1.

We find the criƟcal points by finding where fx and fy are simultaneously 0 (they
are both never undefined). Seƫng fx = 0, we have:

fx = 0 ⇒ 2xy+ y = 0 ⇒ y(2x+ 1) = 0.

Notes:
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This implies that for fx = 0, either y = 0 or 2x+ 1 = 0.
Assume y = 0 then consider fy = 0:

fy = 0
x2 + 2y+ x = 0, and since y = 0, we have

x2 + x = 0
x(x+ 1) = 0.

Thus if y = 0, we have either x = 0 or x = −1, giving two criƟcal points: (−1, 0)
and (0, 0).

Going back to fx, now assume 2x+1 = 0, i.e., that x = −1/2, then consider
fy = 0:

fy = 0
x2 + 2y+ x = 0, and since x = −1/2, we have

1/4+ 2y− 1/2 = 0
y = 1/8.

Thus if x = −1/2, y = 1/8 giving the criƟcal point (−1/2, 1/8).
With D = 4y−(2x+1)2, we apply the Second DerivaƟve Test to each criƟcal

point.
At (−1, 0), D < 0, so (−1, 0) is a saddle point.
At (0, 0), D < 0, so (0, 0) is also a saddle point.
At (−1/2, 1/8), D > 0 and fxx > 0, so (−1/2, 1/8) is a relaƟve minimum.

Figure 13.30: Graphing f from Example 5
and its relaƟve extrema.

Figure 13.30 shows a graph of f and the three criƟcal points. Note how this
funcƟon does not varymuch near the criƟcal points – that is, visually it is difficult
to determine whether a point is a saddle point or relaƟve minimum (or even a
criƟcal point at all!). This is one reason why the Second DerivaƟve Test is so
important to have.

Constrained OpƟmizaƟon
When opƟmizing funcƟons of one variable such as y = f(x), we made use of
Theorem 22, the Extreme Value Theorem, that said that over a closed interval I,
a conƟnuous funcƟon has both a maximum and minimum value. To find these
maximum and minimum values, we evaluated f at all criƟcal points in the inter-
val, as well as at the endpoints (the “boundary”) of the interval.

A similar theorem and procedure applies to funcƟons of two variables. A
conƟnuous funcƟon over a closed set also aƩains a maximum and minimum
value (see the following theorem). We can find these values by evaluaƟng the
funcƟon at the criƟcal values in the set and over the boundary of the set. AŌer
formally staƟng this extreme value theorem, we give examples.

Notes:
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Theorem 118 Extreme Value Theorem
Let z = f(x, y) be a conƟnuous funcƟon on a closed, bounded set S.
Then f has a maximum and minimum value on S.

Example 6 Finding extrema on a closed set
Let f(x, y) = x2 − y2 + 5 and let S be the triangle with verƟces (−1,−2), (0, 1)
and (2,−2). Find the maximum and minimum values of f on S.

SÊ½çã®ÊÄ It can help to see a graph of f along with the set S. In Fig-
ure 13.31(a) the triangle defining S is shown in the x-y plane in a dashed line.
Above it is the surface of f; we are only concerned with the porƟon of f enclosed
by the “triangle” on its surface.

(a)

−2 2

−2

−1

1

−1 1

y
=

3x
+

1

y
=
−
3/2x

+
1

y = −2

x

y

(b)

Figure 13.31: Ploƫng the surface of f
along with the restricted domain S.

We begin by finding the criƟcal points of f. With fx = 2x and fy = −2y, we
find only one criƟcal point, at (0, 0).

We now find the maximum and minimum values that f aƩains along the
boundary of S, that is, along the edges of the triangle. In Figure 13.31(b) we
see the triangle sketched in the plane with the equaƟons of the lines forming its
edges labeled.

Start with the boƩom edge, along the line y = −2. If y is −2, then on
the surface, we are considering points f(x,−2); that is, our funcƟon reduces to
f(x,−2) = x2 − (−2)2 + 5 = x2 + 1 = f1(x). We want to maximize/minimize
f1(x) = x2 + 1 on the interval [−1, 2]. To do so, we evaluate f1(x) at its criƟ-
cal points and at the endpoints. The criƟcal points of f1 are found by seƫng its
derivaƟve equal to 0:

f ′1(x) = 0 ⇒ x = 0,

so that we will need to evaluate f at the points (−1,−2), (0,−2), and (2,−2).
We need to do this process twice more, for the other two edges of the tri-

angle.
Along the leŌ edge, along the line y = 3x+ 1, we subsƟtute 3x+ 1 in for y

in f(x, y):

f(x, y) = f(x, 3x+ 1) = x2 − (3x+ 1)2 + 5 = −8x2 − 6x+ 4 = f2(x).

We want the maximum and minimum values of f2 on the interval [−1, 0], so we
evaluate f2 at its criƟcal points and the endpoints of the interval. We find the
criƟcal points:

f ′2(x) = −16x− 6 = 0 ⇒ x = −3/8,

Notes:
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so that we will need to evaluate f at the points (−1,−2), (− 3
8 ,−

1
8 ), and (0, 1).

Finally, we evaluate f along the right edgeof the triangle, where y = −3/2x+
1.

f(x, y) = f(x,−3/2x+ 1) = x2 − (−3/2x+ 1)2 + 5 = −5
4
x2 + 3x+ 4 = f3(x).

The criƟcal points of f3(x) are:

f ′3(x) = 0 ⇒ x = 6/5,

so that we will need to evaluate f at the points (0, 1), ( 65 ,−
4
5 ), and (2,−2).

Figure 13.32: The surface of f along with
important points along the boundary of S
and the interior.

We now evaluate f at a total of 7 different places, all shown in Figure 13.32.

f(−1,−2) = 2, f(0,−2) = 1, f(2,−2) = 5,

f(−3
8
,−1

8
) =

41
8
, f(0, 1) = 4, and f(

6
5
,−4

5
) =

29
5
.

Of all the z-values found, themaximum is 29
5 , found at (

6
5 ,−

4
5 ); theminimum

is 1, found at (0,−2).

This porƟon of the text is enƟtled “Constrained OpƟmizaƟon” because we
want to opƟmize a funcƟon (i.e., find its maximum and/or minimum values)
subject to a constraint – some limit to what values the funcƟon can aƩain. In
the previous example, we constrained ourselves by considering a funcƟon only
within the boundary of a triangle. This was largely arbitrary; the funcƟon and
the boundary were chosen just as an example, with no real “meaning” behind
the funcƟon or the chosen constraint.

However, solving constrainedopƟmizaƟonproblems is a very important topic
in appliedmathemaƟcs. The techniques developed here are the basis for solving
larger problems, where more than two variables are involved.

We illustrate the technique once more with a classic problem.

Example 7 Constrained OpƟmizaƟon
The U.S. Postal Service states that the girth+length of Standard Post Package
must not exceed 130”. Given a rectangular box, the “length” is the longest side,
and the “girth” is twice the width+height.

Given a rectangular box where the width and height are equal, what are the
dimensions of the box that give the maximum volume subject to the constraint
of the size of a Standard Post Package?

SÊ½çã®ÊÄ Let w, h, and ℓ denote the width, height, and length of a
rectangular box; we assume here that w = h. The girth is then 2(w+ h) = 4w.
The volume of the box is V(w, ℓ) = whℓ = w2ℓ. We wish to maximize this
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volume subject to the constraint 4w + ℓ ≤ 130, or ℓ ≤ 130 − 4w. (Common
sense also indicates that ℓ > 0,w > 0, so that we don’t need to check the
boundary where either is zero.)

We begin by finding the criƟcal values of V. We find that Vw = 2wℓ and
Vℓ = w2; these are simultaneously 0 only at (0, 0). This gives a volume of 0, so
we can ignore this criƟcal point.

We now consider the volume along the constraint ℓ = 130− 4w. Along this
line, we have:

V(w, ℓ) = V(w, 130− 4w) = w2(130− 4w) = 130w2 − 4w3 = V1(w).

The constraint is applicable on the w-interval [0, 32.5] as indicated in the figure.
Thus we want to maximize V1 on [0, 32.5].

Finding the criƟcal values of V1, we take the derivaƟve and set it equal to 0:

V ′
1(w) = 260w−12w2 = 0 ⇒ w(260−12w) = 0 ⇒ w = 0,

260
12
≈ 21.67.

We found two criƟcal values: when w = 0 and when w = 21.67. We again
ignore the w = 0 soluƟon; the maximum volume, subject to the constraint,
comes at w = h = 21.67, ℓ = 130 − 4(21.6) = 43.33. This gives a volume of
V(21.67, 43.33) ≈ 19,408in3.

Figure 13.33: Graphing the volume of a
box with girth 4w and length ℓ, subject to
a size constraint.

The volume funcƟon V(w, ℓ) is shown in Figure 13.33 along with the con-
straint ℓ = 130 − 4w. As done previously, the constraint is drawn dashed in
the x-y plane and also along the surface of the funcƟon. The point where the
volume is maximized is indicated.

It is hard to overemphasize the importance of opƟmizaƟon. In “the real
world,” we rouƟnely seek to make something beƩer. By expressing the some-
thing as a mathemaƟcal funcƟon, “making something beƩer” means “opƟmize
some funcƟon.”

The techniques shownhere are only the beginning of an incredibly important
field. Many funcƟons that we seek to opƟmize are incredibly complex, making
the step of “find the gradient and set it equal to 0⃗” highly nontrivial. Mastery
of the principles here are key to being able to tackle these more complicated
problems.
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Exercises 13.8
Terms and Concepts

1. T/F: Theorem 116 states that if f has a criƟcal point at P,
then f has a relaƟve extrema at P.

2. T/F: A point P is a criƟcal point of f if fx and fy are both 0 at
P.

3. T/F: A point P is a criƟcal point of f if fx or fy are undefined
at P.

4. Explain what it means to “solve a constrained opƟmiza-
Ɵon” problem.

Problems

In Exercises 5–14, find the criƟcal points of the given funcƟon.
Use the Second DerivaƟve Test to determine if each criƟcal
point corresponds to a relaƟve maximum, minimum, or sad-
dle point.

5. f(x, y) = 1
2 x

2 + 2y2 − 8y+ 4x

6. f(x, y) = x2 + 4x+ y2 − 9y+ 3xy

7. f(x, y) = x2 + 3y2 − 6y+ 4xy

8. f(x, y) = 1
x2 + y2 + 1

9. f(x, y) = x2 + y3 − 3y+ 1

10. f(x, y) = 1
3
x3 − x+ 1

3
y3 − 4y

11. f(x, y) = x2y2

12. f(x, y) = x4 − 2x2 + y3 − 27y− 15

13. f(x, y) =
√

16− (x− 3)2 − y2

14. f(x, y) =
√

x2 + y2

In Exercises 15–18, find the absolute maximum and minimum
of the funcƟon subject to the given constraint.

15. f(x, y) = x2 + y2 + y+ 1, constrained to the triangle with
verƟces (0, 1), (−1,−1) and (1,−1).

16. f(x, y) = 5x − 7y, constrained to the region bounded by
y = x2 and y = 1.

17. f(x, y) = x2 + 2x + y2 + 2y, constrained to the region
bounded by the circle x2 + y2 = 4.

18. f(x, y) = 3y − 2x2, constrained to the region bounded by
the parabola y = x2 + x− 1 and the line y = x.
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13.9 Lagrange MulƟpliers
In the previous secƟon, we were concerned with finding maxima and minima
of funcƟons without any constraints on the variables (other than being in the
domain of the funcƟon). We ended by discussing what we would do if there
were constraints on the variables. The following example illustrates a simple
case of this type of problem.

Example 1 Maximizing an Area
For a rectangle whose perimeter is 20 m, find the dimensions that will maximize
the area.

SÊ½çã®ÊÄ The areaA of a rectangle withwidth x and height y isA = xy.
The perimeter P of the rectangle is then given by the formula P = 2x+2y. Since
we are given that the perimeter P = 20, this problem can be stated as:

Maximize f(x, y) = xy subject to 2x+ 2y = 20

The reader is probably familiar with a simple method, using single-variable cal-
culus, for solving this problem. Since we must have 2x + 2y = 20, then we
can solve for, say, y in terms of x using that equaƟon. This gives y = 10 − x,
which we then subsƟtute into f to get f(x, y) = xy = x(10 − x) = 10x − x2.
This is now a funcƟon of x alone, so we now just have to maximize the funcƟon
f(x) = 10x− x2 on the interval [0, 10]. Since f ′(x) = 10− 2x = 0⇒ x = 5 and
f ′′(5) = −2 < 0, then the Second DerivaƟve Test tells us that x = 5 is a local
maximum for f, and hence x = 5 must be the global maximum on the interval
[0, 10] (since f = 0 at the endpoints of the interval). So since y = 10 − x = 5,
then the maximum area occurs for a rectangle whose width and height both are
5 m.

Note: Joseph Louis Lagrange (1736–
1813) was a French mathemaƟcian
and astronomer.

NoƟce in the above example that the ease of the soluƟon depended on being
able to solve for one variable in terms of the other in the equaƟon 2x+2y = 20.
But what if that were not possible (which is oŌen the case)? In this secƟon we
will use a general method, called the Lagrange mulƟplier method, for solving
constrained opƟmizaƟon problems:

Maximize (or minimize) f(x, y) subject to g(x, y) = c

for some constant c. The equaƟon g(x, y) = c is called the constraint equaƟon,
and we say that x and y are constrained by g(x, y) = c. Points (x, y) which are
maxima or minima of f(x, y) with the condiƟon that they saƟsfy the constraint
equaƟon g(x, y) = c are called constrained maximum or constrained minimum
points, respecƟvely. Similar definiƟons hold for funcƟons of three variables.
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The previous secƟon opƟmized a funcƟon on a set S. In this secƟon, “subject
to g(x, y) = c” is the same as saying that the set S is given by {(x, y)|g(x, y) = c}.
The Lagrange mulƟplier method for solving such problems can now be stated:

Theorem 119 Lagrange MulƟpliers
Let f(x, y) and g(x, y) be funcƟons with conƟnuous parƟal derivaƟves of
all orders, and suppose that c is a scalar constant such that∇g(x, y) ̸= 0⃗
for all (x, y) that saƟsfy the equaƟon g(x, y) = c. Then to solve the
constrained opƟmizaƟon problem

Maximize (or minimize) f(x, y) subject to g(x, y) = c,

find the points (x, y) that solve the equaƟon ∇f(x, y) = λ∇g(x, y) for
some constant λ (the number λ is called the Lagrange mulƟplier). If
there is a constrained maximum or minimum, then it must be at such a
point.

A rigorous proof of the above theorem is well beyond the scope of this text.
Note that the theorem only gives a necessary condiƟon for a point to be a con-
strained maximum or minimum. Whether a point (x, y) that saƟsfies∇f(x, y) =
λ∇g(x, y) for some λ actually is a constrainedmaximum orminimum can some-
Ɵmes be determined by the nature of the problem itself. For instance, in Exam-
ple 1 it was clear that there had to be a global maximum.

So how can you tell when a point that saƟsfies the condiƟon in Theorem 119
really is a constrained maximum or minimum? The answer is that it depends on
the constraint funcƟon g(x, y), together with any implicit constraints. It can be
shown that if the constraint equaƟon g(x, y) = c (plus any hidden constraints)
describes a bounded set B in R2, then the constrained maximum or minimum
of f(x, y) will occur either at a point (x, y) saƟsfying∇f(x, y) = λ∇g(x, y) or at
a “boundary” point of the set B.

Watch the video:
LaGrange MulƟpliers at
https://youtu.be/ry9cgNx1QV8

In Example 1 the constraint equaƟon 2x + 2y = 20 describes a line in R2,
which by itself is not bounded. However, there are “hidden” constraints, due to

Notes:
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the nature of the problem, namely 0 ≤ x, y ≤ 10, which cause that line to be
restricted to a line segment inR2 (including the endpoints of that line segment),
which is bounded.

Example 2 Maximizing an Area
For a rectangle whose perimeter is 20 m, use the Lagrange mulƟplier method to
find the dimensions that will maximize the area.

SÊ½çã®ÊÄ As we saw in Example 1, with x and y represenƟng the width
and height, respecƟvely, of the rectangle, this problem can be stated as:

Maximize f(x, y) = xy subject to g(x, y) = 2x+ 2y = 20.

Then solving the equaƟon ∇f(x, y) = λ∇g(x, y) for some λ means solving the

equaƟons
∂f
∂x

= λ
∂g
∂x

and
∂f
∂y

= λ
∂g
∂y

, namely:

y = 2λ,
x = 2λ

The general idea is to solve for λ in both equaƟons, then set those expressions
equal (since they both equal λ) to solve for x and y. Doing this we get

y
2
= λ =

x
2
⇒ x = y,

so now subsƟtute either of the expressions for x or y into the constraint equaƟon
to solve for x and y:

20 = g(x, y) = 2x+ 2y = 2x+ 2x = 4x ⇒ x = 5 ⇒ y = 5

Theremust be amaximum area, since theminimum area is 0 and f(5, 5) = 25 >
0, so the point (5, 5) that we found (called a constrained criƟcal point) must be
the constrained maximum. Therefore, the maximum area occurs for a rectangle
whose width and height both are 5 m.

Example 3 Extreme Values on a Circle
Find the points on the circle x2+ y2 = 80 which are closest to and farthest from
the point (1, 2).

SÊ½çã®ÊÄ The distance d from any point (x, y) to the point (1, 2) is

d =
√
(x− 1)2 + (y− 2)2,

Notes:

846



13.9 Lagrange MulƟpliers

and minimizing the distance is equivalent to minimizing the square of the dis-
tance. Thus the problem can be stated as:

Maximize (and minimize) f(x, y) = (x−1)2+(y−2)2 subject to g(x, y) = x2+y2 = 80.

Solving∇f(x, y) = λ∇g(x, y)means solving the following equaƟons:

2(x− 1) = 2λx,
2(y− 2) = 2λy

Note that x ̸= 0 since otherwise we would get −2 = 0 in the first equaƟon.
Similarly, y ̸= 0. So we can solve both equaƟons for λ as follows:

x− 1
x

= λ =
y− 2
y

⇒ xy− y = xy− 2x ⇒ y = 2x

SubsƟtuƟng this into g(x, y) = x2+y2 = 80 yields 5x2 = 80, so x = ±4. So the
x2 + y2 = 80 (4, 8)

(1, 2)

(−4,−8)

Figure 13.34: The circle in Example 3.

two constrained criƟcal points are (4, 8) and (−4,−8). Since f(4, 8) = 45 and
f(−4,−8) = 125, and since there must be points on the circle closest to and
farthest from (1, 2), then it must be the case that (4, 8) is the point on the circle
closest to (1, 2) and (−4,−8) is the farthest from (1, 2) (see Figure 13.34).

NoƟce that since the constraint equaƟon x2 + y2 = 80 describes a circle,
which is a bounded set in R2, then we were guaranteed that the constrained
criƟcal points we found were indeed the constrained maximum and minimum.

The Lagrange mulƟplier method can be extended to funcƟons of three vari-
ables.

Example 4 Maximizing a FuncƟon of Three Variables
Maximize (andminimize) f(x, y, z) = x+z subject to g(x, y, z) = x2+y2+z2 = 1.

SÊ½çã®ÊÄ Solve the equaƟon∇f(x, y, z) = λ∇g(x, y, z):

1 = 2λx
0 = 2λy
1 = 2λz

The first equaƟon implies λ ̸= 0 (otherwise we would have 1 = 0), so we can
divide by λ in the second equaƟon to get y = 0 and we can divide by λ in the
first and third equaƟons to get x = 1

2λ = z. SubsƟtuƟng these expressions into
the constraint equaƟon g(x, y, z) = x2 + y2 + z2 = 1 yields the constrained crit-
ical points

(
1√
2 , 0,

1√
2

)
and

(
−1√
2 , 0,

−1√
2

)
. Since f

(
1√
2 , 0,

1√
2

)
> f
(

−1√
2 , 0,

−1√
2

)
,

Notes:
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Chapter 13 FuncƟons of Several Variables

and since the constraint equaƟon x2 + y2 + z2 = 1 describes a sphere (which
is bounded) in R3, then

(
1√
2 , 0,

1√
2

)
is the constrained maximum point and(

−1√
2 , 0,

−1√
2

)
is the constrained minimum point.

Two Constraints
When we have two constraints, we can sƟll use Lagrange mulƟpliers once we’ve
made a slight modificaƟon. The opƟmizaƟon problem

Maximize (or minimize) f(x, y, z) subject to g(x, y, z) = c1 and h(x, y, z) = c2

is saƟsfied when∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z).

Example 5 OpƟmizing with Two Constraints
The plane x − y + z = 2 intersects the cylinder x2 + y2 = 4 in an ellipse. Find
the points on the ellipse closest to and farthest from the origin.

SÊ½çã®ÊÄ We can opƟmize the distance
√

x2 + y2 + z2 by opƟmizing
the funcƟon f(x, y, z) = x2+y2+z2, which has a simpler derivaƟve. Letg(x, y, z) =
x − y + z be the plane constraint, and h(x, y, z) = x2 + y2 be the cylinder con-
straint. We see that

∇f(x, y, z) = ⟨2x, 2y, 2z⟩
∇g(x, y, z) = ⟨1,−1, 1⟩
∇h(x, y, z) = ⟨2x, 2y, 0⟩ .

The equaƟon∇f = λ∇g+ µ∇hmeans that

2x = λ+ 2µx
2y = −λ+ 2µy
2z = λ.

Adding the first two equaƟons tells us that x + y = µ(x + y), so that µ = 1 or
x = −y. If µ = 1, then λ = z = 0, and the constraint equaƟons become

x− y = 2
x2 + y2 = 4.

SubsƟtuƟng x = y + 2 into x2 + y2 = 4 tells us that (y + 2)2 + y2 = 4, which
simplifies to 2y(y + 2) = 0. This means that we need to look at the points

Notes:
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13.9 Lagrange MulƟpliers

(2, 0, 0) and (0,−2, 0), which are both distance 2 from the origin. If x = −y,
then the constraint equaƟons become

2x+ z = 2
2x2 = 4

and we need to look at the points (±
√
2,∓
√
2, 2∓ 2

√
2). These have distance√

2+ 2+ (2∓ 2
√
2)2 =

√
16∓ 8

√
2, which are both greater than 2. There-

fore, the closest points are (2, 0, 0) and (0,−2, 0), while the furthest point is
(−
√
2,
√
2, 2+

√
2).

Finally, note that solving the equaƟon∇f(x, y) = λ∇g(x, y)means having to
solve a system of two (possibly nonlinear) equaƟons in three unknowns, which
as we have seen before, may not be possible to do. And the 3-variable case
can get even more complicated. All of this somewhat restricts the usefulness
of Lagrange’s method to relaƟvely simple funcƟons. Luckily there are many nu-
merical methods for solving constrained opƟmizaƟon problems, though we will
not discuss them here.

Notes:
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Exercises 13.9
Problems
1. Find the constrainedmaxima andminima of f(x, y) = 2x+

y given that x2 + y2 = 4.
2. Find the constrained maxima and minima of f(x, y) = xy

given that x2 + 3y2 = 6.
3. Find the points on the circle x2+y2 = 100which are closest

to and farthest from the point (2, 3).
4. Find the constrained maxima and minima of f(x, y, z) =

x+ y2 + 2z given that 4x2 + 9y2 − 36z2 = 36.
5. Find the volume of the largest rectangular parallelepiped

that can be inscribed in the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

6. Find the minimum surface area of a box that holds 2 cubic
meters.

7. The girth of a box is the perimeter of a cross secƟon per-
pendicular to its length. TheUS post officewill accept pack-
ages whose combined length and girth are at most 130
inches. Find the dimensions of the largest volume box that
will be accepted.

8. Using Lagrange mulƟpliers, find the shortest distance from
the point (x0, y0, z0) to the plane ax + by + cz = d. (See
also Key Idea 54.)

9. Find all points on the surface xz − y2 + 1 = 0 that are
closest to the origin.

10. Find the three posiƟve numbers whose sum is 60 and
whose product is as large as possible.

11. Find all points on the plane x+ y+ z = 5 in the first octant
at which f(x, y, z) = x2yz2 has a maximum value.

12. Find the points on the surface z2 − xy = 5 that are closest
to the origin.

13. Find the maximum and minimum points of f(x, y) = xy +√
9− x2 − y2 when x2 + y2 ≤ 9.

14. Find three real numbers whose sum is 12 and the sum of
whose squares is a small as possible.

15. Find the maximum volume of a rectangular box inscribed
in the unit sphere.

16. The plane x+ y− z = 1 intersects the cylinder x2+ y2 = 1
in an ellipse. Find the points on the ellipse closest to and
farthest from the origin.
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14: Mç½ã®Ö½� IÄã�¦Ù�ã®ÊÄ
The previous chapter introduced mulƟvariable funcƟons and we applied con-
cepts of differenƟal calculus to these funcƟons. We learned how we can view a
funcƟon of two variables as a surface in space, and learned how parƟal deriva-
Ɵves convey informaƟon about how the surface is changing in any direcƟon.

In this chapterwe apply techniques of integral calculus tomulƟvariable func-
Ɵons. In Chapter 5 we learned how the definite integral of a single variable func-
Ɵon gave us “area under the curve.” In this chapter we will see that integraƟon
applied to a mulƟvariable funcƟon gives us “volume under a surface.” And just
as we learned applicaƟons of integraƟon beyond finding areas, we will find ap-
plicaƟons of integraƟon in this chapter beyond finding volume.

14.1 Iterated Integrals and Area
In Chapter 13 we found that it was useful to differenƟate funcƟons of several
variables with respect to one variable, while treaƟng all the other variables as
constants or coefficients. We can integrate funcƟons of several variables in a
similar way. For instance, if we are told that fx(x, y) = 2xy, we can treat y as
staying constant and integrate to obtain f(x, y):

f(x, y) =
ˆ

fx(x, y) dx

=

ˆ
2xy dx

= x2y+ C.

Make a careful note about the constant of integraƟon, C. This “constant” is
something with a derivaƟve of 0 with respect to x, so it could be any expres-
sion that contains only constants and funcƟons of y. For instance, if f(x, y) =
x2y+ sin y+ y3 + 17, then fx(x, y) = 2xy. To signify that C is actually a funcƟon
of y, we write:

f(x, y) =
ˆ

fx(x, y) dx = x2y+ C(y).

Using this process we can even evaluate definite integrals.

Example 1 IntegraƟng funcƟons of more than one variable

Evaluate the integral
ˆ 2y

1
2xy dx.



Chapter 14 MulƟple IntegraƟon

SÊ½çã®ÊÄ Wefind the indefinite integral as before, then apply the Fun-
damental Theorem of Calculus to evaluate the definite integral:

ˆ 2y

1
2xy dx = x2y

∣∣∣2y
1

= (2y)2y− (1)2y
= 4y3 − y.

We can also integrate with respect to y. In general,
ˆ h2(y)

h1(y)
fx(x, y) dx = f(x, y)

∣∣∣h2(y)
h1(y)

= f
(
h2(y), y

)
− f
(
h1(y), y

)
,

and ˆ g2(x)

g1(x)
fy(x, y) dy = f(x, y)

∣∣∣g2(x)
g1(x)

= f
(
x, g2(x)

)
− f
(
x, g1(x)

)
.

Note that when integraƟng by x, the bounds do not depend on x, and the
result is no longer a funcƟon of x. When integraƟng by y, the bounds do not
depend on y, and the result is no longer a funcƟon of y. Another example will
help us understand this.

Example 2 IntegraƟng funcƟons of more than one variable

Evaluate
ˆ x

1

(
5x3y−3 + 6y2

)
dy.

SÊ½çã®ÊÄ We consider x as staying constant and integratewith respect
to y:

ˆ x

1

(
5x3y−3 + 6y2

)
dy =

(
5x3y−2

−2
+

6y3

3

) ∣∣∣∣∣
x

1

=

(
−5
2
x3x−2 + 2x3

)
−
(
−5
2
x3 + 2

)
=

9
2
x3 − 5

2
x− 2.

Note how the bounds of the integral are from y = 1 to y = x and that the final
answer is a funcƟon of x.

In the previous example, we integrated a funcƟon with respect to y and
ended up with a funcƟon of x. We can integrate this as well. This process is
known as iterated integraƟon, ormulƟple integraƟon.

Notes:
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14.1 Iterated Integrals and Area

Watch the video:
Double Integrals — Basic Idea and Examples at
https://youtu.be/DYsv6L-VcsQ

Example 3 IntegraƟng an integral

Evaluate
ˆ 2

1

(ˆ x

1

(
5x3y−3 + 6y2

)
dy
)

dx.

SÊ½çã®ÊÄ We follow a standard “order of operaƟons” and perform the
operaƟons inside parentheses first (which is the integral evaluated in Example 2.)

ˆ 2

1

(ˆ x

1

(
5x3y−3 + 6y2

)
dy
)

dx =
ˆ 2

1

([
5x3y−2

−2
+

6y3

3

] ∣∣∣∣∣
x

1

)
dx

=

ˆ 2

1

(
9
2
x3 − 5

2
x− 2

)
dx

=

(
9
8
x4 − 5

4
x2 − 2x

) ∣∣∣∣∣
2

1

=
89
8
.

Note how the bounds of xwere x = 1 to x = 2 and the final result was a number.

The previous example showed how we could perform something called an
iterated integral; we do not yet know why we would be interested in doing so
nor what the result, such as the number 89/8, means. Before we invesƟgate
these quesƟons, we offer some definiƟons.

Notes:
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Chapter 14 MulƟple IntegraƟon

DefiniƟon 102 Iterated IntegraƟon
Iterated integraƟon is the process of repeatedly integraƟng the results
of previous integraƟons. IntegraƟng one integral is denoted as follows.

Let a, b, c and d be numbers and let g1(x), g2(x), h1(y) and h2(y) be
funcƟons of x and y, respecƟvely. Then:

1.
ˆ d

c

ˆ h2(y)

h1(y)
f(x, y) dx dy =

ˆ d

c

(ˆ h2(y)

h1(y)
f(x, y) dx

)
dy.

2.
ˆ b

a

ˆ g2(x)

g1(x)
f(x, y) dy dx =

ˆ b

a

(ˆ g2(x)

g1(x)
f(x, y) dy

)
dx.

Again make note of the bounds of these iterated integrals.

With
ˆ d

c

ˆ h2(y)

h1(y)
f(x, y) dx dy, x varies from h1(y) to h2(y), whereas y varies from

c to d. That is, the bounds of x are curves, the curves x = h1(y) and x = h2(y),
whereas the bounds of y are constants, y = c and y = d. It is useful to remem-
ber that aŌer integraƟng with respect to a variable, that variable is no longer
present.

We now begin to invesƟgate why we are interested in iterated integrals and
what they mean.

Area of a plane region
Consider the plane region R bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x),
shown in Figure 14.1. We learned in SecƟon 6.1 that the area of R is given by

ˆ b

a

(
g2(x)− g1(x)

)
dx.

R

y = g1(x)

y = g2(x)

a b
x

y

Figure 14.1: CalculaƟng the area of a
plane region R with an iterated integral.

We can view the expression
(
g2(x)− g1(x)

)
as

(
g2(x)− g1(x)

)
=

ˆ g2(x)

g1(x)
1 dy =

ˆ g2(x)

g1(x)
dy,

meaning we can express the area of R as an iterated integral:

area of R =

ˆ b

a

(
g2(x)− g1(x)

)
dx =

ˆ b

a

(ˆ g2(x)

g1(x)
dy

)
dx =

ˆ b

a

ˆ g2(x)

g1(x)
dy dx.

Notes:
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14.1 Iterated Integrals and Area

In short: a certain iterated integral can be viewed as giving the area of a
plane region.

A region R could also be defined by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), as
shown in Figure 14.2. Using a process similar to that above, we have

the area of R =

ˆ d

c

ˆ h2(y)

h1(y)
dx dy.

R

x = h1(y)

x = h2(y)

c

d

x

y

Figure 14.2: CalculaƟng the area of a
plane region R with an iterated integral.

We state this formally in a theorem.

Theorem 120 Area of a plane region

1. Let R be a plane region bounded by a ≤ x ≤ b and g1(x) ≤ y ≤
g2(x), where g1 and g2 are conƟnuous funcƟons on [a, b]. The
area A of R is

A =

ˆ b

a

ˆ g2(x)

g1(x)
dy dx.

2. Let R be a plane region bounded by c ≤ y ≤ d and h1(y) ≤ x ≤
h2(y), where h1 and h2 are conƟnuous funcƟons on [c, d]. The
area A of R is

A =

ˆ d

c

ˆ h2(y)

h1(y)
dx dy.

The following examples should help us understand this theorem.

Example 4 Area of a rectangle
Find the area A of the rectangle with corners (−1, 1) and (3, 3), as shown in
Figure 14.3.

SÊ½çã®ÊÄ MulƟple integraƟon is obviously overkill in this situaƟon, but
we proceed to establish its use.

R

−1 1 2 3

1

2

3

x

y

Figure 14.3: CalculaƟng the area of a rect-
angle with an iterated integral in Exam-
ple 4.

The region R is bounded by x = −1, x = 3, y = 1 and y = 3. Choosing to
integrate with respect to y first, we have

A =

ˆ 3

−1

ˆ 3

1
1 dy dx =

ˆ 3

−1

(
y
∣∣∣3
1

)
dx =

ˆ 3

−1
2 dx = 2x

∣∣∣3
−1

= 8.

We could also integrate with respect to x first, giving:

A =

ˆ 3

1

ˆ 3

−1
1 dx dy =

ˆ 3

1

(
x
∣∣∣3
−1

)
dy =

ˆ 3

1
4 dy = 4y

∣∣∣3
1
= 8.

Notes:
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Chapter 14 MulƟple IntegraƟon

Clearly there are simpler ways to find this area, but it is interesƟng to note
that this method works.

Example 5 Area of a triangle
Find the area A of the triangle with verƟces at (1, 1), (3, 1) and (5, 5), as shown
in Figure 14.4.

y = 1

y
=

2x
−
5

y =
x

R

4 51 2 3

1

2

3

4

5

x

y

Figure 14.4: CalculaƟng the area of a tri-
angle with iterated integrals in Example 5.

SÊ½çã®ÊÄ The triangle is bounded by the lines as shown in the figure.
Choosing to integrate with respect to x first gives that x is bounded by x = y
to x = y+5

2 , while y is bounded by y = 1 to y = 5. (Recall that since x-values
increase from leŌ to right, the leŌmost curve, x = y, is the lower bound and the
rightmost curve, x = (y+ 5)/2, is the upper bound.) The area is

A =

ˆ 5

1

ˆ y+5
2

y
dx dy

=

ˆ 5

1

(
x
∣∣∣ y+5

2

y

)
dy

=

ˆ 5

1

(
−1
2
y+

5
2

)
dy

=

(
−1
4
y2 +

5
2
y
) ∣∣∣5

1

= 4.

We can also find the area by integraƟng with respect to y first. In this situa-
Ɵon, though, we have two funcƟons that act as the lower bound for the region
R, y = 1 and y = 2x − 5. This requires us to use two iterated integrals. Note
how the x-bounds are different for each integral:

A =

ˆ 3

1

ˆ x

1
1 dy dx +

ˆ 5

3

ˆ x

2x−5
1 dy dx

=

ˆ 3

1

(
y
)∣∣∣x

1
dx +

ˆ 5

3

(
y
)∣∣∣x

2x−5
dx

=

ˆ 3

1

(
x− 1

)
dx +

ˆ 5

3

(
− x+ 5

)
dx

= 2 + 2
= 4.

As expected, we get the same answer both ways. This equality will also be jus-
Ɵfied by Theorem 122 in the next secƟon.

Notes:
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14.1 Iterated Integrals and Area

Example 6 Area of a plane region
Find the area of the region enclosed by y = 2x and y = x2, as shown in Fig-
ure 14.5.

R

y =
2x

y =
x2

1 2

1

2

3

4

x

y

Figure 14.5: CalculaƟng the area of a
plane region with iterated integrals in Ex-
ample 6.

SÊ½çã®ÊÄ Once again we’ll find the area of the region using both or-
ders of integraƟon.

Using dy dx:
ˆ 2

0

ˆ 2x

x2
1 dy dx =

ˆ 2

0
(2x− x2) dx =

(
x2 − 1

3
x3
)∣∣∣2

0
=

4
3
.

Using dx dy:
ˆ 4

0

ˆ √y

y/2
1 dx dy =

ˆ 4

0
(
√
y− y/2) dy =

(
2
3
y3/2 − 1

4
y2
) ∣∣∣4

0
=

4
3
.

Changing Order of IntegraƟon
In each of the previous examples, we have been given a region R and found
the bounds needed to find the area of R using both orders of integraƟon. We
integrated using both orders of integraƟon to demonstrate their equality.

We now approach the skill of describing a region using both orders of inte-
graƟon from a different perspecƟve. Instead of starƟng with a region and cre-
aƟng iterated integrals, we will start with an iterated integral and rewrite it in
the other integraƟon order. To do so, we’ll need to understand the region over
which we are integraƟng.

The simplest of all cases is when both integrals are bound by constants. The
region described by these bounds is a rectangle (see Example 4), and so:

ˆ b

a

ˆ d

c
1 dy dx =

ˆ d

c

ˆ b

a
1 dx dy.

When the inner integral’s bounds are not constants, it is generally very useful
to sketch the bounds to determinewhat the regionwe are integraƟng over looks
like. From the sketch we can then rewrite the integral with the other order of
integraƟon.

Examples will help us develop this skill.

Example 7 Changing the order of integraƟon

Rewrite the iterated integral
ˆ 6

0

ˆ x/3

0
1 dy dxwith the order of integraƟon dx dy.

Notes:
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Chapter 14 MulƟple IntegraƟon

SÊ½çã®ÊÄ We need to use the bounds of integraƟon to determine the
region we are integraƟng over.

The bounds tell us that y is bounded by 0 and x/3; x is bounded by 0 and 6.
We plot these four curves: y = 0, y = x/3, x = 0 and x = 6 to find the region
described by the bounds. Figure 14.6 shows these curves, indicaƟng that R is a
triangle.

y =
x/3

R

2 4 6

1

2

x

y

Figure 14.6: Sketching the region R de-
scribed by the iterated integral in Exam-
ple 7.

To change the order of integraƟon, we need to consider the curves that
bound the x-values. We see that the lower bound is x = 3y and the upper
bound is x = 6. The bounds on y are 0 to 2. Thus we can rewrite the integral asˆ 2

0

ˆ 6

3y
1 dx dy.

Example 8 Changing the order of integraƟon

Change the order of integraƟon of
ˆ 4

0

ˆ (y+4)/2

y2/4
1 dx dy.

SÊ½çã®ÊÄ We sketch the region described by the bounds to help us
change the integraƟon order. We see x is bounded below and above (i.e., to the
leŌ and right) by x = y2/4 and x = (y + 4)/2 respecƟvely, and y is bounded
between 0 and 4. Graphing the previous curves, we find the region R to be that
shown in Figure 14.7.

R

x =
y2 /

4

x =
(y
+
4)
/2

2 4

2

4

x

y

Figure 14.7: Drawing the region deter-
mined by the bounds of integraƟon in Ex-
ample 8.

To change the order of integraƟon, we need to establish curves that bound
y. The figure makes it clear that there are two lower bounds for y: y = 0 on
0 ≤ x ≤ 2, and y = 2x − 4 on 2 ≤ x ≤ 4. Thus we need two double integrals.
The upper bound for each is y = 2

√
x. Thus we have

ˆ 4

0

ˆ (y+4)/2

y2/4
1 dx dy =

ˆ 2

0

ˆ 2
√
x

0
1 dy dx+

ˆ 4

2

ˆ 2
√
x

2x−4
1 dy dx.

This secƟon has introduced a new concept, the iterated integral. We devel-
oped one applicaƟon for iterated integraƟon: area between curves. However,
this is not new, for we already know how to find areas bounded by curves.

In the next secƟon we apply iterated integraƟon to solve problems we cur-
rently do not know how to handle. The “real” goal of this secƟon was not to
learn a new way of compuƟng area. Rather, our goal was to learn how to define
a region in the plane using the bounds of an iterated integral. That skill is very
important in the following secƟons.

Notes:
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Exercises 14.1
Terms and Concepts
1. When integraƟng fx(x, y)with respect to x, the constant of

integraƟon C is really which: C(x) or C(y)? What does this
mean?

2. IntegraƟng an integral is called .
3. When evaluaƟng an iterated integral, we integrate from

to , then from to .
4. One understanding of an iterated integral is thatˆ b

a

ˆ g2(x)

g1(x)
dy dx gives the of a plane region.

Problems
In Exercises 5–10, evaluate the integral and subsequent iter-
ated integral.

5.

(a)
ˆ 5

2

(
6x2 + 4xy− 3y2

)
dy

(b)
ˆ −2

−3

ˆ 5

2

(
6x2 + 4xy− 3y2

)
dy dx

6.

(a)
ˆ π

0

(
2x cos y+ sin x

)
dx

(b)
ˆ π/2

0

ˆ π

0

(
2x cos y+ sin x

)
dx dy

7.

(a)
ˆ x

1

(
x2y− y+ 2

)
dy

(b)
ˆ 2

0

ˆ x

1

(
x2y− y+ 2

)
dy dx

8.

(a)
ˆ y2

y

(
x− y

)
dx

(b)
ˆ 1

−1

ˆ y2

y

(
x− y

)
dx dy

9.

(a)
ˆ y

0

(
cos x sin y

)
dx

(b)
ˆ π

0

ˆ y

0

(
cos x sin y

)
dx dy

10.

(a)
ˆ x

0

(
1

1+ x2

)
dy

(b)
ˆ 2

1

ˆ x

0

(
1

1+ x2

)
dy dx

In Exercises 11–16, a graph of a planar region R is given. Give
the iterated integrals, with both orders of integraƟon dy dx and
dx dy, that give the area of R. Evaluate one of the iterated in-
tegrals to find the area.

11.

R

1 2 3 4

−2

−1

1

x

y

12. R

1 2 3 4

1

2

3

x

y

13. R

1 2 3 4

1

2

3

4

5

x

y

14.
R

x =
y2 /3

2 4 6 8 10 12
−2

−4

−6

6

4

2

x

y
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15. R

y =
√ x

y =
x4

−0.5 0.5 1

−0.5

0.5

1

x

y

16.

R

y =
4x

y =
x3

1 2

2

4

6

8

x

y

In Exercises 17–22, iterated integrals are given that compute
the area of a region R in the x-y plane. Sketch the region R,
and give the iterated integral(s) that give the area of R with
the opposite order of integraƟon.

17.
ˆ 2

−2

ˆ 4−x2

0
dy dx

18.
ˆ 1

0

ˆ 5−5x2

5−5x
dy dx

19.
ˆ 2

−2

ˆ 2
√

4−y2

0
dx dy

20.
ˆ 3

−3

ˆ √
9−x2

−
√

9−x2
dy dx

21.
ˆ 1

0

ˆ √y

−√y
dx dy+

ˆ 4

1

ˆ √y

y−2
dx dy

22.
ˆ 1

−1

ˆ (1−x)/2

(x−1)/2
dy dx
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14.2 Double IntegraƟon and Volume

The definite integral of f over [a, b],
´ b
a f(x) dx, was introduced as “the signed

area under the curve.” We approximated the value of this area by first subdivid-
ing [a, b] into n subintervals, where the i th subinterval has length∆xi, and leƫng
ci be any value in the i th subinterval. We formed rectangles that approximated
part of the region under the curve with width∆xi, height f(ci), and hence with
area f(ci)∆xi. Summing all the rectangle’s areas gave an approximaƟon of the
definite integral, and Theorem 36 stated that

ˆ b

a
f(x) dx = lim

∥∆x∥→0

∑
f(ci)∆xi,

connecƟng the area under the curve with sums of the areas of rectangles.

We use a similar approach in this secƟon to find volume under a surface.

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a conƟnuous funcƟon defined on R. We wish to find the signed volume under
the surface of f over R. (We use the term “signed volume” to denote that space
above the x-y plane, under f, will have a posiƟve volume; space above f and
under the x-y planewill have a “negaƟve” volume, similar to the noƟon of signed
area used before.)

1 2

−0.5

0.5

x

y

(a)

(b)

Figure 14.8: Developing a method for
finding signed volume under a surface.

We start by parƟƟoning R into n rectangular subregions as shown in Fig-
ure 14.8(a). For simplicity’s sake, we let all widths be∆x and all heights be∆y.
Note that the sum of the areas of the rectangles is not equal to the area of R,
but rather is a close approximaƟon. Arbitrarily number the rectangles 1 through
n, and pick a point (xi, yi) in the i th subregion.

The volume of the rectangular solid whose base is the i th subregion and
whose height is f(xi, yi) is Vi = f(xi, yi)∆x∆y. Such a solid is shown in Fig-
ure 14.8(b). Note how this rectangular solid only approximates the true volume
under the surface; part of the solid is above the surface and part is below.

For each subregion Ri used to approximate R, create the rectangular solid
with base area∆x∆y and height f(xi, yi). The sum of all rectangular solids is

n∑
i=1

f(xi, yi)∆x∆y.

This approximates the signed volume under f over R. As we have done before,
to get a beƩer approximaƟon we can use more rectangles to approximate the
region R.

In general, each rectangle could have a different width∆xj and height∆yk,
giving the i th rectangle an area ∆Ai = ∆xj∆yk and the i th rectangular solid a
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volume of f(xi, yi)∆Ai. Let ∥∆A∥ denote the length of the longest diagonal of all
rectangles in the subdivision of R; ∥∆A∥ → 0 means each rectangle’s width and
height are both approaching 0. If f is a conƟnuous funcƟon, as ∥∆A∥ shrinks

(and hence n → ∞) the summaƟon
n∑

i=1

f(xi, yi)∆Ai approximates the signed

volume beƩer and beƩer. This leads to a definiƟon.
Note: Recall that the integraƟon sym-
bol “

´
” is an “elongated S,” repre-

senƟng the word “sum.” We inter-
preted

´ b
a f(x) dx as “take the sum of

the areas of rectangles over the inter-
val [a, b].” The double integral uses
two integraƟon symbols to represent
a “double sum.” When adding up the
volumes of rectangular solids over a
parƟƟon of a region R, as done in Fig-
ure 14.8, one could first add up the
volumes across each row (one type of
sum), then add these totals together
(another sum), as in

n∑
j=1

m∑
i=1

f(xi, yj)∆xi∆yj.

One can rewrite this as
n∑

j=1

(
m∑
i=1

f(xi, yj)∆xi

)
∆yj.

The summaƟon inside the parenthe-
sis indicates the sum of heights ×
widths, which gives an area; mulƟply-
ing these areas by the thickness ∆yj
gives a volume. The illustraƟon in Fig-
ure 14.9 relates to this understand-
ing.

DefiniƟon 103 Double Integral, Signed Volume
Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. The signed volume V under f over R is denoted by the
double integral

V =

¨
R
f(x, y) dA.

Alternate notaƟons for the double integral are
¨

R
f(x, y) dA =

¨
R
f(x, y) dx dy =

¨
R
f(x, y) dy dx.

The definiƟon above does not state how to find the signed volume, though
the notaƟon offers a hint. We need the next two theorems to evaluate double
integrals to find volume.

Theorem 121 Double Integrals and Signed Volume
Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. Then the signed volume V under f over R is

V =

¨
R
f(x, y) dA = lim

∥∆A∥→0

n∑
i=1

f(xi, yi)∆Ai.

This theorem states that we can find the exact signed volume using a limit
of sums. The parƟƟon of the region R is not specified, so any parƟƟoning where
the diagonal of each rectangle shrinks to 0 results in the same answer.

This does not offer a very saƟsfying way of compuƟng volume, though. Our
experience has shown that evaluaƟng the limits of sums can be tedious. We
seek a more direct method.

Recall Theorem 45 in SecƟon 6.2. This stated that if A(x) gives the cross-
secƟonal area of a solid at x, then

´ b
a A(x) dx gave the volume of that solid over

[a, b].
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14.2 Double IntegraƟon and Volume

Consider Figure 14.9, where a surface z = f(x, y) is drawn over a region R.
Fixing a parƟcular x value, we can consider the area under f over R where x has
that fixed value. That area can be found with a definite integral, namely

A(x) =
ˆ g2(x)

g1(x)
f(x, y) dy.

Remember that though the integrand contains x, we are viewing x as fixed.
Also note that the bounds of integraƟon are funcƟons of x: the bounds depend
on the value of x.

Figure 14.9: Finding volume under a sur-
face by sweeping out a cross–secƟonal
area.

As A(x) is a cross-secƟonal area funcƟon, we can find the signed volume V
under f by integraƟng it:

V =

ˆ b

a
A(x) dx =

ˆ b

a

(ˆ g2(x)

g1(x)
f(x, y) dy

)
dx =

ˆ b

a

ˆ g2(x)

g1(x)
f(x, y) dy dx.

This gives a concrete method for finding signed volume under a surface. We
could do a similar procedurewherewe startedwith y fixed, resulƟng in a iterated
integral with the order of integraƟon dx dy. The following theorem states that
both methods give the same result, which is the value of the double integral. It
is such an important theorem it has a name associated with it.

Theorem 122 Fubini’s Theorem
Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a conƟnuous funcƟon on R.

1. If R is bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x), where g1
and g2 are conƟnuous funcƟons on [a, b], then

¨
R
f(x, y) dA =

ˆ b

a

ˆ g2(x)

g1(x)
f(x, y) dy dx.

2. If R is bounded by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), where h1
and h2 are conƟnuous funcƟons on [c, d], then

¨
R
f(x, y) dA =

ˆ d

c

ˆ h2(y)

h1(y)
f(x, y) dx dy.

Note that the bounds of integraƟon follow a “curve to curve, point to point”
paƩern. In fact, one of the main points of the previous secƟon is developing the
skill of describing a region R with the bounds of an iterated integral. Once this
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skill is developed, we can use double integrals to compute many quanƟƟes, not
just signed volume under a surface.

Watch the video:
Ex: Evaluate a Double Integral to Determine Volume
(Basic) at
https://youtu.be/NG2UcXdwzfk

Example 1 EvaluaƟng a double integral
Let f(x, y) = xy+ey. Find the signed volume under f on the region R, which is the
rectangle with corners (3, 1) and (4, 2) pictured in Figure 14.10, using Fubini’s
Theorem and both orders of integraƟon.

SÊ½çã®ÊÄ We wish to evaluate
˜

R

(
xy + ey

)
dA. As R is a rectangle,

the bounds are easily described as 3 ≤ x ≤ 4 and 1 ≤ y ≤ 2.

Figure 14.10: Finding the signed volume
under a surface in Example 1.

Using the order dy dx:

¨
R

(
xy+ ey

)
dA =

ˆ 4

3

ˆ 2

1

(
xy+ ey

)
dy dx

=

ˆ 4

3

([
1
2
xy2 + ey

]∣∣∣∣2
1

)
dx

=

ˆ 4

3

(
3
2
x+ e2 − e

)
dx

=

(
3
4
x2 +

(
e2 − e

)
x
)∣∣∣∣4

3

=
21
4

+ e2 − e.

Notes:
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14.2 Double IntegraƟon and Volume

Now we check the validity of Fubini’s Theorem by using the order dx dy:
¨

R

(
xy+ ey

)
dA =

ˆ 2

1

ˆ 4

3

(
xy+ ey

)
dx dy

=

ˆ 2

1

([
1
2
x2y+ xey

]∣∣∣∣4
3

)
dy

=

ˆ 2

1

(
7
2
y+ ey

)
dy

=

(
7
4
y2 + ey

)∣∣∣∣2
1

=
21
4

+ e2 − e.

Both orders of integraƟon return the same result, as expected.

Example 2 EvaluaƟng a double integral
Evaluate

˜
R

(
3xy− x2 − y2 + 6

)
dA, where R is the triangle bounded by x = 0,

y = 0 and x/2+ y = 1, as shown in Figure 14.11.

SÊ½çã®ÊÄ While it is not specified which order we are to use, we will
evaluate the double integral using both orders to help drive home the point that
it does not maƩer which order we use.

Figure 14.11: Finding the signed volume
under the surface in Example 2.

Using the order dy dx: The bounds on y go from “curve to curve,” i.e., 0 ≤
y ≤ 1− x/2, and the bounds on x go from “point to point,” i.e., 0 ≤ x ≤ 2.

¨
R
(3xy− x2 − y2 + 6

)
dA =

ˆ 2

0

ˆ − x
2+1

0
(3xy− x2 − y2 + 6

)
dy dx

=

ˆ 2

0

(
3
2
xy2 − x2y− 1

3
y3 + 6y

)∣∣∣∣− x
2+1

0
dx

=

ˆ 2

0

(
11
12

x3 − 11
4
x2 − x+

17
3

)
dx

=

(
11
48

x4 − 11
12

x3 − 1
2
x2 +

17
3
x
)∣∣∣∣2

0

=
17
3

= 5.6.

Now lets consider the order dx dy. Here x goes from “curve to curve,” 0 ≤

Notes:
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x ≤ 2− 2y, and y goes from “point to point,” 0 ≤ y ≤ 1:

¨
R
(3xy− x2 − y2 + 6

)
dA =

ˆ 1

0

ˆ 2−2y

0
(3xy− x2 − y2 + 6

)
dx dy

=

ˆ 1

0

(
3
2
x2y− 1

3
x3 − xy2 + 6x

)∣∣∣∣2−2y

0
dy

=

ˆ 1

0

(
32
3
y3 − 22y2 + 2y+

28
3

)
dy

=

(
8
3
y4 − 22

3
y3 + y2 +

28
3
y
)∣∣∣∣1

0

=
17
3

= 5.6.

We obtained the same result using both orders of integraƟon.

Note how in these two examples that the bounds of integraƟon depend only
on R; the bounds of integraƟon have nothing to do with f(x, y). This is an impor-
tant concept, so we include it as a Key Idea.

Key Idea 60 Double IntegraƟon Bounds
When evaluaƟng

˜
R f(x, y) dA using an iterated integral, the bounds of

integraƟon depend only on R. The surface f does not determine the
bounds of integraƟon.

Before doing another example, we give some properƟes of double integrals.
Each should make sense if we view them in the context of finding signed volume
under a surface, over a region.
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14.2 Double IntegraƟon and Volume

Theorem 123 ProperƟes of Double Integrals
Let f and g be conƟnuous funcƟons over a closed, bounded plane region
R, and let c be a constant.

1.
¨

R
c f(x, y) dA = c

¨
R
f(x, y) dA.

2.
¨

R

(
f(x, y)± g(x, y)

)
dA =

¨
R
f(x, y) dA±

¨
R
g(x, y) dA

3. If f(x, y) ≥ 0 on R, then
¨

R
f(x, y) dA ≥ 0.

4. If f(x, y) ≥ g(x, y) on R, then
¨

R
f(x, y) dA ≥

¨
R
g(x, y) dA.

5. Let R be the union of two nonoverlapping regions, R = R1
∪

R2
(see Figure 14.12). Then

¨
R
f(x, y) dA =

¨
R1
f(x, y) dA+

¨
R2
f(x, y) dA.

R1
R2

R

Figure 14.12: R is the union of two
nonoverlapping regions, R1 and R2.

Example 3 EvaluaƟng a double integral
Let f(x, y) = sin x cos y and R be the triangle with verƟces (−1, 0), (1, 0) and
(0, 1) (see Figure 14.13). Evaluate the double integral

˜
R f(x, y) dA.

Figure 14.13: Finding the signed volume
under a surface in Example 3.

SÊ½çã®ÊÄ If we aƩempt to integrate using an iterated integral with the
order dy dx, note how there are two upper bounds on Rmeaning we’ll need to
use two iterated integrals. We would need to split the triangle into two regions
along the y-axis, then use Theorem 123, part 5.

Instead, let’s use the order dx dy. The curves bounding x are y − 1 ≤ x ≤
1− y; the bounds on y are 0 ≤ y ≤ 1. This gives us:

¨
R
f(x, y) dA =

ˆ 1

0

ˆ 1−y

y−1
sin x cos y dx dy

=

ˆ 1

0

(
− cos x cos y

)∣∣∣1−y

y−1
dy

=

ˆ 1

0
cos y

(
− cos(1− y) + cos(y− 1)

)
dy.

Recall that the cosine funcƟon is an even funcƟon; that is, cos x = cos(−x).
Therefore, from the last integral above, we have cos(y− 1) = cos(1− y). Thus
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the integrand simplifies to 0, and we have¨
R
f(x, y) dA =

ˆ 1

0
0 dy

= 0.

It turns out that over R, there is just as much volume above the x-y plane as
below (look again at Figure 14.13), giving a final signed volume of 0.

Example 4 EvaluaƟng a double integral
Evaluate

˜
R(4− y) dA, where R is the region bounded by the parabolas y2 = 4x

and x2 = 4y, graphed in Figure 14.14.

Figure 14.14: Finding the volume under
the surface in Example 4.

SÊ½çã®ÊÄ Graphing each curve can help us find their points of inter-
secƟon. Solving analyƟcally, the second equaƟon tells us that y = x2/4. Sub-
sƟtuƟng this value in for y in the first equaƟon gives us x4/16 = 4x. Solving for
x:

x4

16
= 4x

x4 − 64x = 0
x(x3 − 64) = 0

x = 0, 4.

Thus we’ve found analyƟcally what was easy to approximate graphically: the
regions intersect at (0, 0) and (4, 4), as shown in Figure 14.14.

We now choose an order of integraƟon: dy dx or dx dy? Either order works;
since the integrand does not contain x, choosing dx dy might be simpler – at
least, the first integral is very simple.

Thus we have the following “curve to curve, point to point” bounds: y2/4 ≤
x ≤ 2√y, and 0 ≤ y ≤ 4.
¨

R
(4− y) dA =

ˆ 4

0

ˆ 2√y

y2/4
(4− y) dx dy

=

ˆ 4

0

(
x(4− y)

)∣∣∣2√y

y2/4
dy

=

ˆ 4

0

((
2
√
y− y2

4
)(
4− y)

)
dy =

ˆ 4

0

(y3
4
− y2 − 2y3/2 + 8y1/2

)
dy

=

(
y4

16
− y3

3
− 4y5/2

5
+

16y3/2

3

)∣∣∣∣4
0

=
176
15

= 11.73.
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The signed volume under the surface f is about 11.7 cubic units.

In the previous secƟon we pracƟced changing the order of integraƟon of a
given iterated integral, where the region R was not explicitly given. Changing
the bounds of an integral is more than just an test of understanding. Rather,
there are cases where integraƟng in one order is really hard, if not impossible,
whereas integraƟng with the other order is feasible.

Example 5 Changing the order of integraƟon

Rewrite the iterated integral
ˆ 3

0

ˆ 3

y
e−x2 dx dy with the order dy dx. Comment

on the feasibility to evaluate each integral.

SÊ½çã®ÊÄ Once again we make a sketch of the region over which we
are integraƟng to facilitate changing the order. The bounds on x are from x = y
to x = 3; the bounds on y are from y = 0 to y = 3. These curves are sketched
in Figure 14.15, enclosing the region R.

y =
x

R

1 2 3

1

2

3

x

y

Figure 14.15: Determining the region R
determined by the bounds of integraƟon
in Example 5.

To change the bounds, note that the curves bounding y are y = 0 up to
y = x; the triangle is enclosed between x = 0 and x = 3. Thus the new
bounds of integraƟon are 0 ≤ y ≤ x and 0 ≤ x ≤ 3, giving the iterated in-

tegral
ˆ 3

0

ˆ x

0
e−x2 dy dx.

How easy is it to evaluate each iterated integral? Consider the order of in-
tegraƟng dx dy, as given in the original problem. The first indefinite integral we
need to evaluate is

´
e−x2 dx; we have stated before (see SecƟon 8.7) that this

integral cannot be evaluated in terms of elementary funcƟons. We are stuck.
Changing the order of integraƟonmakes a big difference here. In the second

iterated integral, we are faced with
´
e−x2 dy; integraƟng with respect to y gives

us ye−x2 + C, and the first definite integral evaluates to
ˆ x

0
e−x2 dy = xe−x2 .

Thus

Figure 14.16: Showing the surface f de-
fined in Example 5 over its region R.

ˆ 3

0

ˆ x

0
e−x2 dy dx =

ˆ 3

0

(
xe−x2

)
dx.

This last integral is easy to evaluate with subsƟtuƟon, giving a final answer of
1
2 (1− e−9). Figure 14.16 shows the surface over R.

In short, evaluaƟng one iterated integral is impossible; the other iterated
integral is relaƟvely simple.
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DefiniƟon 25 defines the average value of a single–variable funcƟon f(x) on
the interval [a, b] as

average value of f(x) on [a, b] =
1

b− a

ˆ b

a
f(x) dx;

that is, it is the “area under f over an interval divided by the length of the inter-
val.” We make an analogous statement here: the average value of z = f(x, y)
over a region R is the volume under f over R divided by the area of R.

DefiniƟon 104 The Average Value of f on R
Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. The average value of f on R is

average value of f on R =

¨
R
f(x, y) dA
¨

R
dA

.

Example 6 Finding average value of a funcƟon over a region R
Find the average value of f(x, y) = 4− y over the region R, which is bounded by
the parabolas y2 = 4x and x2 = 4y. Note: this is the same funcƟon and region
as used in Example 4.

SÊ½çã®ÊÄ In Example 4 we found
¨

R
f(x, y) dA =

ˆ 4

0

ˆ 2√y

y2/4
(4− y) dx dy =

176
15

.

We find the area of R by compuƟng
˜

R dA:

¨
R
dA =

ˆ 4

0

ˆ 2√y

y2/4
dx dy =

16
3
.

Dividing the volume under the surface by the area gives the average value:

Figure 14.17: Finding the average value of
f in Example 6.

average value of f on R =
176/15
16/3

=
11
5

= 2.2.

While the surface, as shown in Figure 14.17, covers z-values from z = 0 to z = 4,
the “average” z-value on R is 2.2.
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The previous secƟon introduced the iterated integral in the context of find-
ing the area of plane regions. This secƟon has extended our understanding of
iterated integrals; nowwe see they can be used to find the signed volume under
a surface.

This new understanding allows us to revisit what we did in the previous sec-
Ɵon. Given a region R in the plane, we computed

˜
R 1 dA; again, our under-

standing at the Ɵme was that we were finding the area of R. However, we can
now view the funcƟon z = 1 as a surface, a flat surface with constant z-value of
1. The double integral

˜
R 1 dA finds the volume, under z = 1, over R, as shown

in Figure 14.18. Basic geometry tells us that if the base of a general right cylinder
has area A, its volume is A · h, where h is the height. In our case, the height is
1. We were “actually” compuƟng the volume of a solid, though we interpreted
the number as an area.

Figure 14.18: Showing how an iterated in-
tegral used to find area also finds a certain
volume.

The next secƟon extends our abiliƟes to find “volumes under surfaces.” Cur-
rently, some integrals are hard to compute because either the region R we are
integraƟng over is hard to define with rectangular curves, or the integrand it-
self is hard to deal with. Some of these problems can be solved by converƟng
everything into polar coordinates.

Notes:
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Exercises 14.2
Terms and Concepts

1. An integral can be interpreted as giving the signed area
over an interval; a double integral can be interpreted as
giving the signed over a region.

2. Explain why the following statement is false: “Fu-

bini’s Theorem states that
ˆ b

a

ˆ g2(x)

g1(x)
f(x, y) dy dx =

ˆ b

a

ˆ g2(y)

g1(y)
f(x, y) dx dy.”

3. Explain why if f(x, y) > 0 over a region R, then˜
R f(x, y) dA > 0.

4. If
˜

R f(x, y) dA =
˜

R g(x, y) dA, does this imply f(x, y) =
g(x, y)?

Problems

In Exercises 5–10,

(a) Evaluate the given iterated integral, and

(b) rewrite the integral using the other order of integraƟon.

5.
ˆ 2

1

ˆ 1

−1

(
x
y
+ 3
)

dx dy

6.
ˆ π/2

−π/2

ˆ π

0
(sin x cos y) dx dy

7.
ˆ 4

0

ˆ −x/2+2

0

(
3x2 − y+ 2

)
dy dx

8.
ˆ 3

1

ˆ 3

y

(
x2y− xy2

)
dx dy

9.
ˆ 1

0

ˆ √
1−y

−
√
1−y

(x+ y+ 2) dx dy

10.
ˆ 9

0

ˆ √y

y/3

(
xy2
)
dx dy

In Exercises 11–18:

(a) Sketch the region R given by the problem.

(b) Set up the iterated integrals, in both orders, that eval-
uate the given double integral for the described region
R.

(c) Evaluate one of the iterated integrals to find the signed
volume under the surface z = f(x, y) over the region R.

11.
¨

R
x2y dA, where R is bounded by y =

√
x and y = x2.

12.
¨

R
x2y dA, where R is bounded by y = 3

√
x and y = x3.

13.
¨

R
x2 − y2 dA, where R is the rectangle with corners

(−1,−1), (1,−1), (1, 1) and (−1, 1).

14.
¨

R
yex dA, where R is bounded by x = 0, x = y2 and y = 1.

15.
¨

R

(
6− 3x− 2y

)
dA, where R is bounded by x = 0, y = 0

and 3x+ 2y = 6.

16.
¨

R
ey dA, where R is bounded by y = ln x and

y = 1
e− 1

(x− 1).

17.
¨

R

(
x3y− x

)
dA, where R is the half disk x2+ y2 ≤ 9 in the

first and second quadrants.

18.
¨

R

(
4 − 3y

)
dA, where R is bounded by y = 0, y = x/e

and y = ln x.

In Exercises 19–22, state why it is difficult/impossible to in-
tegrate the iterated integral in the given order of integraƟon.
Change the order of integraƟon and evaluate the new iterated
integral.

19.
ˆ 4

0

ˆ 2

y/2
ex

2
dx dy

20.
ˆ √

π/2

0

ˆ √
π/2

x
cos
(
y2
)
dy dx

21.
ˆ 1

0

ˆ 1

y

2y
x2 + y2

dx dy

22.
ˆ 1

−1

ˆ 2

1

x tan2 y
1+ ln y

dy dx

In Exercises 23–26, find the average value of f over the region
R. NoƟce how these funcƟons and regions are related to the
iterated integrals given in Exercises 5 – 8.

23. f(x, y) = x
y
+ 3; R is the rectangle with opposite corners

(−1, 1) and (1, 2).
24. f(x, y) = sin x cos y; R is bounded by x = 0, x = π,

y = −π/2 and y = π/2.

25. f(x, y) = 3x2 − y + 2; R is bounded by the lines y = 0,
y = 2− x/2 and x = 0.

26. f(x, y) = x2y − xy2; R is bounded by y = x, y = 1 and
x = 3.
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14.3 Double IntegraƟon with Polar Coordinates

14.3 Double IntegraƟon with Polar Coordinates
We have used iterated integrals to evaluate double integrals, which give the
signed volume under a surface, z = f(x, y), over a region R of the x-y plane.
The integrand is simply f(x, y), and the bounds of the integrals are determined
by the region R.

Some regions R are easy to describe using rectangular coordinates – that is,
with equaƟons of the form y = f(x), x = a, etc. However, some regions are
easier to handle if we represent their boundaries with polar equaƟons of the
form r = f(θ), θ = α, etc.

The basic form of the double integral is
˜

R f(x, y) dA. We interpret this inte-
gral as follows: over the region R, sum up lots of products of heights (given by
f(xi, yi)) and areas (given by∆Ai). That is, dA represents “a liƩle bit of area.” In
rectangular coordinates, we can describe a small rectangle as having area dx dy
or dy dx – the area of a rectangle is simply length×width – a small change in x
Ɵmes a small change in y. Thus we replace dA in the double integral with dx dy
or dy dx.

0.5 1

0.5

1

0

π/2

(a)

︸
︷︷

︸
r1

r 2

︷
︸︸

︷

∆θ

(b)

Figure 14.19: ApproximaƟng a region R
with porƟons of sectors of circles.

Now consider represenƟng a region R with polar coordinates. Consider Fig-
ure 14.19(a). Let R be the region in the first quadrant bounded by the curve.
We can approximate this region using the natural shape of polar coordinates:
porƟons of sectors of circles. In the figure, one such region is shaded, shown
again in part (b) of the figure.

As the area of a sector of a circle with radius r, subtended by an angle θ, is
A = 1

2 r
2θ, we can find the area of the shaded region. The whole sector has area

1
2 r

2
2∆θ, whereas the smaller, unshaded sector has area 1

2 r
2
1∆θ. The area of the

shaded region is the difference of these areas:

∆Ai =
1
2
r22∆θ − 1

2
r21∆θ =

1
2
(
r22 − r21

)(
∆θ
)
=

r2 + r1
2

(
r2 − r1

)
∆θ.

Note that (r2 + r1)/2 is just the average of the two radii.
To approximate the region R, we usemany such subregions; doing so shrinks

the difference r2− r1 between radii to 0 and shrinks the change in angle∆θ also
to 0. We represent these infinitesimal changes in radius and angle as dr and dθ,
respecƟvely. Finally, as dr is small, r2 ≈ r1, and so (r2 + r1)/2 ≈ r1. Thus, when
dr and dθ are small,

∆Ai ≈ ri dr dθ.

Taking a limit, where the number of subregions goes to infinity and both
r2 − r1 and∆θ go to 0, we get

dA = r dr dθ.

So to evaluate
˜

R f(x, y) dA, replace dA with r dr dθ. Convert the funcƟon
z = f(x, y) to a funcƟonwith polar coordinateswith the subsƟtuƟons x = r cos θ,

Notes:
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Chapter 14 MulƟple IntegraƟon

y = r sin θ. Finally, find bounds g1(θ) ≤ r ≤ g2(θ) and α ≤ θ ≤ β that describe
R. This is the key principle of this secƟon, so we restate it here as a Key Idea.

Key Idea 61 EvaluaƟng Double Integrals with Polar Coordinates
Let R be a plane region bounded by the polar equaƟons α ≤ θ ≤ β and
g1(θ) ≤ r ≤ g2(θ). Then

¨
R
f(x, y) dA =

ˆ β

α

ˆ g2(θ)

g1(θ)
f
(
r cos θ, r sin θ

)
r dr dθ.

Watch the video:
Double Integral Using Polar Coordinates — Part 1 of
3 at
https://youtu.be/sQM-8Oj4Ecg

Examples will help us understand this Key Idea.

Example 1 EvaluaƟng a double integral with polar coordinates
Find the signed volume under the plane z = 4 − x − 2y over the disk with
equaƟon x2 + y2 ≤ 1.

SÊ½çã®ÊÄ The bounds of the integral are determined solely by the re-

Figure 14.20: EvaluaƟng a double integral
with polar coordinates in Example 1.

gion R over which we are integraƟng. The surface and region are shown in Fig-
ure 14.20. In this case, it is a circle with equaƟon x2 + y2 = 1. We need to find
polar bounds for this region. It may help to review SecƟon 10.4; bounds for this
circle are 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.

We replace f(x, y) with f(r cos θ, r sin θ). That means we make the following
subsƟtuƟons:

4− x− 2y ⇒ 4− r cos θ − 2r sin θ.

Finally, we replace dA in the double integral with r dr dθ. This gives the final

Notes:
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14.3 Double IntegraƟon with Polar Coordinates

iterated integral, which we evaluate:

¨
R
f(x, y) dA =

ˆ 2π

0

ˆ 1

0

(
4− r cos θ − 2r sin θ

)
r dr dθ

=

ˆ 2π

0

ˆ 1

0

(
4r− r2(cos θ − 2 sin θ)

)
dr dθ

=

ˆ 2π

0

(
2r2 − 1

3
r3(cos θ − 2 sin θ)

)∣∣∣∣1
0
dθ

=

ˆ 2π

0

(
2− 1

3
(
cos θ − 2 sin θ

))
dθ

=

(
2θ − 1

3
(
sin θ + 2 cos θ

))∣∣∣∣2π
0

= 4π.

21 3 4

−2

−1

1

2

x

y

(a)

(b)

Figure 14.21: Showing the region R and
surface used in Example 2.

Example 2 EvaluaƟng a double integral with polar coordinates
Find the volume under the paraboloid z = 4 − (x − 2)2 − y2 over the region
bounded by the circles (x− 1)2 + y2 = 1 and (x− 2)2 + y2 = 4.

SÊ½çã®ÊÄ At first glance, this seems like a very hard volume to com-
pute as the region R (shown in Figure 14.21(a)) has a hole in it, cuƫng out a
strange porƟon of the surface, as shown in part (b) of the figure. However, by
describing R in terms of polar equaƟons, the volume is not very difficult to com-
pute. It is straighƞorward to show that the circle (x − 1)2 + y2 = 1 has polar
equaƟon r = 2 cos θ, and that the circle (x − 2)2 + y2 = 4 has polar equaƟon
r = 4 cos θ. Each of these circles is traced out on the interval 0 ≤ θ ≤ π. The
bounds on r are 2 cos θ ≤ r ≤ 4 cos θ.

Replacing x with r cos θ in the integrand, along with replacing y with r sin θ,
prepares us to evaluate the double integral

˜
R f(x, y) dA:

Notes:
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Chapter 14 MulƟple IntegraƟon

¨
R
f(x, y) dA =

ˆ π

0

ˆ 4 cos θ

2 cos θ

(
4−

(
r cos θ − 2

)2 − (r sin θ)2)r dr dθ
=

ˆ π

0

ˆ 4 cos θ

2 cos θ

(
− r3 + 4r2 cos θ

)
dr dθ

=

ˆ π

0

(
−1
4
r4 +

4
3
r3 cos θ

)∣∣∣∣4 cos θ
2 cos θ

dθ

=

ˆ π

0

([
−1
4
(256 cos4 θ) +

4
3
(64 cos4 θ)

]
−[

−1
4
(16 cos4 θ) +

4
3
(8 cos4 θ)

])
dθ

=

ˆ π

0

44
3

cos4 θ dθ.

To integrate cos4 θ, rewrite it as cos2 θ cos2 θ and employ the half–angle formula
twice:

cos4 θ = cos2 θ cos2 θ

=
1
2
(
1+ cos(2θ)

)1
2
(
1+ cos(2θ)

)
=

1
4
(
1+ 2 cos(2θ) + cos2(2θ)

)
=

1
4

(
1+ 2 cos(2θ) +

1
2
(
1+ cos(4θ)

))
=

3
8
+

1
2
cos(2θ) +

1
8
cos(4θ).

Picking up from where we leŌ off above, we have
¨

R
f(x, y) dA =

ˆ π

0

44
3

cos4 θ dθ

=

ˆ π

0

44
3

(
3
8
+

1
2
cos(2θ) +

1
8
cos(4θ)

)
dθ

=
44
3

(
3
8
θ +

1
4
sin(2θ) +

1
32

sin(4θ)
)∣∣∣∣π

0

=
11
2
π.

While this example was not trivial, the double integral would have been much
harder to evaluate had we used rectangular coordinates.
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14.3 Double IntegraƟon with Polar Coordinates

Example 3 EvaluaƟng a double integral with polar coordinates
Find the volume under the surface f(x, y) =

1
x2 + y2 + 1

over the sector of the
circle with radius a centered at the origin in the first quadrant, as shown in Fig-
ure 14.22.

SÊ½çã®ÊÄ The region R we are integraƟng over is a circle with radius

Figure 14.22: The surface and region R
used in Example 3.

a, restricted to the first quadrant. Thus, in polar, the bounds on R are 0 ≤ r ≤ a,
0 ≤ θ ≤ π/2. The integrand is rewriƩen in polar as

1
x2 + y2 + 1

⇒ 1
r2 cos2 θ + r2 sin2 θ + 1

=
1

r2 + 1
.

We find the volume as follows:¨
R
f(x, y) dA =

ˆ π/2

0

ˆ a

0

r
r2 + 1

dr dθ

=

ˆ π/2

0

1
2
(
ln |r2 + 1|

)∣∣∣a
0
dθ

=

ˆ π/2

0

1
2
ln(a2 + 1) dθ

=

(
1
2
ln(a2 + 1)θ

)∣∣∣∣π/2
0

=
π

4
ln(a2 + 1).

Figure 14.22 shows that f shrinks to near 0 very quickly. Regardless, as a grows,
so does the volume, without bound.

Note: Previous work has shown that
there is finite area under 1

x2+1 over
the enƟre x-axis. However, Exam-
ple 3 shows that there is infinite vol-
ume under 1

x2+y2+1 over the enƟre x-y
plane.

Example 4 Finding the volume of a sphere
Find the volume of a sphere with radius a.

SÊ½çã®ÊÄ The sphere of radius a, centered at the origin, has equaƟon
x2+y2+z2 = a2; solving for z, we have z =

√
a2 − x2 − y2. This gives the upper

half of a sphere. We wish to find the volume under this top half, then double it
to find the total volume.

The region we need to integrate over is the circle of radius a, centered at the
origin. Polar bounds for this equaƟon are 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π.

All together, the volume of a sphere with radius a is:

2
¨

R

√
a2 − x2 − y2 dA = 2

ˆ 2π

0

ˆ a

0

√
a2 − (r cos θ)2 − (r sin θ)2r dr dθ

= 2
ˆ 2π

0

ˆ a

0
r
√

a2 − r2 dr dθ.

Notes:
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Chapter 14 MulƟple IntegraƟon

We can evaluate this inner integral with subsƟtuƟon. With u = a2 − r2, du =
−2r dr. The new bounds of integraƟon are u(0) = a2 to u(a) = 0. Thus we
have:

=

ˆ 2π

0

ˆ 0

a2

(
− u1/2

)
du dθ

=

ˆ 2π

0

(
−2
3
u3/2

)∣∣∣∣0
a2
dθ

=

ˆ 2π

0

(
2
3
a3
)

dθ

=

(
2
3
a3θ
)∣∣∣∣2π

0

=
4
3
πa3.

Generally, the formula for the volumeof a spherewith radius r is given as 4/3πr3;
we have jusƟfied this formula with our calculaƟon.

Figure 14.23: Visualizing the solid used in
Example 5.

Example 5 Finding the volume of a solid
A sculptor wants to make a solid bronze cast of the solid shown in Figure 14.23,
where the base of the solid has boundary, in polar coordinates, r = cos(3θ),
and the top is defined by the plane z = 1 − x + 0.1y. Find the volume of the
solid.

SÊ½çã®ÊÄ From the outset, we should recognize that knowing how to
set up this problem is probably more important than knowing how to compute
the integrals. The iterated integral to come is not “hard” to evaluate, though it is
long, requiring lots of algebra. Once the proper iterated integral is determined,
one can use readily–available technology to help compute the final answer.

The region R that we are integraƟng over is bound by 0 ≤ r ≤ cos(3θ),
for 0 ≤ θ ≤ π (note that this rose curve is traced out on the interval [0, π], not
[0, 2π]). This gives us our bounds of integraƟon. The integrand is z = 1−x+0.1y;
converƟng to polar, we have that the volume V is:

V =

¨
R
f(x, y) dA =

ˆ π

0

ˆ cos(3θ)

0

(
1− r cos θ + 0.1r sin θ

)
r dr dθ.

DistribuƟng the r, the inner integral is easy to evaluate, leading to
ˆ π

0

(
1
2
cos2(3θ)− 1

3
cos3(3θ) cos θ +

0.1
3

cos3(3θ) sin θ
)

dθ.

Notes:
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14.3 Double IntegraƟon with Polar Coordinates

This integral takes Ɵme to compute by hand; it is rather long and cumbersome.
The powers of cosine need to be reduced, and products like cos(3θ) cos θ need
to be turned to sums using the Product To Sum formulas in the back cover of
this text.

We rewrite 1
2 cos

2(3θ) as 1
4 (1+cos(6θ)). We can also rewrite 1

3 cos
3(3θ) cos θ

as:

1
3
cos3(3θ) cos θ =

1
3
cos2(3θ) cos(3θ) cos θ =

1
3
1+ cos(6θ)

2
(
cos(4θ)+cos(2θ)

)
.

This last expression sƟll needs simplificaƟon, but eventually all terms can be re-
duced to the form a cos(mθ) or a sin(mθ) for various values of a andm.

We forgo the algebra and recommend the reader employ technology, such
as WolframAlpha®, to compute the numeric answer. Such technology gives:

ˆ π

0

ˆ cos(3θ)

0

(
1− r cos θ + 0.1r sin θ

)
r dr dθ =

π

4
units3.

Since the units were not specified, we leave the result as almost 0.8 cubic units
(meters, feet, etc.).

We have used iterated integrals to find areas of plane regions and volumes
under surfaces. Just as a single integral can be used to computemuchmore than
“area under the curve,” iterated integrals can be used to compute much more
than we have thus far seen. The next two secƟons show two, among many,
applicaƟons of iterated integrals.

Notes:
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Exercises 14.3
Terms and Concepts
1. When evaluaƟng

˜
R f(x, y) dA using polar coordinates,

f(x, y) is replaced with and dA is replaced with
.

2. Why would one be interested in evaluaƟng a double inte-
gral with polar coordinates?

Problems
In Exercises 3–10, a funcƟon f(x, y) is given and a region R of
the x-y plane is described. Set up and evaluate

˜
R f(x, y) dA

using polar coordinates.

3. f(x, y) = 3x− y+ 4; R is the region enclosed by the circle
x2 + y2 = 1.

4. f(x, y) = 4x + 4y; R is the region enclosed by the circle
x2 + y2 = 4.

5. f(x, y) = 8− y; R is the region enclosed by the circles with
polar equaƟons r = cos θ and r = 3 cos θ.

6. f(x, y) = 4; R is the region enclosed by the petal of the rose
curve r = sin(2θ) in the first quadrant.

7. f(x, y) = ln
(
x2 + y2); R is the annulus enclosed by the

circles x2 + y2 = 1 and x2 + y2 = 4.
8. f(x, y) = 1− x2 − y2; R is the region enclosed by the circle

x2 + y2 = 1.
9. f(x, y) = x2 − y2; R is the region enclosed by the circle

x2 + y2 = 36 in the first and fourth quadrants.
10. f(x, y) = (x − y)/(x + y); R is the region enclosed by the

lines y = x, y = 0 and the circle x2 + y2 = 1 in the first
quadrant.

In Exercises 11–14, an iterated integral in rectangular coordi-
nates is given. Rewrite the integral using polar coordinates and
evaluate the new double integral.

11.
ˆ 5

0

ˆ √
25−x2

−
√

25−x2

√
x2 + y2 dy dx

12.
ˆ 4

−4

ˆ 0

−
√

16−y2

(
2y− x

)
dx dy

13.
ˆ 2

0

ˆ √
8−y2

y

(
x+ y

)
dx dy

14.
ˆ −1

−2

ˆ √
4−x2

0

(
x+5

)
dy dx+

ˆ 1

−1

ˆ √
4−x2

√
1−x2

(
x+5

)
dy dx+

ˆ 2

1

ˆ √
4−x2

0

(
x+ 5

)
dy dx

Hint: draw the region of each integral carefully and see
how they all connect.

In Exercises 15–16, special double integrals are presented that
are especially well suited for evaluaƟon in polar coordinates.

15. Consider
¨

R
e−(x2+y2) dA.

(a) Why is this integral difficult to evaluate in rectangu-
lar coordinates, regardless of the region R?

(b) Let R be the region bounded by the circle of radius a
centered at the origin. Evaluate the double integral
using polar coordinates.

(c) Take the limit of your answer from (b), as a → ∞.
What does this imply about the volume under the
surface of e−(x2+y2) over the enƟre x-y plane?

16. The surface of a right circular cone with height h
and base radius a can be described by the equaƟon

f(x, y) = h − h
√

x2
a2

+
y2
a2

, where the Ɵp of the cone
lies at (0, 0, h) and the circular base lies in the x-y plane,
centered at the origin.

Confirm that the volume of a right circular cone with
height h and base radius a is V =

1
3
πa2h by evaluaƟng¨

R
f(x, y) dA in polar coordinates.
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14.4 Center of Mass

14.4 Center of Mass

We have used iterated integrals to find areas of plane regions and signed vol-
umes under surfaces. A brief recap of these uses will be useful in this secƟon as
we apply iterated integrals to compute the mass and center of mass of planar
regions.

To find the area of a planar region, we evaluated the double integral
˜

R dA.
That is, summing up the areas of lots of liƩle subregions of R gave us the total
area. Informally, we think of

˜
R dA as meaning “sum up lots of liƩle areas over

R.”
To find the signed volume under a surface, we evaluated the double integral˜

R f(x, y) dA. Recall that the “dA” is not just a “bookend” at the end of an in-
tegral; rather, it is mulƟplied by f(x, y). We regard f(x, y) as giving a height, and
dA sƟll giving an area: f(x, y) dA gives a volume. Thus, informally,

˜
R f(x, y) dA

means “sum up lots of liƩle volumes over R.”

x

(a)

R

y = f2(x)

y =
f1(x

)

1 2 3

1

2

3

x

y

(b)

Figure 14.24: IllustraƟng the concept of a
lamina.

We now extend these ideas to other contexts.

Mass and Weight

Consider a thin sheet of material with constant thickness and finite area. Math-
emaƟcians (and physicists and engineers) call such a sheet a lamina. So consider
a lamina, as shown in Figure 14.24(a), with the shape of some planar region R,
as shown in part (b).

We can write a simple double integral that represents the mass of the lam-
ina:

˜
R dm, where “dm” means “a liƩle mass.” That is, the double integral

states the total mass of the lamina can be found by “summing up lots of liƩle
masses over R.”

To evaluate this double integral, parƟƟon R into n subregions as we have
done in the past. The i th subregion has area ∆Ai. A fundamental property of
mass is that “mass=density×area.” If the lamina has a constant density δ, then
the mass of this i th subregion is∆mi = δ∆Ai. That is, we can compute a small
amount of mass by mulƟplying a small amount of area by the density.

If density is variable, with density funcƟon δ = δ(x, y), then we can approx-
imate the mass of the i th subregion of R by mulƟplying ∆Ai by δ(xi, yi), where
(xi, yi) is a point in that subregion. That is, for a small enough subregion of R,
the density across that region is almost constant.

Note: Mass and weight are differ-
ent measures. Since they are scalar
mulƟples of each other, it is oŌen
easy to treat them as the same mea-
sure. In this secƟon we effecƟvely
treat them as the same, as our tech-
nique for finding mass is the same as
for finding weight. The density func-
Ɵons used will simply have different
units.

The total mass M of the lamina is approximately the sum of approximate
masses of subregions:

M ≈
n∑

i=1

∆mi =

n∑
i=1

δ(xi, yi)∆Ai.
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Taking the limit as the size of the subregions shrinks to 0 gives us the actual
mass; that is, integraƟng δ(x, y) over R gives the mass of the lamina.

DefiniƟon 105 Mass of a Lamina with Vairable Density
Let δ(x, y) be a conƟnuous density funcƟon of a lamina corresponding
to a plane region R. The massM of the lamina is

massM =

¨
R
dm =

¨
R
δ(x, y) dA.

Watch the video:
Center of Mass for a Rectangle of Variable Density at
https://youtu.be/5CmgNCjRVFE

Example 1 Finding the mass of a lamina with constant density
Find the mass of a square lamina, with side length 1, with a density of δ =
3g/cm2.

SÊ½çã®ÊÄ We represent the lamina with a square region in the plane
as shown in Figure 14.25. As the density is constant, it does not maƩer where
we place the square.

0.5 1

0.5

1

x

y

Figure 14.25: A region R represenƟng a
lamina in Example 1.

Following DefiniƟon 105, the massM of the lamina is

M =

¨
R
3 dA =

ˆ 1

0

ˆ 1

0
3 dx dy = 3

ˆ 1

0

ˆ 1

0
dx dy = 3g.

This is all very straighƞorward; note that all we really did was find the area
of the lamina and mulƟply it by the constant density of 3g/cm2.

Example 2 Finding the mass of a lamina with variable density
Find the mass of a square lamina, represented by the unit square with lower
leŌhand corner at the origin (see Figure 14.25), with variable density δ(x, y) =
(x+ y+ 2)g/cm2.
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14.4 Center of Mass

SÊ½çã®ÊÄ The variable density δ, in this example, is very uniform, giv-
ing a density of 3 in the center of the square and changing linearly. A graph
of δ(x, y) can be seen in Figure 14.26; noƟce how “same amount” of density is
above z = 3 as below. We’ll comment on the significance of this momentarily.

The mass M is found by integraƟng δ(x, y) over R. The order of integraƟon
is not important; we choose dx dy arbitrarily. Thus:

M =

¨
R
(x+ y+ 2) dA =

ˆ 1

0

ˆ 1

0
(x+ y+ 2) dx dy

=

ˆ 1

0

(
1
2
x2 + x(y+ 2)

)∣∣∣∣1
0
dy

=

ˆ 1

0

(
5
2
+ y
)

dy

=

(
5
2
y+

1
2
y2
)∣∣∣∣1

0

= 3 g.

It turns out that since since the density of the lamina is so uniformly distributed

Figure 14.26: Graphing the density func-
Ɵons in Examples 1 and 2.

“above and below” z = 3 that the mass of the lamina is the same as if it had a
constant density of 3. The density funcƟons in Examples 1 and 2 are graphed in
Figure 14.26, which illustrates this concept.

Example 3 Finding the weight of a lamina with variable density
Find the weight of the lamina represented by the circle with radius 2Ō, centered
at the origin, with density funcƟon δ(x, y) = (x2 + y2 + 1)lb/Ō2. Compare this
to the weight of the same lamina with density δ(x, y) = (2

√
x2 + y2 + 1)lb/Ō2.

SÊ½çã®ÊÄ A direct applicaƟon of DefiniƟon 105 states that the weight
of the lamina is

˜
R δ(x, y) dA. Since our lamina is in the shape of a circle, it

makes sense to approach the double integral using polar coordinates.
The density funcƟon δ(x, y) = x2 + y2 + 1 becomes δ(r, θ) = (r cos θ)2 +

(r sin θ)2 + 1 = r2 + 1. The circle is bounded by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.
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Thus the weightW is:

W =

ˆ 2π

0

ˆ 2

0
(r2 + 1)r dr dθ

=

ˆ 2π

0

(
1
4
r4 +

1
2
r2
)∣∣∣∣2

0
dθ

=

ˆ 2π

0
(6) dθ

= 12πlb.

Now compare this with the density funcƟon δ(x, y) = 2
√

x2 + y2 + 1. Con-
verƟng this to polar coordinates gives δ(r, θ) = 2

√
(r cos θ)2 + (r sin θ)2 + 1 =

2r+ 1. Thus the weightW is:

W =

ˆ 2π

0

ˆ 2

0
(2r+ 1)r dr dθ

=

ˆ 2π

0
(
2
3
r3 +

1
2
r2)
∣∣∣2
0
dθ

=

ˆ 2π

0

(
22
3

)
dθ

=
44
3
πlb.

One would expect different density funcƟons to return different weights, as we
have here. The density funcƟons were chosen, though, to be similar: each gives
a density of 1 at the origin and a density of 5 at the outside edge of the circle,
as seen in Figure 14.27.

NoƟce how x2 + y2 + 1 ≤ 2
√

x2 + y2 + 1 over the circle; this results in less
weight.

Ploƫng the density funcƟons can be useful as our understanding of mass
can be related to our understanding of “volume under a surface.” We inter-
preted

˜
R f(x, y) dA as giving the volume under f over R; we can understand˜

R δ(x, y) dA in the same way. The “volume” under δ over R is actually mass; by
compressing the “volume” under δ onto the x-y plane, we get “more mass” in
some areas than others – i.e., areas of greater density.

Knowing themass of a lamina is one of several importantmeasures. Another
is the center of mass, which we discuss next.
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(a) (b)

Figure 14.27: Graphing the density funcƟons in Example 3. In (a) is the density funcƟon
δ(x, y) = x2 + y2 + 1; in (b) is δ(x, y) = 2

√
x2 + y2 + 1.

Center of Mass

Consider a disk of radius 1 with uniform density. It is common knowledge that
the disk will balance on a point if the point is placed at the center of the disk.
What if the disk does not have a uniform density? Through trial-and-error, we
should sƟll be able to find a spot on the disk at which the disk will balance on
a point. This balance point is referred to as the center of mass, or center of
gravity. It is as though all the mass is “centered” there. In fact, if the disk has
a mass of 3kg, the disk will behave physically as though it were a point-mass of
3kg located at its center of mass. For instance, the disk will naturally spin with
an axis through its center of mass (which is why it is important to “balance” the
Ɵres of your car: if they are “out of balance”, their center of mass will be outside
of the axle and it will shake terribly).

We find the center of mass based on the principle of a weighted average.
Consider a college class in which your homework average is 90%, your test av-
erage is 73%, and your final exam grade is an 85%. Experience tells us that our
final grade is not the average of these three grades: that is, it is not:

0.9+ 0.73+ 0.85
3

≈ 0.837 = 83.7%.

That is, you are probably not pulling a B in the course. Rather, your grades are
weighted. Let’s say the homework is worth 10% of the grade, tests are 60% and
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the exam is 30%. Then your final grade is:

(0.1)(0.9) + (0.6)(0.73) + (0.3)(0.85) = 0.783 = 78.3%.

Each grade is mulƟplied by a weight.
In general, given values x1, x2, . . . , xn andweightsw1,w2, . . . ,wn, theweighted

average of the n values is
n∑

i=1

wixi

/
n∑

i=1

wi.

In the grading example above, the sum of the weights 0.1, 0.6 and 0.3 is 1,
so we don’t see the division by the sum of weights in that instance.

How this relates to center of mass is given in the following theorem.

Theorem 124 Center of Mass of Discrete Linear System
Let point masses m1,m2, . . . ,mn be distributed along the x-axis at lo-
caƟons x1, x2, . . . , xn, respecƟvely. The center of mass x of the system
is located at

x =
n∑

i=1

mixi

/
n∑

i=1

mi.

Example 4 Finding the center of mass of a discrete linear system

1. Point masses of 2g are located at x = −1, x = 2 and x = 3 are connected
by a thin rod of negligible weight. Find the center of mass of the system.

2. Point masses of 10g, 2g and 1g are located at x = −1, x = 2 and x = 3,
respecƟvely, are connected by a thin rod of negligible weight. Find the
center of mass of the system.

SÊ½çã®ÊÄ

1. Following Theorem 124, we compute the center of mass as:

−1 0 1 2 3

x
x

(a)

−1 0 1 2 3

x
x

(b)

Figure 14.28: IllustraƟng point masses
along a thin rod and the center of mass.

x =
2(−1) + 2(2) + 2(3)

2+ 2+ 2
=

4
3
.

So the system would balance on a point placed at x = 4/3, as illustrated
in Figure 14.28(a).
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14.4 Center of Mass

2. Again following Theorem 124, we find:

x =
10(−1) + 2(2) + 1(3)

10+ 2+ 1
=
−3
13

.

Placing a large weight at the leŌ hand side of the systemmoves the center
of mass leŌ, as shown in Figure 14.28(b).

In a discrete system (i.e., mass is located at individual points, not along a
conƟnuum) we find the center of mass by dividing the mass into a moment of
the system. In general, a moment is a weighted measure of distance from a par-
Ɵcular point or line. In the case described by Theorem 124, we are finding a
weighted measure of distances from the y-axis, so we refer to this as the mo-
ment about the y-axis, represented by My. Leƫng M be the total mass of the
system, we have x = My/M.

We can extend the concept of the center of mass of discrete points along a
line to the center of mass of discrete points in the plane rather easily. To do so,
we define some terms then give a theorem.

DefiniƟon 106 Moments about the x- and y- Axes.
Let point masses m1, m2, . . . ,mn be located at points (x1, y1),
(x2, y2) . . . , (xn, yn), respecƟvely, in the x-y plane.

1. Themoment about the y-axis,My, isMy =

n∑
i=1

mixi.

2. Themoment about the x-axis,Mx, isMx =

n∑
i=1

miyi.

One can think that these definiƟons are “backwards” asMy sums up “x” dis-
tances. But remember, “x” distances are measurements of distance from the
y-axis, hence defining the moment about the y-axis.

We now define the center of mass of discrete points in the plane.
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Theorem 125 Center of Mass of Discrete Planar System
Let point masses m1, m2, . . . ,mn be located at points (x1, y1),

(x2, y2) . . . , (xn, yn), respecƟvely, in the x-y plane, and letM =

n∑
i=1

mi.

The center of mass of the system is at (x, y), where

x =
My

M
and y =

Mx

M
.

Example 5 Finding the center of mass of a discrete planar system
Let pointmasses of 1kg, 2kg and 5kg be located at points (2, 0), (1, 1) and (3, 1),
respecƟvely, and are connected by thin rods of negligibleweight. Find the center
of mass of the system.

SÊ½çã®ÊÄ We follow Theorem 125 and DefiniƟon 106 to find M, Mx
andMy: first,M = 1+ 2+ 5 = 8kg. Next, we see that

(x, y)

1 2 3

1

x

y

Figure 14.29: IllustraƟng the center of
mass of a discrete planar system in Exam-
ple 5.

Mx =

n∑
i=1

miyi My =

n∑
i=1

mixi

= 1(0) + 2(1) + 5(1) = 1(2) + 2(1) + 5(3)
= 7. = 19.

Thus the center of mass is (x, y) =
(
My

M
,
Mx

M

)
=

(
19
8
,
7
8

)
= (2.375, 0.875),

illustrated in Figure 14.29.

We finally arrive at our true goal of this secƟon: finding the center ofmass of
a lamina with variable density. While the abovemeasurement of center of mass
is interesƟng, it does not directly answermore realisƟc situaƟonswhereweneed
to find the center of mass of a conƟguous region. However, understanding the
discrete case allows us to approximate the center of mass of a planar lamina;
using calculus, we can refine the approximaƟon to an exact value.

We begin by represenƟng a planar lamina with a region R in the x-y plane
with density funcƟon δ(x, y). ParƟƟon R into n subdivisions, each with area
∆Ai. As done before, we can approximate the mass of the i th subregion with
δ(xi, yi)∆Ai, where (xi, yi) is a point inside the i th subregion. We can approxi-
mate the moment of this subregion about the y-axis with xiδ(xi, yi)∆Ai – that is,
by mulƟplying the approximate mass of the region by its approximate distance
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14.4 Center of Mass

from the y-axis. Similarly, we can approximate the moment about the x-axis
with yiδ(xi, yi)∆Ai. By summing over all subregions, we have:

mass: M ≈
n∑

i=1

δ(xi, yi)∆Ai (as seen before)

moment about the x-axis: Mx ≈
n∑

i=1

yiδ(xi, yi)∆Ai

moment about the y-axis: My ≈
n∑

i=1

xiδ(xi, yi)∆Ai

By taking limits, where size of each subregion shrinks to 0 in both the x and
y direcƟons, we arrive at the double integrals given in the following theorem.

Theorem 126 Center of Mass of a Planar Lamina, Moments
Let a planar lamina be represented by a region R in the x-y plane with
density funcƟon δ(x, y).

1. mass: M =

¨
R
δ(x, y) dA

2. moment about the x-axis: Mx =

¨
R
yδ(x, y) dA

3. moment about the y-axis: My =

¨
R
xδ(x, y) dA

4. The center of mass of the lamina is

(x, y) =
(
My

M
,
Mx

M

)
.

We start our pracƟce of finding centers of mass by revisiƟng some of the
lamina used previously in this secƟon when finding mass. We will just set up
the integrals needed to compute M, Mx and My and leave the details of the
integraƟon to the reader.

Example 6 Finding the center of mass of a lamina
Find the center mass of a square lamina, with side length 1, with a density of
δ = 3g/cm2. (Note: this is the lamina from Example 1.)
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SÊ½çã®ÊÄ We represent the lamina with a square region in the plane
as shown in Figure 14.30 as done previously.

0.5 1

0.5

1

x

y

Figure 14.30: A region R represenƟng a
lamina in Examples 1 and 6.

Following Theorem 126, we findM,Mx andMy:

M =

¨
R
3 dA =

ˆ 1

0

ˆ 1

0
3 dx dy = 3g.

Mx =

¨
R
3y dA =

ˆ 1

0

ˆ 1

0
3y dx dy = 3/2 = 1.5.

My =

¨
R
3x dA =

ˆ 1

0

ˆ 1

0
3x dx dy = 3/2 = 1.5.

Thus the center of mass is (x, y) =
(
My

M
,
Mx

M

)
= (1.5/3, 1.5/3) = (0.5, 0.5).

This is what we should have expected: the center of mass of a square with con-
stant density is the center of the square.

Example 7 Finding the center of mass of a lamina
Find the center of mass of a square lamina, represented by the unit square
with lower leŌhand corner at the origin (see Figure 14.30), with variable den-
sity δ(x, y) = (x+ y+ 2)g/cm2. (Note: this is the lamina from Example 2.)

SÊ½çã®ÊÄ We follow Theorem 126, to findM,Mx andMy:

M =

¨
R
(x+ y+ 2) dA =

ˆ 1

0

ˆ 1

0
(x+ y+ 2) dx dy = 3g.

Mx =

¨
R
y(x+ y+ 2) dA =

ˆ 1

0

ˆ 1

0
y(x+ y+ 2) dx dy =

19
12

.

My =

¨
R
x(x+ y+ 2) dA =

ˆ 1

0

ˆ 1

0
x(x+ y+ 2) dx dy =

19
12

.

Thus the center ofmass is (x, y) =
(
My

M
,
Mx

M

)
=

(
19
36

,
19
36

)
.While themass of

this lamina is the sameas the lamina in the previous example, the greater density
foundwith greater x and y values pulls the center ofmass from the center slightly
towards the upper righthand corner.

Example 8 Finding the center of mass of a lamina
Find the center of mass of the lamina represented by the circle with radius 2Ō,
centered at the origin, with density funcƟon δ(x, y) = (x2+y2+1)lb/Ō2. (Note:
this is one of the lamina used in Example 3.)
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SÊ½çã®ÊÄ As done in Example 3, it is best to describe R using polar
coordinates. Thus whenwe computeMy, we will integrate not xδ(x, y) = x(x2+
y2 + 1), but rather

(
r cos θ

)
δ(r cos θ, r sin θ) =

(
r cos θ

)(
r2 + 1

)
. We compute

M,Mx andMy:

M =

ˆ 2π

0

ˆ 2

0
(r2 + 1)r dr dθ = 12πlb.

Mx =

ˆ 2π

0

ˆ 2

0
(r sin θ)(r2 + 1)r dr dθ = 0.

My =

ˆ 2π

0

ˆ 2

0
(r cos θ)(r2 + 1)r dr dθ = 0.

Since R and the density of R are both symmetric about the x and y axes, it should
come as no big surprise that the moments about each axis is 0. Thus the center
of mass is (x, y) = (0, 0).

Example 9 Finding the center of mass of a lamina
Find the center of mass of the lamina represented by the region R shown in Fig-
ure 14.31, half an annulus with outer radius 6 and inner radius 5, with constant
density 2lb/Ō2.

SÊ½çã®ÊÄ Once again it will be useful to represent R in polar coor-
dinates. Using the descripƟon of R and/or the illustraƟon, we see that R is
bounded by 5 ≤ r ≤ 6 and 0 ≤ θ ≤ π. As the lamina is symmetric about
the y-axis, we should expectMy = 0. We computeM,Mx andMy:

(x, y)

−5 5

5

x

y

Figure 14.31: IllustraƟng the region R in
Example 9.

M =

ˆ π

0

ˆ 6

5
(2)r dr dθ = 11πlb.

Mx =

ˆ π

0

ˆ 6

5
(r sin θ)(2)r dr dθ =

364
3

.

My =

ˆ π

0

ˆ 6

5
(r cos θ)(2)r dr dθ = 0.

Thus the center of mass is (x, y) =
(
0, 364

33π
)
≈ (0, 3.51). The center of mass is

indicated in Figure 14.31; note how it lies outside of R.

This secƟon has shown us another use for iterated integrals beyond finding
area or signed volume under the curve. While there are many uses for iterated
integrals, we give one more applicaƟon in the following secƟon: compuƟng sur-
face area.
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Exercises 14.4
Terms and Concepts
1. Why is it easy to use “mass” and “weight” interchangeably,

even though they are different measures?
2. Given a point (x, y), the value of x is a measure of distance

from the -axis.
3. We can think of

˜
R dm as meaning “sum up lots of

”
4. What is a “discrete planar system?”
5. Why doesMx use

˜
R yδ(x, y) dA instead of

˜
R xδ(x, y) dA;

that is, why do we use “y” and not “x”?
6. Describe a situaƟon where the center of mass of a lamina

does not lie within the region of the lamina itself.

Problems
In Exercises 7–10, point masses are given along a line or in the
plane. Find the center of mass x or (x, y), as appropriate. (All
masses are in grams and distances are in cm.)

7. m1 = 4 at x = 1; m2 = 3 at x = 3; m3 = 5 at x = 10
8. m1 = 2 at x = −3; m2 = 2 at x = −1;

m3 = 3 at x = 0; m4 = 3 at x = 7
9. m1 = 2 at (−2,−2); m2 = 2 at (2,−2);

m3 = 20 at (0, 4)
10. m1 = 1 at (−1,−1); m2 = 2 at (−1, 1);

m3 = 2 at (1, 1); m4 = 1 at (1,−1)

In Exercises 11–18, find the mass/weight of the lamina de-
scribed by the region R in the plane and its density funcƟon
δ(x, y).

11. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = 5g/cm2

12. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = (x+ y2)g/cm2

13. R is the triangle with corners (−1, 0), (1, 0), and (0, 1);
δ(x, y) = 2lb/in2

14. R is the triangle with corners (0, 0), (1, 0), and (0, 1);
δ(x, y) = (x2 + y2 + 1)lb/in2

15. R is the circle centered at the origin with radius 2; δ(x, y) =
(x+ y+ 4)kg/m2

16. R is the circle sector bounded by x2 + y2 = 25 in the first
quadrant; δ(x, y) = (

√
x2 + y2 + 1)kg/m2

17. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) = 4lb/Ō2

18. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) =

√
x2 + y2lb/Ō2

In Exercises 19–26, find the center of mass of the lamina de-
scribed by the region R in the plane and its density funcƟon
δ(x, y).
Note: these are the same lamina as in Exercises 11 – 18.

19. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = 5g/cm2

20. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = (x+ y2)g/cm2

21. R is the triangle with corners (−1, 0), (1, 0), and (0, 1);
δ(x, y) = 2lb/in2

22. R is the triangle with corners (0, 0), (1, 0), and (0, 1);
δ(x, y) = (x2 + y2 + 1)lb/in2

23. R is the circle centered at the origin with radius 2; δ(x, y) =
(x+ y+ 4)kg/m2

24. R is the circle sector bounded by x2 + y2 = 25 in the first
quadrant; δ(x, y) = (

√
x2 + y2 + 1)kg/m2

25. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) = 4lb/Ō2

26. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) =

√
x2 + y2lb/Ō2

Themoment of inerƟa I is a measure of the tendency of a lam-
ina to resist rotaƟng about an axis or conƟnue to rotate about
an axis. Ix is the moment of inerƟa about the x-axis, Iy is the
moment of inerƟa about the y-axis, and IO is the moment of
inerƟa about the origin. These are computed as follows:

• Ix =
¨

R
y2 dm

• Iy =
¨

R
x2 dm

• IO =

¨
R

(
x2 + y2

)
dm

In Exercises 27–30, a lamina corresponding to a planar region
R is given with a mass of 16 units. For each, compute Ix, Iy and
IO.

27. R is the 4 × 4 square with corners at (−2,−2) and (2, 2)
with density δ(x, y) = 1.

28. R is the 8×2 rectangle with corners at (−4,−1) and (4, 1)
with density δ(x, y) = 1.

29. R is the 4×2 rectangle with corners at (−2,−1) and (2, 1)
with density δ(x, y) = 2.

30. R is the circle with radius 2 centered at the origin with den-
sity δ(x, y) = 4/π.
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14.5 Surface Area

14.5 Surface Area
In SecƟon 10.1 we used definite integrals to compute the arc length of plane
curves of the form y = f(x). We later extended these ideas to compute the arc
length of plane curves defined by parametric or polar equaƟons.

The natural extension of the concept of “arc length over an interval” to sur-
faces is “surface area over a region.”

Consider the surface z = f(x, y) over a region R in the x-y plane, shown in
Figure 14.32(a). Because of the domed shapeof the surface, the surface areawill
be greater than that of the area of the region R. We can find this area using the
samebasic techniquewehaveusedover andover: we’llmake an approximaƟon,
then using limits, we’ll refine the approximaƟon to the exact value.

(a)

(b)

Figure 14.32: Developing a method of
compuƟng surface area.

As done to find the volume under a surface or the mass of a lamina, we
subdivide R into n subregions. Here we subdivide R into rectangles, as shown in
the figure. One such subregion is outlined in the figure, where the rectangle has
dimensions∆xi and∆yi, along with its corresponding region on the surface.

In part (b) of the figure, we zoom in on this porƟon of the surface. When∆xi
and∆yi are small, the funcƟon is approximated well by the tangent plane at any
point (xi, yi) in this subregion, which is graphed in part (b). In fact, the tangent
plane approximates the funcƟon so well that in this figure, it is virtually indis-
Ɵnguishable from the surface itself! Therefore we can approximate the surface
area Si of this region of the surface with the area Ti of the corresponding porƟon
of the tangent plane.

This porƟon of the tangent plane is a parallelogram, defined by sides u⃗ and
v⃗, as shown. One of the applicaƟons of the cross product from SecƟon 11.4 is
that the area of this parallelogram is ∥u⃗× v⃗∥. Once we can determine u⃗ and v⃗,
we can determine the area.

u⃗ is tangent to the surface in the direcƟon of x, therefore, from SecƟon 13.7,
u⃗ is parallel to ⟨1, 0, fx(xi, yi)⟩. The x-displacement of u⃗ is∆xi, so we know that
u⃗ = ∆xi ⟨1, 0, fx(xi, yi)⟩. Similar logic shows that v⃗ = ∆yi ⟨0, 1, fy(xi, yi)⟩. Thus:

surface area Si ≈ area of Ti
= ∥u⃗× v⃗∥
= ∥∆xi ⟨1, 0, fx(xi, yi)⟩ ×∆yi ⟨0, 1, fy(xi, yi)⟩∥

=
√
1+ fx(xi, yi)2 + fy(xi, yi)2∆xi∆yi.

Note that∆xi∆yi = ∆Ai, the area of the i th subregion.
Summing up all n of the approximaƟons to the surface area gives

surface area over R ≈
n∑

i=1

√
1+ fx(xi, yi)2 + fy(xi, yi)2∆Ai.

Notes:
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Once again take a limit as all of the ∆xi and ∆yi shrink to 0; this leads to a
double integral.

Note: As before, we think of “
˜

R dS”
as meaning “sum up lots of liƩle
surface areas over R.”

The concept of surface area is defined
here, for while we already have a no-
Ɵon of the area of a region in the
plane, we did not yet have a solid
grasp of what “the area of a surface
in space” means.

DefiniƟon 107 Surface Area
Let z = f(x, y) where fx and fy are conƟnuous over a closed, bounded
region R. The surface area S over R is

S =
¨

R
dS

=

¨
R

√
1+ fx(x, y)2 + fy(x, y)2 dA.

Watch the video:
Surface area of z = (x2 + y2)1/2 at
https://youtu.be/ricG1_x6xCo

We test this definiƟon by using it to compute surface areas of known sur-
faces. We start with a triangle.

Example 1 Finding the surface area of a plane over a triangle
Let f(x, y) = 4− x− 2y, and let R be the region in the plane bounded by x = 0,
y = 0 and y = 2− x/2, as shown in Figure 14.33. Find the surface area of f over
R.

Figure 14.33: Finding the area of a trian-
gle in space in Example 1.

SÊ½çã®ÊÄ We follow DefiniƟon 107. We start by noƟng that fx(x, y) =
−1 and fy(x, y) = −2. To define R, we use bounds 0 ≤ y ≤ 2 − x/2 and
0 ≤ x ≤ 4. Therefore

S =
¨

R
dS

=

ˆ 4

0

ˆ 2−x/2

0

√
1+ (−1)2 + (−2)2 dy dx

=

ˆ 4

0

√
6
(
2− x

2

)
dx

= 4
√
6.

Notes:
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14.5 Surface Area

Because the surface is a triangle, we can figure out the area using geometry.
Considering the base of the triangle to be the side in the x-y plane, we find the
length of the base to be

√
20. We can find the height using our knowledge of

vectors: let u⃗ be the side in the x-z plane and let v⃗ be the side in the x-y plane.
The height is then ∥u⃗− proj v⃗ u⃗∥ = 4

√
6/5. Geometry states that the area is

thus
1
2
· 4
√
6/5 ·

√
20 = 4

√
6.

We affirm the validity of our formula.

It is “common knowledge” that the surface area of a sphere of radius r is
4πr2. We confirm this in the following example, which involves using our formula
with polar coordinates.

Example 2 The surface area of a sphere.
Find the surface area of the sphere with radius a centered at the origin, whose
top hemisphere has equaƟon f(x, y) =

√
a2 − x2 − y2.

SÊ½çã®ÊÄ We start by compuƟng parƟal derivaƟves and find

fx(x, y) =
−x√

a2 − x2 − y2
and fy(x, y) =

−y√
a2 − x2 − y2

.

As our funcƟon f only defines the top upper hemisphere of the sphere, we dou-
ble our surface area result to get the total area:

S = 2
¨

R

√
1+ fx(x, y)2 + fy(x, y)2 dA

= 2
¨

R

√
1+

x2 + y2

a2 − x2 − y2
dA.

The region R that we are integraƟng over is the disk, centered at the origin, with
Note: The inner integral in EquaƟon
(14.1) is an improper integral, as

the integrand of
ˆ a

0
r
√

a2

a2 − r2
dr

is not defined at r = a. To properly
evaluate this integral, one must use
the techniques of SecƟon 8.6.

The reason this need arises is that
the funcƟon f(x, y) =

√
a2 − x2 − y2

fails the requirements of Defi-
niƟon 107, as fx and fy are not
conƟnuous on the boundary of the
circle x2 + y2 = a2.

The computaƟon of the surface area
is sƟll valid. The definiƟon makes
stronger requirements than neces-
sary in part to avoid the use of im-
proper integraƟon, as when fx and/or
fy are not conƟnuous, the resulƟng
improper integral may not converge.
Since the improper integral does con-
verge in this example, the surface
area is accurately computed.

radius a: x2 + y2 ≤ a2. Because of this region, we are likely to have greater
success with our integraƟon by converƟng to polar coordinates. Using the sub-
sƟtuƟons x = r cos θ, y = r sin θ, dA = r dr dθ and bounds 0 ≤ θ ≤ 2π and
0 ≤ r ≤ a, we have:

S = 2
ˆ 2π

0

ˆ a

0

√
1+

r2 cos2 θ + r2 sin2 θ
a2 − r2 cos2 θ − r2 sin2 θ

r dr dθ

= 2
ˆ 2π

0

ˆ a

0
r
√
1+

r2

a2 − r2
dr dθ

= 2
ˆ 2π

0

ˆ a

0
r
√

a2

a2 − r2
dr dθ. (14.1)

Notes:
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Apply subsƟtuƟon u = a2 − r2 and integrate the inner integral, giving

= 2
ˆ 2π

0
a2 dθ

= 4πa2.

Our work confirms our previous formula.

Example 3 Finding the surface area of a cone
The general formula for a right cone with height h and base radius a, as shown
in Figure 14.34, is

Figure 14.34: Finding the surface area of
a cone in Example 3.

f(x, y) = h− h
a
√

x2 + y2.

Find the surface area of this cone.

SÊ½çã®ÊÄ We begin by compuƟng parƟal derivaƟves.

fx(x, y) = −
xh

a
√

x2 + y2
and fy(x, y) = −

yh
a
√

x2 + y2
.

Since we are integraƟng over the disk x2 + y2 ≤ a2, we again use polar
coordinates. Using the standard subsƟtuƟons, our integrand becomes√

1+
(
hr cos θ
a
√
r2

)2

+

(
hr sin θ
a
√
r2

)2

.

This may look inƟmidaƟng at first, but there are lots of simple simplificaƟons to
be done. It amazingly reduces to just√

1+
h2

a2
=

1
a

√
a2 + h2.

Our polar bounds are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a. Thus

Note: Note that once again fx and fy
are not conƟnuous on the domain of
f, as both are undefined at (0, 0). (A
similar problemoccurred in the previ-
ous example.) Once again the result-
ing improper integral converges and
the computaƟon of the surface area
is valid.

S =
ˆ 2π

0

ˆ a

0
r
1
a

√
a2 + h2 dr dθ

=

ˆ 2π

0

(
1
2
r2
1
a

√
a2 + h2

)∣∣∣∣a
0
dθ

=

ˆ 2π

0

1
2
a
√

a2 + h2 dθ

= πa
√

a2 + h2.

This matches the formula found in the back of this text.

Notes:
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Example 4 Finding surface area over a region
Find the area of the surface f(x, y) = x2 − 3y+ 3 over the region R bounded by
−x ≤ y ≤ x, 0 ≤ x ≤ 4, as pictured in Figure 14.35.

SÊ½çã®ÊÄ It is straighƞorward to compute fx(x, y) = 2x and fy(x, y) =
−3. Thus the surface area is described by the double integral

Figure 14.35: Graphing the surface in Ex-
ample 4.

¨
R

√
1+ (2x)2 + (−3)2 dA =

¨
R

√
10+ 4x2 dA.

As with integrals describing arc length, double integrals describing surface area
are in general hard to evaluate directly because of the square–root. This parƟc-
ular integral can be easily evaluated, though, with judicious choice of our order
of integraƟon.

IntegraƟngwith order dx dy requires us to evaluate
´ √

10+ 4x2 dx. This can
be done, though it involves IntegraƟon By Parts and sinh−1 x. IntegraƟng with
order dy dx has as its first integral

´ √
10+ 4x2 dy, which is easy to evaluate: it

is simply y
√
10+ 4x2 + C. So we proceed with the order dy dx; the bounds are

already given in the statement of the problem.
¨

R

√
10+ 4x2 dA =

ˆ 4

0

ˆ x

−x

√
10+ 4x2 dy dx

=

ˆ 4

0

(
y
√
10+ 4x2

)∣∣∣x
−x

dx

=

ˆ 4

0

(
2x
√
10+ 4x2

)
dx.

Apply subsƟtuƟon with u = 10+ 4x2:

=

(
1
6
(
10+ 4x2

)3/2)∣∣∣∣4
0

=
1
3
(
37
√
74− 5

√
10
)
units2.

So while the region R over which we integrate has an area of 16 units2, the sur-
face has a much greater area as its z-values change dramaƟcally over R.

In pracƟce, technology helps greatly in the evaluaƟon of such integrals. High
powered computer algebra systems can compute integrals that are difficult, or
at least Ɵme consuming, by hand, and can at the least produce very accurate
approximaƟons with numerical methods. In general, just knowing how to set up
the proper integrals brings one very close to being able to compute the needed

Notes:
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value. Most of the work is actually done in just describing the region R in terms
of polar or rectangular coordinates. Once this is done, technology can usually
provide a good answer.

We have learned how to integrate integrals; that is, we have learned to eval-
uate double integrals. In the next secƟon, we learn how to integrate double in-
tegrals – that is, we learn to evaluate triple integrals, along with learning some
uses for this operaƟon.

Notes:
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Exercises 14.5
Terms and Concepts

1. “Surface area” is analogous towhat previously studied con-
cept?

2. To approximate the area of a small porƟon of a surface, we
computed the area of its plane.

3. We interpret
¨

R
dS as “sum up lots of liƩle

.”

4. Why is it important to know how to set up a double inte-
gral to compute surface area, even if the resulƟng integral
is hard to evaluate?

5. Why do z = f(x, y) and z = g(x, y) = f(x, y) + h, for some
real number h, have the same surface area over a region
R?

6. Let z = f(x, y) and z = g(x, y) = 2f(x, y). Why is the sur-
face area of g over a region R not twice the surface area of
f over R?

Problems

In Exercises 7–10, set up the iterated integral that computes
the surface area of the given surface over the region R.

7. f(x, y) = sin x cos y; R is the rectangle with bounds 0 ≤
x ≤ 2π, 0 ≤ y ≤ 2π.

8. f(x, y) = 1
x2 + y2 + 1

; R is the disk x2 + y2 ≤ 9.

9. f(x, y) = x2−y2; R is the rectangle with opposite corners
(−1,−1) and (1, 1).

10. f(x, y) = 1
ex2 + 1

; R is the rectangle bounded by

−5 ≤ x ≤ 5 and 0 ≤ y ≤ 1.

In Exercises 11–19, find the area of the given surface over the
region R.
11. f(x, y) = 3x − 7y + 2; R is the rectangle with opposite

corners (−1, 0) and (1, 3).
12. f(x, y) = 2x+ 2y+ 2; R is the triangle with corners (0, 0),

(1, 0) and (0, 1).
13. f(x, y) = x2 + y2 + 10; R is the disk x2 + y2 ≤ 16.
14. f(x, y) = −2x + 4y2 + 7 over R, the triangle bounded by

y = −x, y = x, 0 ≤ y ≤ 1.
15. f(x, y) = x2 + y over R, the triangle bounded by y = 2x,

y = 0 and x = 2.
16. f(x, y) = 2

3 x
3/2+2y3/2 over R, the rectangle with opposite

corners (0, 0) and (1, 1).
17. f(x, y) = 10 − 2

√
x2 + y2 over R, the disk x2 + y2 ≤ 25.

(This is the cone with height 10 and base radius 5; be sure
to compare you result with the known formula.)

18. Find the surface area of the sphere with radius 5 by dou-
bling the surface area of f(x, y) =

√
25− x2 − y2 over R,

the disk x2 + y2 ≤ 25. (Be sure to compare you result with
the known formula.)

19. Find the surface area of the ellipse formed by restricƟng
the plane f(x, y) = cx + dy + h to the region R, the disk
x2 + y2 ≤ 1, where c, d and h are some constants. Your
answer should be given in terms of c and d; why does the
value of h not maƩer?
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14.6 VolumeBetweenSurfaces andTriple IntegraƟon
We learned in SecƟon 14.2 how to compute the signed volume V under a surface
z = f(x, y) over a region R: V =

˜
R f(x, y) dA. It follows naturally that if f(x, y) ≥

g(x, y) on R, then the volume between f(x, y) and g(x, y) on R is

V =

¨
R
f(x, y) dA−

¨
R
g(x, y) dA =

¨
R

(
f(x, y)− g(x, y)

)
dA.

Theorem 127 Volume Between Surfaces
Let f and g be conƟnuous funcƟons on a closed, bounded region R,
where f(x, y) ≥ g(x, y) for all (x, y) in R. The volume V between f and g
over R is

V =

¨
R

(
f(x, y)− g(x, y)

)
dA.

Example 1 Finding volume between surfaces
Find the volume of the space region bounded by the planes z = 3x+ y− 4 and
z = 8− 3x− 2y in the 1st octant. In Figure 14.36(a) the planes are drawn; in (b),
only the defined region is given.

(a)

(b)

Figure 14.36: Finding the volume be-
tween the planes given in Example 1.

SÊ½çã®ÊÄ We need to determine the region R over which we will inte-
grate. To do so, we need to determine where the planes intersect. They have
common z-values when 3x+ y− 4 = 8− 3x− 2y. Applying a liƩle algebra, we
have:

3x+ y− 4 = 8− 3x− 2y
6x+ 3y = 12
2x+ y = 4

The planes intersect along the line 2x+y = 4. Therefore the region R is bounded
by x = 0, y = 0, and y = 4 − 2x; we can convert these bounds to integraƟon
bounds of 0 ≤ x ≤ 2, 0 ≤ y ≤ 4− 2x. Thus

V =

¨
R

(
8− 3x− 2y− (3x+ y− 4)

)
dA

=

ˆ 2

0

ˆ 4−2x

0

(
12− 6x− 3y

)
dy dx

= 16units3.

The volume between the surfaces is 16 cubic units.

Notes:
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In the preceding example, we found the volume by evaluaƟng the integral

ˆ 2

0

ˆ 4−2x

0

(
8− 3x− 2y− (3x+ y− 4)

)
dy dx.

Note how we can rewrite the integrand as an integral, much as we did in Sec-
Ɵon 14.1:

8− 3x− 2y− (3x+ y− 4) =
ˆ 8−3x−2y

3x+y−4
dz.

Thus we can rewrite the double integral that finds volume as

ˆ 2

0

ˆ 4−2x

0

(
8−3x−2y−(3x+y−4)

)
dy dx =

ˆ 2

0

ˆ 4−2x

0

(ˆ 8−3x−2y

3x+y−4
dz
)

dy dx.

This no longer looks like a “double integral,” but more like a “triple integral.”
Just as our first introducƟon to double integrals was in the context of finding the
area of a plane region, our introducƟon into triple integrals will be in the context
of finding the volume of a space region.

(a)

(b)

Figure 14.37: ApproximaƟng the volume
of a region D in space.

To formally find the volume of a closed, bounded region D in space, such as
the one shown in Figure 14.37(a), we start with an approximaƟon. Break D into
n rectangular solids; the solids near the boundary of Dmay possibly not include
porƟons of D and/or include extra space. In Figure 14.37(b), we zoom in on a
porƟon of the boundary of D to show a rectangular solid that contains space not
in D; as this is an approximaƟon of the volume, this is acceptable and this error
will be reduced as we shrink the size of our solids.

The volume ∆Vi of the i th solid Di is ∆Vi = ∆xi∆yi∆zi, where ∆xi, ∆yi
and∆zi give the dimensions of the rectangular solid in the x, y and z direcƟons,
respecƟvely. By summing up the volumes of all n solids, we get an approximaƟon
of the volume V of D:

V ≈
n∑

i=1

∆Vi =

n∑
i=1

∆xi∆yi∆zi.

Let ∥∆D∥ represent the length of the longest diagonal of rectangular solids
in the subdivision of D. As ∥∆D∥ → 0, the volume of each solid goes to 0, as do
each of ∆xi, ∆yi and ∆zi, for all i. Our calculus experience tells us that taking
a limit as ∥∆D∥ → 0 turns our approximaƟon of V into an exact calculaƟon of
V. Before we state this result in a theorem, we use a definiƟon to define some
terms.

Notes:
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DefiniƟon 108 Triple Integrals, Iterated IntegraƟon (Part I)
Let D be a closed, bounded region in space. Let a and b be real numbers, let g1(x) and g2(x)
be conƟnuous funcƟons of x, and let f1(x, y) and f2(x, y) be conƟnuous funcƟons of x and y.

1. The volume V of D is denoted by a triple integral, V =

˚
D
dV.

2. The iterated integral
ˆ b

a

ˆ g2(x)

g1(x)

ˆ f2(x,y)

f1(x,y)
dz dy dx is evaluated as

ˆ b

a

ˆ g2(x)

g1(x)

ˆ f2(x,y)

f1(x,y)
dz dy dx =

ˆ b

a

ˆ g2(x)

g1(x)

(ˆ f2(x,y)

f1(x,y)
dz

)
dy dx.

EvaluaƟng the above iterated integral is triple integraƟon.

Our informal understanding of the notaƟon
˝

D dV is “sum up lots of liƩle
volumes over D,” analogous to our understanding of

˜
R dA and

˜
R dm. We

now state the major theorem of this secƟon.

Theorem 128 Triple IntegraƟon (Part I)
Let D be a closed, bounded region in space and let ∆D be any subdivision of D into n rect-
angular solids, where the i th subregion Di has dimensions∆xi ×∆yi ×∆zi and volume∆Vi.

1. The volume V of D is

V =

˚
D
dV = lim

∥∆D∥→0

n∑
i=1

∆Vi = lim
∥∆D∥→0

n∑
i=1

∆xi∆yi∆zi.

2. If D is defined as the region bounded by the planes x = a and x = b, the cylinders
y = g1(x) and y = g2(x), and the surfaces z = f1(x, y) and z = f2(x, y), where a < b,
g1(x) ≤ g2(x) and f1(x, y) ≤ f2(x, y) on D, then

˚
D
dV =

ˆ b

a

ˆ g2(x)

g1(x)

ˆ f2(x,y)

f1(x,y)
dz dy dx.

3. V can be determined using iterated integraƟon with other orders of integraƟon (there
are 6 total), as long as D is defined by the region enclosed by a pair of planes, a pair of
cylinders, and a pair of surfaces.

Notes:
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We evaluated the area of a plane region R by iterated integraƟon, where
the bounds were “from curve to curve, then from point to point.” Theorem 128
allows us to find the volume of a space region with an iterated integral with
bounds “from surface to surface, then from curve to curve, then from point to
point.” In the iterated integral

ˆ b

a

ˆ g2(x)

g1(x)

ˆ f2(x,y)

f1(x,y)
dz dy dx,

the bounds a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x) define a region R in the x-y plane
overwhich the regionD exists in space. However, these bounds are also defining
surfaces in space; x = a is a plane and y = g1(x) is a cylinder. The combinaƟon
of these 6 surfaces enclose, and define, D.

Watch the video:
Triple Integrals at
https://youtu.be/zFy-OpajEtA

Examples will help us understand triple integraƟon, including integraƟng
with various orders of integraƟon.

(a)

(b)

Figure 14.38: The region D used in Exam-
ple 2 in (a); in (b), the region found by col-
lapsing D onto the x-y plane.

Example 2 Finding the volume of a space region with triple integra-
Ɵon
Find the volume of the space region in the 1st octant bounded by the plane
z = 2 − y/3 − 2x/3, shown in Figure 14.38(a), using the order of integraƟon
dz dy dx. Set up the triple integrals that give the volume in the other 5 orders of
integraƟon.

SÊ½çã®ÊÄ StarƟng with the order of integraƟon dz dy dx, we need to
first find bounds on z. The region D is bounded below by the plane z = 0 (be-
cause we are restricted to the first octant) and above by z = 2 − y/3 − 2x/3;
0 ≤ z ≤ 2− y/3− 2x/3.

To find the bounds on y and x, we “collapse” the region onto the x-y plane,
giving the triangle shown in Figure 14.38(b). (We know the equaƟon of the line
y = 6− 2x in two ways. First, by seƫng z = 0, we have 0 = 2− y/3− 2x/3⇒
y = 6 − 2x. Secondly, we know this is going to be a straight line between the
points (3, 0) and (0, 6) in the x-y plane.)

Notes:
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We define that region R, in the integraƟon order of dy dx, with bounds 0 ≤
y ≤ 6− 2x and 0 ≤ x ≤ 3. Thus the volume V of the region D is:

V =

˚
D
dV

=

ˆ 3

0

ˆ 6−2x

0

ˆ 2− 1
3 y−

2
3 x

0
dz dy dz

=

ˆ 3

0

ˆ 6−2x

0

(ˆ 2− 1
3 y−

2
3 x

0
dz

)
dy dz

=

ˆ 3

0

ˆ 6−2x

0
z
∣∣∣2− 1

3 y−
2
3 x

0
dy dz

=

ˆ 3

0

ˆ 6−2x

0

(
2− 1

3
y− 2

3
x
)

dy dz.

From this step on, we are evaluaƟng a double integral as done many Ɵmes be-
fore. We skip these steps and give the final volume,

= 6units3.

The order dz dx dy:

Now consider the volumeusing the order of integraƟon dz dx dy. The bounds
on z are the same as before, 0 ≤ z ≤ 2−y/3−2x/3. Collapsing the space region
on the x-y plane as shown in Figure 14.38(b), we now describe this triangle with
the order of integraƟon dx dy. This gives bounds 0 ≤ x ≤ 3−y/2 and 0 ≤ y ≤ 6.
Thus the volume is given by the triple integral

V =

ˆ 6

0

ˆ 3− 1
2 y

0

ˆ 2− 1
3 y−

2
3 x

0
dz dx dy.

The order dx dy dz:

Following our “surface to surface. . .” strategy, we need to determine the
x-surfaces that bound our space region. To do so, approach the region “from
behind,” in the direcƟon of increasing x. The first surface we hit as we enter the
region is the y-z plane, defined by x = 0. We come out of the region at the plane
z = 2− y/3−2x/3; solving for x, we have x = 3− y/2−3z/2. Thus the bounds
on x are: 0 ≤ x ≤ 3− y/2− 3z/2.

Nowcollapse the space regiononto the y-zplane, as shown in Figure 14.39(a).
(Again, we find the equaƟon of the line z = 2−y/3 by seƫng x = 0 in the equa-
Ɵon x = 3− y/2− 3z/2.) We need to find bounds on this region with the order

Notes:
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dy dz. The curves that bound y are y = 0 and y = 6− 3z; the points that bound
z are 0 and 2. Thus the triple integral giving volume is:

0 ≤ x ≤ 3− y/2− 3z/2
0 ≤ y ≤ 6− 3z

0 ≤ z ≤ 2
⇒

ˆ 2

0

ˆ 6−3z

0

ˆ 3−y/2−3z/2

0
dx dy dz.

(a)

(b)

Figure 14.39: The region D in Example 2 is
collapsed onto the y-z plane in (a); in (b),
the region is collapsed onto the x-z plane.

The order dx dz dy:

The x-bounds are the same as the order above. Wenowconsider the triangle
in Figure 14.39(a) and describe it with the order dz dy: 0 ≤ z ≤ 2 − y/3 and
0 ≤ y ≤ 6. Thus the volume is given by:

0 ≤ x ≤ 3− y/2− 3z/2
0 ≤ z ≤ 2− y/3

0 ≤ y ≤ 6
⇒

ˆ 6

0

ˆ 2−y/3

0

ˆ 3−y/2−3z/2

0
dx dz dy.

The order dy dz dx:

We now need to determine the y-surfaces that determine our region. Ap-
proaching the space region from “behind” and moving in the direcƟon of in-
creasing y, we first enter the region at y = 0, and exit along the plane z =
2− y/3− 2x/3. Solving for y, this plane has equaƟon y = 6− 2x− 3z. Thus y
has bounds 0 ≤ y ≤ 6− 2x− 3z.

Now collapse the region onto the x-z plane, as shown in Figure 14.39(b). The
curves bounding this triangle are z = 0 and z = 2 − 2x/3; x is bounded by the
points x = 0 to x = 3. Thus the triple integral giving volume is:

0 ≤ y ≤ 6− 2x− 3z
0 ≤ z ≤ 2− 2x/3

0 ≤ x ≤ 3
⇒

ˆ 3

0

ˆ 2−2x/3

0

ˆ 6−2x−3z

0
dy dz dx.

The order dy dx dz:

The y-bounds are the same as in the order above. We now determine the
bounds of the triangle in Figure 14.39(b) using the order dy dx dz. We see x is
bounded by x = 0 and x = 3 − 3z/2; z is bounded between z = 0 and z = 2.
This leads to the triple integral:

0 ≤ y ≤ 6− 2x− 3z
0 ≤ x ≤ 3− 3z/2

0 ≤ z ≤ 2
⇒

ˆ 2

0

ˆ 3−3z/2

0

ˆ 6−2x−3z

0
dy dx dz.

Notes:
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This problem was long, but hopefully useful, demonstraƟng how to deter-
mine bounds with every order of integraƟon to describe the region D. In prac-
Ɵce, we only need 1, but being able to do them all gives us flexibility to choose
the order that suits us best.

In the previous example, we collapsed the surface into the x-y, x-z, and y-z
planes as we determined the “curve to curve, point to point” bounds of inte-
graƟon. Since the surface was a triangular porƟon of a plane, this collapsing, or
projecƟng, was simple: the projecƟon of a straight line in space onto a coordi-
nate plane is a line.

The following example shows us how to do this when dealing with more
complicated surfaces and curves.

(a)

(b)

Figure 14.40: Finding the projecƟons of
the curve of intersecƟon in Example 3.

Example 3 Finding the projecƟon of a curve in space onto the coordi-
nate planes
Consider the surfaces z = 3− x2 − y2 and z = 2y, as shown in Figure 14.40(a).
The curve of their intersecƟon is shown, along with the projecƟon of this curve
into the coordinate planes, shown dashed. Find the equaƟons of the projecƟons
into the coordinate planes.

SÊ½çã®ÊÄ The two surfaces are z = 3 − x2 − y2 and z = 2y. To find
where they intersect, it is natural to set them equal to each other: 3− x2−y2 =
2y. This is an implicit funcƟon of x and y that gives all points (x, y) in the x-y
plane where the z values of the two surfaces are equal.

We can rewrite this implicit funcƟon by compleƟng the square:

3− x2 − y2 = 2y ⇒ y2 + 2y+ x2 = 3 ⇒ (y+ 1)2 + x2 = 4.

Thus in the x-y plane the projecƟon of the intersecƟon is a circle with radius 2,
centered at (0,−1).

To project onto the x-z plane, we do a similar procedure: find the x and z
values where the y values on the surface are the same. We start by solving the
equaƟon of each surface for y. In this parƟcular case, it works well to actually
solve for y2:
z = 3− x2 − y2 ⇒ y2 = 3− x2 − z
z = 2y ⇒ y2 = z2/4.

Thus we have (aŌer again compleƟng the square):

3− x2 − z = z2/4 ⇒ (z+ 2)2

16
+

x2

4
= 1,

and ellipse centered at (0,−2) in the x-z plane with a major axis of length 8 and
a minor axis of length 4.

Notes:
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Finally, to project the curve of intersecƟon into the y-z plane, we solve equa-
Ɵon for x. Since z = 2y is a cylinder that lacks the variable x, it becomes our
equaƟon of the projecƟon in the y-z plane.

All three projecƟons are shown in Figure 14.40(b).

(a)

(b)

Figure 14.41: The region D in Example 4
is shown in (a); in (b), it is collapsed onto
the x-y plane.

Example 4 Finding the volumeof a space regionwith triple integraƟon
Set up the triple integrals that find the volume of the space region D bounded
by the surfaces x2 + y2 = 1, z = 0 and z = −y, as shown in Figure 14.41(a),
with the orders of integraƟon dz dy dx, dy dx dz and dx dz dy.

SÊ½çã®ÊÄ The order dz dy dx:

The region D is bounded below by the plane z = 0 and above by the plane
z = −y. The cylinder x2 + y2 = 1 does not offer any bounds in the z-direcƟon,
as that surface is parallel to the z-axis. Thus 0 ≤ z ≤ −y.

Collapsing the region into the x-y plane, we get part of the region bounded
by the circle with equaƟon x2+y2 = 1 as shown in Figure 14.41(b). As a funcƟon
of x, this half circle has equaƟon y = −

√
1− x2. Thus y is bounded below by

−
√
1− x2 and above by y = 0: −

√
1− x2 ≤ y ≤ 0. The x bounds of the half

circle are−1 ≤ x ≤ 1. All together, the bounds of integraƟon and triple integral
are as follows:

0 ≤ z ≤ −y

−
√
1− x2 ≤ y ≤ 0
−1 ≤ x ≤ 1

⇒
ˆ 1

−1

ˆ 0

−
√
1−x2

ˆ −y

0
dz dy dx.

We evaluate this triple integral:
ˆ 1

−1

ˆ 0

−
√
1−x2

ˆ −y

0
dz dy dx =

ˆ 1

−1

ˆ 0

−
√
1−x2

(
− y
)
dy dx

=

ˆ 1

−1

(
− 1

2
y2
)∣∣∣0

−
√
1−x2

dx

=

ˆ 1

−1

1
2
(
1− x2

)
dx

=

(
1
2

(
x− 1

3
x3
))∣∣∣∣1

−1

=
2
3
units3.

With the order dy dx dz:

Notes:
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The region is bounded “below” in the y-direcƟon by the surface x2 + y2 =
1⇒ y = −

√
1− x2 and “above” by the surface y = −z. Thus the y bounds are

−
√
1− x2 ≤ y ≤ −z.

(a)

(b)

Figure 14.42: The region D in Example 4 is
shown collapsed onto the x-z plane in (a);
in (b), it is collapsed onto the y-z plane.

Collapsing the regiononto the x-zplane gives the region shown in Figure 14.42(a);
this half disk is bounded by a circle with equaƟon x2+z2 = 1. (We find this curve
by solving each surface for y2, then seƫng them equal to each other. We have
y2 = 1− x2 and y = −z⇒ y2 = z2. Thus x2 + z2 = 1.) It is bounded below by
x = −

√
1− z2 and above by x =

√
1− z2, where z is bounded by 0 ≤ z ≤ 1.

All together, we have:

−
√
1− x2 ≤ y ≤ −z

−
√
1− z2 ≤ x ≤

√
1− z2

0 ≤ z ≤ 1

⇒
ˆ 1

0

ˆ √
1−z2

−
√
1−z2

ˆ −z

−
√
1−x2

dy dx dz.

With the order dx dz dy:

D is bounded below by the surface x = −
√
1− y2 and above by

√
1− y2.

We then collapse the region onto the y-z plane and get the triangle shown in
Figure 14.42(b). (The hypotenuse is the line z = −y, just as the plane.) Thus z is
bounded by 0 ≤ z ≤ −y and y is bounded by−1 ≤ y ≤ 0. This gives:

−
√
1− y2 ≤ x ≤

√
1− y2

0 ≤ z ≤ −y
−1 ≤ y ≤ 0

⇒
ˆ 0

−1

ˆ −y

0

ˆ √1−y2

−
√

1−y2
dx dz dy.

The following theorem states two things that should make “common sense”
to us. First, using the triple integral to find volume of a region D should always
return a posiƟve number; we are compuƟng volume here, not signed volume.
Secondly, to compute the volume of a “complicated” region, we could break
it up into subregions and compute the volumes of each subregion separately,
summing them later to find the total volume.

Theorem 129 ProperƟes of Triple Integrals
Let D be a closed, bounded region in space, and let D1 and D2 be non-
overlapping regions such that D = D1

∪
D2.

1.
˚

D
dV ≥ 0

2.
˚

D
dV =

˚
D1

dV+

˚
D2

dV.

Notes:
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We use this laƩer property in the next example.

Example 5 Finding the volumeof a space regionwith triple integraƟon
Find the volume of the space region D bounded by the coordinate planes, z =
1− x/2 and z = 1− y/4, as shown in Figure 14.43(a). Set up the triple integrals
that find the volume of D in all 6 orders of integraƟon.

(a)

(b)

Figure 14.43: The region D in Example 5
is shown in (a); in (b), it is collapsed onto
the x-y plane.

SÊ½çã®ÊÄ Following the bounds–determining strategy of “surface to
surface, curve to curve, and point to point,” we can see that the most difficult
orders of integraƟon are the two in which we integrate with respect to z first,
for there are two “upper” surfaces that bound D in the z-direcƟon. So we start
by noƟng that we have

0 ≤ z ≤ 1− 1
2
x and 0 ≤ z ≤ 1− 1

4
y.

We now collapse the region D onto the x-y axis, as shown in Figure 14.43(b).
The boundary of D, the line from (0, 0, 1) to (2, 4, 0), is shown in part (b) of the
figure as a dashed line; it has equaƟon y = 2x. (We can recognize this in two
ways: one, in collapsing the line from (0, 0, 1) to (2, 4, 0) onto the x-y plane,
we simply ignore the z-values, meaning the line now goes from (0, 0) to (2, 4).
Secondly, the two surfaces meet where z = 1 − x/2 is equal to z = 1 − y/4:
thus 1− x/2 = 1− y/4⇒ y = 2x.)

We use the second property of Theorem 129 to state that˚
D
dV =

˚
D1

dV+

˚
D2

dV,

where D1 and D2 are the space regions above the plane regions R1 and R2, re-
specƟvely. Thus we can say

˚
D
dV =

¨
R1

(ˆ 1−x/2

0
dz

)
dA+

¨
R2

(ˆ 1−y/4

0
dz

)
dA.

All that is leŌ is to determine bounds of R1 and R2, depending on whether we
are integraƟngwith order dx dy or dy dx. We give the final integrals here, leaving
it to the reader to confirm these results.

dz dy dx: 0 ≤ z ≤ 1− x/2
0 ≤ y ≤ 2x
0 ≤ x ≤ 2

0 ≤ z ≤ 1− y/4
2x ≤ y ≤ 4
0 ≤ x ≤ 2˚

D
dV =

ˆ 2

0

ˆ 2x

0

ˆ 1−x/2

0
dz dy dx+

ˆ 2

0

ˆ 4

2x

ˆ 1−y/4

0
dz dy dx

Notes:
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dz dx dy:
0 ≤ z ≤ 1− x/2
y/2 ≤ x ≤ 2
0 ≤ y ≤ 4

0 ≤ z ≤ 1− y/4
0 ≤ x ≤ y/2
0 ≤ y ≤ 4˚

D
dV =

ˆ 4

0

ˆ 2

y/2

ˆ 1−x/2

0
dz dx dy+

ˆ 4

0

ˆ y/2

0

ˆ 1−y/4

0
dz dx dy

(a)

(b)

Figure 14.44: The region D in Example 5 is
shown collapsed onto the x-z plane in (a);
in (b), it is collapsed onto the y-z plane.

The remaining four orders of integraƟon do not require a sum of triple in-
tegrals. In Figure 14.44 we show D collapsed onto the other two coordinate
planes. Using these graphs, we give the final orders of integraƟon here, again
leaving it to the reader to confirm these results.
dy dx dz:

0 ≤ y ≤ 4− 4z
0 ≤ x ≤ 2− 2z

0 ≤ z ≤ 1
⇒

ˆ 1

0

ˆ 2−2z

0

ˆ 4−4z

0
dy dx dz

dy dz dx:
0 ≤ y ≤ 4− 4z
0 ≤ z ≤ 1− x/2

0 ≤ x ≤ 2
⇒

ˆ 2

0

ˆ 1−x/2

0

ˆ 4−4z

0
dy dx dz

dx dy dz:
0 ≤ x ≤ 2− 2z
0 ≤ y ≤ 4− 4z

0 ≤ z ≤ 1
⇒

ˆ 1

0

ˆ 4−4z

0

ˆ 2−2z

0
dx dy dz

dx dz dy:
0 ≤ x ≤ 2− 2z
0 ≤ z ≤ 1− y/4

0 ≤ y ≤ 4
⇒

ˆ 4

0

ˆ 1−y/4

0

ˆ 2−2z

0
dx dz dy

We give one more example of finding the volume of a space region.

Example 6 Finding the volume of a space region
Set up a triple integral that gives the volume of the space region D bounded by
z = 2x2 + 2 and z = 6− 2x2 − y2. These surfaces are ploƩed in Figure 14.45(a)
and (b), respecƟvely; the region D is shown in part (c) of the figure.

Notes:
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(a) (b) (c)

Figure 14.45: The region D is bounded by the surfaces shown in (a) and (b); D is shown
in (c).

SÊ½çã®ÊÄ The main point of this example is this: integraƟng with re-
spect to z first is rather straighƞorward; integraƟng with respect to x first is not.

The order dz dy dx:

The bounds on z are clearly 2x2+2 ≤ z ≤ 6−2x2−y2. CollapsingD onto the
x-y plane gives the ellipse shown in Figure 14.45(c). The equaƟon of this ellipse
is found by seƫng the two surfaces equal to each other:

2x2 + 2 = 6− 2x2 − y2 ⇒ 4x2 + y2 = 4 ⇒ x2 +
y2

4
= 1.

We can describe this ellipse with the bounds

−
√
4− 4x2 ≤ y ≤

√
4− 4x2 and − 1 ≤ x ≤ 1.

Thus we find volume as

2x2 + 2 ≤ z ≤ 6− 2x2 − y2

−
√
4− 4x2 ≤ y ≤

√
4− 4x2

−1 ≤ x ≤ 1
⇒

ˆ 1

−1

ˆ √
4−4x2

−
√
4−4x2

ˆ 6−2x2−y2

2x2+2
dz dy dx

The order dy dz dx:

IntegraƟngwith respect to y is not too difficult. Since the surface z = 2x2+2
is a cylinder whose directrix is the y-axis, it does not create a border for y. The
paraboloid z = 6− 2x2 − y2 does; solving for y, we get the bounds

−
√
6− 2x2 − z ≤ y ≤

√
6− 2x2 − z.

Notes:
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Collapsing D onto the x-z axes gives the region shown in Figure 14.46(a); the
lower curve is from the cylinder, with equaƟon z = 2x2 + 2. The upper curve is
from the paraboloid; with y = 0, the curve is z = 6− 2x2. Thus bounds on z are
2x2 + 2 ≤ z ≤ 6− 2x2; the bounds on x are−1 ≤ x ≤ 1. Thus we have:

−
√
6− 2x2 − z ≤ y ≤

√
6− 2x2 − z

2x2 + 2 ≤ z ≤ 6− 2x2

−1 ≤ x ≤ 1
⇒

ˆ 1

−1

ˆ 6−2x2

2x2+2

ˆ √
6−2x2−z

−
√
6−2x2−z

dy dz dx.

(a)

(b)

Figure 14.46: The region D in Example 6 is
collapsed onto the x-z plane in (a); in (b),
it is collapsed onto the y-z plane.

The order dx dz dy:

This order takes more effort as D must be split into two subregions. The
two surfaces create two sets of upper/lower bounds in terms of x; the cylinder
creates bounds

−
√

z/2− 1 ≤ x ≤
√

z/2− 1

for region D1 and the paraboloid creates bounds

−
√
3− y2/2− z2/2 ≤ x ≤

√
3− y2/2− z2/2

for region D2.
Collapsing D onto the y-z axes gives the regions shown in Figure 14.46(b).

We find the equaƟon of the curve z = 4 − y2/2 by noƟng that the equaƟon of
the ellipse seen in Figure 14.45(c) has equaƟon

x2 + y2/4 = 1 ⇒ x =
√
1− y2/4.

SubsƟtute this expression for x in either surface equaƟon, z = 6 − 2x2 − y2 or
z = 2x2 + 2. In both cases, we find

z = 4− 1
2
y2.

Region R1, corresponding to D1, has bounds

2 ≤ z ≤ 4− y2/2, −2 ≤ y ≤ 2

and region R2, corresponding to D2, has bounds

4− y2/2 ≤ z ≤ 6− y2, −2 ≤ y ≤ 2.

Thus the volume of D is given by:

ˆ 2

−2

ˆ 4−y2/2

2

ˆ √z/2−1

−
√

z/2−1
dx dz dy+

ˆ 2

−2

ˆ 6−y2

4−y2/2

ˆ √3−y2/2−z2/2

−
√

3−y2/2−z2/2
dx dz dy.
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If all one wanted to do in Example 6 was find the volume of the regionD, one
would have likely stopped at the first integraƟon setup (with order dz dy dx) and
computed the volume from there. However, we included the other twomethods
(1) to show that it could be done, “messy” or not, and (2) because someƟmeswe
“have” to use a less desirable order of integraƟon in order to actually integrate.

Triple IntegraƟon and FuncƟons of Three Variables

There are uses for triple integraƟon beyondmerely finding volume, just as there
are uses for integraƟon beyond “area under the curve.” These uses start with
understanding how to integrate funcƟons of three variables, which is effecƟvely
no different than integraƟng funcƟons of two variables. This leads us to a defi-
niƟon, followed by an example.

DefiniƟon 109 Iterated IntegraƟon, (Part II)
Let D be a closed, bounded region in space, over which g1(x), g2(x),
f1(x, y), f2(x, y) and h(x, y, z) are all conƟnuous, and let a and b be real
numbers.

The iterated integral
ˆ b

a

ˆ g2(x)

g1(x)

ˆ f2(x,y)

f1(x,y)
h(x, y, z) dz dy dx is evaluated

as
ˆ b

a

ˆ g2(x)

g1(x)

ˆ f2(x,y)

f1(x,y)
h(x, y, z)dz dy dx =

ˆ b

a

ˆ g2(x)

g1(x)

(ˆ f2(x,y)

f1(x,y)
h(x, y, z) dz

)
dy dx.

Example 7 EvaluaƟng a triple integral of a funcƟon of three variables

Evaluate
ˆ 1

0

ˆ x

x2

ˆ 2x+3y

x2−y

(
xy+ 2xz

)
dz dy dx.

SÊ½çã®ÊÄ We evaluate this integral according to DefiniƟon 109.

Notes:
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ˆ 1

0

ˆ x

x2

ˆ 2x+3y

x2−y

(
xy+ 2xz

)
dz dy dx

=

ˆ 1

0

ˆ x

x2

(ˆ 2x+3y

x2−y

(
xy+ 2xz

)
dz
)

dy dx

=

ˆ 1

0

ˆ x

x2

((
xyz+ xz2

)∣∣∣2x+3y

x2−y

)
dy dx

=

ˆ 1

0

ˆ x

x2

(
xy(2x+ 3y) + x(2x+ 3y)2 −

(
xy(x2 − y) + x(x2 − y)2

))
dy dx

=

ˆ 1

0

ˆ x

x2

(
− x5 + x3y+ 4x3 + 14x2y+ 12xy2

)
dy dx.

We conƟnue as we have in the past, showing fewer steps.

=

ˆ 1

0

(
− 7

2
x7 − 8x6 − 7

2
x5 + 15x4

)
dx

=
281
336

.

We now know how to evaluate a triple integral of a funcƟon of three vari-
ables; we do not yet understand what itmeans. We build up this understanding
in a way very similar to how we have understood integraƟon and double inte-
graƟon.

Let h(x, y, z) be a conƟnuous funcƟon of three variables, defined over some
space region D. We can parƟƟon D into n rectangular–solid subregions, each
with dimensions ∆xi × ∆yi × ∆zi. Let (xi, yi, zi) be some point in the i th sub-
region, and consider the product h(xi, yi, zi)∆xi∆yi∆zi. It is the product of a
funcƟon value (that’s the h(xi, yi, zi) part) and a small volume ∆Vi (that’s the
∆xi∆yi∆zi part). One of the simplest understanding of this type of product is
when h describes the density of an object, for then h× volume = mass.

We can sum up all n products over D. Again leƫng ∥∆D∥ represent the
length of the longest diagonal of the n rectangular solids in the parƟƟon, we can
take the limit of the sums of products as ∥∆D∥ → 0. That is, we can find

S = lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆Vi = lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆xi∆yi∆zi.

While this limit has lots of interpretaƟons depending on the funcƟon h, in
the case where h describes density, S is the total mass of the object described
by the region D.

Notes:
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We now use the above limit to define the triple integral, give a theorem that
relates triple integrals to iterated iteraƟon, followed by the applicaƟon of triple
integrals to find the centers of mass of solid objects.

Note: In the marginal note on
page 862, we showed how the sum-
maƟon of rectangles over a region R
in the plane could be viewed as a dou-
ble sum, leading to the double inte-
gral. Likewise, we can view the sum
n∑

i=1

h(xi, yi, zi)∆xi∆yi∆zi as a triple

sum,

p∑
k=1

n∑
j=1

m∑
i=1

h(xi, yj, zk)∆xi∆yj∆zk,

which we evaluate as
p∑

k=1

(
n∑

j=1

(
m∑
i=1

h(xi, yj, zk)∆xi

)
∆yj

)
∆zk.

Here we fix a k value, which estab-
lishes the z-height of the rectangular
solids on one “level” of all the rectan-
gular solids in the space regionD. The
inner double summaƟon adds up all
the volumes of the rectangular solids
on this level, while the outer sum-
maƟon adds up the volumes of each
level.
This triple summaƟon understanding
leads to the

˝
D notaƟon of the triple

integral, as well as the method of
evaluaƟon shown in Theorem 130.

DefiniƟon 110 Triple Integral
Let w = h(x, y, z) be a conƟnuous funcƟon over a closed, bounded
space regionD, and let∆D be any parƟƟon ofD into n rectangular solids
with volume∆Vi. The triple integral of h over D is

˚
D
h(x, y, z) dV = lim

∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆Vi.

The following theorem assures us that the above limit exists for conƟnuous
funcƟons h and gives us a method of evaluaƟng the limit.

Theorem 130 Triple IntegraƟon (Part II)
Let w = h(x, y, z) be a conƟnuous funcƟon over a closed, bounded
space regionD, and let∆D be any parƟƟon ofD into n rectangular solids
with volume Vi.

1. The limit lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆Vi exists.

2. If D is defined as the region bounded by the planes x = a and
x = b, the cylinders y = g1(x) and y = g2(x), and the surfaces
z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x) and
f1(x, y) ≤ f2(x, y) on D, then
˚

D
h(x, y, z) dV =

ˆ b

a

ˆ g2(x)

g1(x)

ˆ f2(x,y)

f1(x,y)
h(x, y, z) dz dy dx.

We now apply triple integraƟon to find the centers of mass of solid objects.

Mass and Center of Mass

One may wish to review SecƟon 14.4 for a reminder of the relevant terms and
concepts.

Notes:
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DefiniƟon 111 Mass, Center of Mass of Solids
Let a solid be represented by a region D in space with variable density
funcƟon δ(x, y, z).

1. Themass of the object isM =

˚
D
dm =

˚
D
δ(x, y, z) dV.

2. Themoment about the x-y plane isMxy =

˚
D
zδ(x, y, z) dV.

3. Themoment about the x-z plane isMxz =

˚
D
yδ(x, y, z) dV.

4. Themoment about the y-z plane isMyz =

˚
D
xδ(x, y, z) dV.

5. The center of mass of the object is

(
x, y, z

)
=

(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

Example 8 Finding the center of mass of a solid
Find the mass and center of mass of the solid represented by the space region
boundedby the coordinate planes and z = 2−y/3−2x/3, shown in Figure 14.47,
with constant density δ(x, y, z) = 3g/cm3. (Note: this space region was used in
Example 2.)

Figure 14.47: Finding the center of mass
of this solid in Example 8.

SÊ½çã®ÊÄ We apply DefiniƟon 111. In Example 2, we found bounds for
the order of integraƟon dz dy dx to be 0 ≤ z ≤ 2− y/3− 2x/3, 0 ≤ y ≤ 6− 2x
and 0 ≤ x ≤ 3. We find the mass of the object:

M =

˚
D
δ(x, y, z) dV

=

ˆ 3

0

ˆ 6−2x

0

ˆ 2−y/3−2x/3

0

(
3
)
dz dy dx

= 3
ˆ 3

0

ˆ 6−2x

0

ˆ 2−y/3−2x/3

0
dz dy dx

= 3(6) = 18g.

The evaluaƟon of the triple integral is done in Example 2, so we skipped those
steps above. Note how the mass of an object with constant density is simply
“density×volume.”

Notes:
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We now find the moments about the planes.

Mxy =

˚
D
3z dV

=

ˆ 3

0

ˆ 6−2x

0

ˆ 2−y/3−2x/3

0

(
3z
)
dz dy dx

=

ˆ 3

0

ˆ 6−2x

0

3
2
(
2− y/3− 2x/3

)2 dy dx
=

ˆ 3

0
−4
9
(
x− 3

)3 dx
= 9.

We omit the steps of integraƟng to find the other moments.

Myz =

˚
D
3x dV =

27
2
.

Mxz =

˚
D
3y dV = 27.

The center of mass is(
x, y, z

)
=

(
27/2
18

,
27
18

,
9
18

)
=
(
0.75, 1.5, 0.5

)
.

Example 9 Finding the center of mass of a solid
Find the center of mass of the solid represented by the region bounded by the
planes z = 0 and z = −y and the cylinder x2 + y2 = 1, shown in Figure 14.48,
with density funcƟon δ(x, y, z) = 10 + x2 + 5y − 5z. (Note: this space region
was used in Example 4.)

Figure 14.48: Finding the center of mass
of this solid in Example 9.

SÊ½çã®ÊÄ As we start, consider the density funcƟon. It is symmetric
about the y-z plane, and the farther one moves from this plane, the denser the
object is. The symmetry indicates that x should be 0.

As one moves away from the origin in the y or z direcƟons, the object be-
comes less dense, though there is more volume in these regions.

Though none of the integrals needed to compute the center of mass are
parƟcularly hard, they do require a number of steps. We emphasize here the
importance of knowing how to set up the proper integrals; in complex situaƟons
we can appeal to technology for a good approximaƟon, if not the exact answer.
We use the order of integraƟon dz dy dx, using the bounds found in Example 4.

Notes:
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(As these are the same for all four triple integrals, we explicitly show the bounds
only forM.)

M =

˚
D

(
10+ x2 + 5y− 5z

)
dV

=

ˆ 1

−1

ˆ 0

−
√
1−x2

ˆ −y

0

(
10+ x2 + 5y− 5z

)
dV

=
64
5
− 15π

16
≈ 3.855.

Myz =

˚
D
x
(
10+ x2 + 5y− 5z

)
dV = 0.

Mxz =

˚
D
y
(
10+ x2 + 5y− 5z

)
dV = 2− 61π

48
≈ −1.99.

Mxy =

˚
D
z
(
10+ x2 + 5y− 5z

)
dV =

61π
96
− 10

9
≈ 0.885.

Note howMyz = 0, as expected. The center of mass is

(
x, y, z

)
=

(
0,
−1.99
3.855

,
0.885
3.855

)
≈
(
0,−0.516, 0.230

)
.

As stated before, there are many uses for triple integraƟon beyond finding
volume. When h(x, y, z) describes a rate of change funcƟon over some space

region D, then
˚

D
h(x, y, z) dV gives the total change over D. Our one specific

example of this was compuƟngmass; a density funcƟon is simply a “rate ofmass
change per volume” funcƟon. IntegraƟng density gives total mass.

While knowing how to integrate is important, it is arguably much more im-
portant to know how to set up integrals. It takes skill to create a formula that de-
scribes a desired quanƟty; modern technology is very useful in evaluaƟng these
formulas quickly and accurately.

Notes:
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Exercises 14.6
Terms and Concepts

1. The strategy for establishing bounds for triple integrals
is “ to , to and

to .”

2. Give an informal interpretaƟon of what “
˚

D
dV” means.

3. Give two uses of triple integraƟon.

4. If an object has a constant density δ and a volume V, what
is its mass?

Problems

In Exercises 5–8, two surfaces f1(x, y) and f2(x, y) and a region
R in the x, y plane are given. Set up and evaluate the double
integral that finds the volume between these surfaces over R.

5. f1(x, y) = 8− x2 − y2, f2(x, y) = 2x+ y;
R is the square with corners (−1,−1) and (1, 1).

6. f1(x, y) = x2 + y2, f2(x, y) = −x2 − y2;
R is the square with corners (0, 0) and (2, 3).

7. f1(x, y) = sin x cos y, f2(x, y) = cos x sin y+ 2;
R is the triangle with corners (0, 0), (π, 0) and (π, π).

8. f1(x, y) = 2x2 + 2y2 + 3, f2(x, y) = 6− x2 − y2;
R is the disk x2 + y2 ≤ 1.

In Exercises 9–16, a domain D is described by its bounding sur-
faces, along with a graph. Set up the triple integrals that give
the volume of D in all 6 orders of integraƟon, and find the vol-
ume of D by evaluaƟng the indicated triple integral.

9. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y.
Evaluate the triple integral with order dz dy dx.

10. D is bounded by the planes y = 0, y = 2, x = 1, z = 0 and
z = (3− x)/2.
Evaluate the triple integral with order dx dy dz.

11. D is bounded by the planes x = 0, x = 2, z = −y and by
z = y2/2.
Evaluate the triple integral with the order dy dz dx.

12. D is bounded by the planes z = 0, y = 9, x = 0 and by
z =

√
y2 − 9x2.

Do not evaluate any triple integral.
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13. D is bounded by the planes x = 2, y = 1, z = 0 and
z = 2x+ 4y− 4.
Evaluate the triple integral with the order dx dy dz.

14. D is bounded by the plane z = 2y and by y = 4− x2.
Evaluate the triple integral with the order dz dy dx.

15. D is bounded by the coordinate planes and by
y = 1− x2 and y = 1− z2.
Do not evaluate any triple integral. Which order is easier
to evaluate: dz dy dx or dy dz dx? Explain why.

16. D is bounded by the coordinate planes and by
z = 1− y/3 and z = 1− x.
Evaluate the triple integral with order dx dy dz.

In Exercises 17–20, evaluate the triple integral.

17.
ˆ π/2

−π/2

ˆ π

0

ˆ π

0

(
cos x sin y sin z

)
dz dy dx

18.
ˆ 1

0

ˆ x

0

ˆ x+y

0

(
x+ y+ z

)
dz dy dx

19.
ˆ π

0

ˆ 1

0

ˆ z

0

(
sin(yz)

)
dx dy dz

20.
ˆ π2

π

ˆ x3

x

ˆ y2

−y2

(
z x

2y+ y2x
ex2+y2

)
dz dy dx

In Exercises 21–24, find the center of mass of the solid repre-
sented by the indicated space region D with density funcƟon
δ(x, y, z).

21. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y; δ(x, y, z) = 10g/cm3.
(Note: this is the same region as used in Exercise 9.)

22. D is bounded by the planes y = 0, y = 2, x = 1, z = 0 and
z = (3− x)/2; δ(x, y, z) = 2g/cm3.
(Note: this is the same region as used in Exercise 10.)

23. D is bounded by the planes x = 2, y = 1, z = 0 and
z = 2x+ 4y− 4; δ(x, y, z) = x2lb/in3.
(Note: this is the same region as used in Exercise 13.)

24. D is bounded by the plane z = 2y and by y = 4− x2.
δ(x, y, z) = y2lb/in3.
(Note: this is the same region as used in Exercise 14.)
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14.7 Change of Variables in MulƟple Integrals

14.7 Change of Variables in MulƟple Integrals
Given the difficulty of evaluaƟng mulƟple integrals, the reader may be wonder-
ing if it is possible to simplify those integrals using a suitable subsƟtuƟon for
the variables. The answer is yes, though it is a bit more complicated than the
subsƟtuƟon method which you learned in single-variable calculus.

Recall that if you are given, for example, the definite integral
ˆ 2

1
x3
√

x2 − 1 dx,

then you would make the subsƟtuƟon

u = x2 − 1⇒ x2 = u+ 1
du = 2x dx

which changes the limits of integraƟon

x = 1⇒ u = 0
x = 2⇒ u = 3

so that we get
ˆ 2

1
x3
√

x2 − 1 dx =
ˆ 2

1

1
2
x2 · 2x

√
x2 − 1 dx

=

ˆ 3

0

1
2
(u+ 1)

√
u du

=
1
2

ˆ 3

0

(
u3/2 + u1/2

)
du

=
14
√
3

5
.

Let us take a different look at what happened when we did that subsƟtuƟon,
whichwill give somemoƟvaƟon for how subsƟtuƟonworks inmulƟple integrals.
First, we let u = x2 − 1. On the interval of integraƟon [1, 2], the funcƟon x 7→
x2−1 is strictly increasing (and maps [1, 2] onto [0, 3]) and hence has an inverse
funcƟon (defined on the interval [0, 3]). That is, on [0, 3] we can define x as a
funcƟon of u, namely

x = g(u) =
√
u+ 1.

Then subsƟtuƟng that expression for x into the funcƟon f(x) = x3
√
x2 − 1 gives

f(x) = f(g(u)) = (u+ 1)3/2
√
u,

Notes:
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and we see that

dx
du

= g ′(u)⇒ dx = g ′(u) du

dx =
1
2
(u+ 1)−1/2 du,

so since

g(0) = 1⇒ 0 = g−1(1)
g(3) = 2⇒ 3 = g−1(2)

then performing the subsƟtuƟon as we did earlier gives
ˆ 2

1
f(x) dx =

ˆ 2

1
x3
√

x2 − 1 dx

=

ˆ 3

0

1
2
(u+ 1)

√
u du, which can be wriƩen as

=

ˆ 3

0
(u+ 1)3/2

√
u · 1

2
(u+ 1)−1/2 du, which means

ˆ 2

1
f(x) dx =

ˆ g−1(2)

g−1(1)
f(g(u)) g ′(u) du.

In general, if x = g(u) is a one-to-one, differenƟable funcƟon from an in-
terval [c, d] (which you can think of as being on the “u-axis”) onto an interval
[a, b] (on the x-axis), which means that g ′(u) ̸= 0 on the interval (c, d), so that
a = g(c) and b = g(d), then c = g−1(a) and d = g−1(b), and

ˆ b

a
f(x) dx =

ˆ g−1(b)

g−1(a)
f(g(u)) g ′(u) du.

This is called the change of variable formula for integrals of single-variable func-
Ɵons, and it is what you were implicitly using when doing integraƟon by subsƟ-
tuƟon. This formula turns out to be a special case of a more general formula
which can be used to evaluate mulƟple integrals. We will state the formulas
for double and triple integrals involving real-valued funcƟons of two and three
variables, respecƟvely. We will assume that all the funcƟons involved are con-
Ɵnuously differenƟable and that the regions and solids involved all have “rea-
sonable” boundaries. The proof of the following theorem is beyond the scope
of the text.

Notes:
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Theorem 131 Change of Variables Formula for MulƟple Integrals
Let x = x(u, v) and y = y(u, v) define a one-to-one mapping of a re-
gion R′ in the uv-plane onto a region R in the xy-plane such that the
determinant

J(u, v) =

∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣ (14.2)

is never 0 in R′. Then¨
R
f(x, y) dA(x, y) =

¨
R′
f(x(u, v), y(u, v)) |J(u, v)| dA(u, v). (14.3)

We use the notaƟon dA(x, y) and dA(u, v) to denote the area element
in the (x, y) and (u, v) coordinates, respecƟvely.
Similarly, if x = x(u, v,w), y = y(u, v,w) and z = z(u, v,w) define
a one-to-one mapping of a solid S′ in uvw-space onto a solid S in xyz-
space such that the determinant

J(u, v,w) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣∣∣∣
(14.4)

is never 0 in S′, then
˚

S
f(x, y, z) dV(x, y, z) =

˚
S′
f(x(u, v,w), y(u, v,w), z(u, v,w)) |J(u, v,w)| dV(u, v,w). (14.5)

The determinant J(u, v) in EquaƟon (14.2) is called the Jacobian of x and y
with respect to u and v, and is someƟmes wriƩen as

J(u, v) =
∂(x, y)
∂(u, v)

.

Similarly, the Jacobian J(u, v,w) of three variables is someƟmes wriƩen as

J(u, v,w) =
∂(x, y, z)
∂(u, v,w)

.

Notes:
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NoƟce that EquaƟon (14.3) is saying that dA(x, y) = |J(u, v)| dA(u, v), which
you can think of as a two-variable version of the relaƟon dx = g ′(u) du in the
single-variable case.

Watch the video:
Jacobian at
https://youtu.be/Bw5yEqwMjQU

The following example shows how the change of variables formula is used.

Example 1 Change of Variables
Evaluate

¨
R
e

x−y
x+y dA, where R = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}.

SÊ½çã®ÊÄ First, note that evaluaƟng this double integralwithout using
subsƟtuƟon is probably impossible, at least in a closed form. By looking at the
numerator and denominator of the exponent of e, we will try the subsƟtuƟon
u = x − y and v = x + y. To use the change of variables EquaƟon (14.3), we
need to write both x and y in terms of u and v. So solving for x and y gives
x = 1

2 (u+ v) and y = 1
2 (v− u). In Figure 14.49 below, we see how the mapping

x = x(u, v) = 1
2 (u + v), y = y(u, v) = 1

2 (v − u) maps the region R′ onto R in a
one-to-one manner.

x + y = 1

x

1

y

1

0

R

x = 1
2 (u+ v)

y = 1
2 (v− u)

u = vu = −v

u

−1 1

v
1

R′

Figure 14.49: The regions R and R′

Now we see that

J(u, v) =

∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣

1
2

1
2

− 1
2

1
2

∣∣∣∣∣ = 1
2
⇒ |J(u, v)| =

∣∣∣∣12
∣∣∣∣ = 1

2
,

Notes:
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so using horizontal slices in R′, we have
¨

R
e

x−y
x+y dA =

¨
R′
f(x(u, v), y(u, v)) |J(u, v)| dA

=

ˆ 1

0

ˆ v

−v
e

u
v
1
2
du dv

=

ˆ 1

0

(
v
2
e

u
v

∣∣∣u=v

u=−v

)
dv

=

ˆ 1

0

v
2
(e− e−1) dv

=
v2

4
(e− e−1)

∣∣∣∣1
0
=

1
4

(
e− 1

e

)
=

e2 − 1
4e

.

The change of variables formula can be used to evaluate double integrals in
polar coordinates. Leƫng

x = x(r, θ) = r cos θ and y = y(r, θ) = r sin θ,

we have

J(u, v) =

∣∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣ = r cos2 θ+r sin2 θ = r⇒ |J(u, v)| = |r| = r,

which verifies Key Idea 61.
In a similar fashion, it can be shown (see Exercises 5 and 6) that triple inte-

grals in cylindrical and spherical coordinates take the following forms:

Key Idea 62 Triple Integral in Cylindrical Coordinates
˚

S
f(x, y, z) dx dy dz =

˚
S′
f(r cos θ, r sin θ, z) r dr dθ dz, (14.6)

where the mapping x = r cos θ, y = r sin θ, z = z maps the solid S′ in
rθz-space onto the solid S in xyz-space in a one-to-one manner.

Notes:
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Key Idea 63 Triple Integral in Spherical Coordinates
˚

S
f(x, y, z) dx dy dz =

˚
S′
f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) ρ2 sinϕ dρ dϕ dθ, (14.7)

where the mapping x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ
maps the solid S′ in ρϕθ-space onto the solid S in xyz-space in a one-to-
one manner.

Example 2 Finding the Volume of a Sphere
For a > 0, find the volume V inside the sphere S = x2 + y2 + z2 = a2.

SÊ½çã®ÊÄ We see that S is the set ρ = a in spherical coordinates, so

V =

˚
S
1 dV =

ˆ 2π

0

ˆ π

0

ˆ a

0
1 ρ2 sinϕ dρ dϕ dθ

=

ˆ 2π

0

ˆ π

0

(
ρ3

3

∣∣∣∣ρ=a

ρ=0

)
sinϕ dϕ dθ =

ˆ 2π

0

ˆ π

0

a3

3
sinϕ dϕ dθ

=

ˆ 2π

0

(
−a3

3
cosϕ

∣∣∣∣ϕ=π

ϕ=0

)
dθ =

ˆ 2π

0

2a3

3
dθ =

4πa3

3
.

This chapter invesƟgated the natural follow–on to parƟal derivaƟves: iter-
ated integraƟon. We learned how to use the bounds of a double integral to
describe a region in the plane using both rectangular and polar coordinates,
then later expanded to use the bounds of a triple integral to describe a region in
space. We used double integrals to find volumes under surfaces, surface area,
and the center ofmass of lamina; we used triple integrals as an alternatemethod
of finding volumes of space regions and also to find the center of mass of a re-
gion in space.

IntegraƟon does not stop here. We could conƟnue to iterate our integrals,
next invesƟgaƟng “quadruple integrals” whose bounds describe a region in 4–
dimensional space (which are very hard to visualize). We can also look back to
“regular” integraƟon where we found the area under a curve in the plane. A
natural analogue to this is finding the “area under a curve,” where the curve is
in space, not in a plane. These are just two of many avenues to explore under
the heading of “integraƟon.”

Notes:
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Exercises 14.7
Problems
1. Find the volume V inside the paraboloid z = x2 + y2 for

0 ≤ z ≤ 4.
2. Find the volume V inside the cone z =

√
x2 + y2 for 0 ≤

z ≤ 3.
3. Find the volume V of the solid inside both x2 + y2 + z2 = 4

and x2 + y2 = 1.
4. Find the volume V inside both the sphere x2 + y2 + z2 = 1

and the cone z =
√
x2 + y2.

5. Prove EquaƟon (14.6).
6. Prove EquaƟon (14.7).

7. Evaluate
¨

R
sin
( x+ y

2

)
cos
( x− y

2

)
dA, where R is the

triangle with verƟces (0, 0), (2, 0) and (1, 1). (Hint: Use
the change of variables u = (x+ y)/2, v = (x− y)/2.)

8. Find the volume of the solid bounded by z = x2 + y2 and
z2 = 4(x2 + y2).

9. Find the volume inside the ellipƟc cylinder x2
a2 +

y2
b2 = 1 for

0 ≤ z ≤ 2.

10. Show that the volume inside the ellipsoid x2
a2 +

y2
b2 +

z2
c2 = 1

is 4πabc
3 . (Hint: Use the change of variables x = au, y = bv,

z = cw, then consider Example 2.)

11. Show that the Beta funcƟon, defined by

B(x, y) =
ˆ 1

0
tx−1(1− t)y−1 dt, for x > 0, y > 0,

saƟsfies the relaƟon B(y, x) = B(x, y) for x > 0, y > 0.

12. Using the subsƟtuƟon t = u/(u + 1), show that the Beta
funcƟon can be wriƩen as

B(x, y) =
ˆ ∞

0

ux−1

(u+ 1)x+y du, for x > 0, y > 0.
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15.1 Line Integrals
In single-variable calculus you learned how to integrate a real-valued funcƟon
f(x) over an interval [a, b] inR1. This integral (usually called a Riemann integral)
can be thought of as an integral over a path inR1, since an interval (or collecƟon
of intervals) is really the only kind of “path” inR1. Youmay also recall that if f(x)
represented the force applied along the x-axis to an object at posiƟon x in [a, b],
then the work W done in moving that object from posiƟon x = a to x = b was
defined as the integral:

W =

ˆ b

a
f(x) dx

In this secƟon, we will see how to define the integral of a funcƟon (either
real-valued or vector-valued) of two variables over a general path (i.e. a curve)
in R2. This definiƟon will be moƟvated by the physical noƟon of work. We will
begin with real-valued funcƟons of two variables.

In physics, the intuiƟve idea of work is that

Work = Force × Distance.

Suppose that we want to find the total amount W of work done in moving an
object along a curve C in R2 with a smooth parametrizaƟon x = x(t), y = y(t),
a ≤ t ≤ b, with a force f(x, y) which varies with the posiƟon (x, y) of the object
and is applied in the direcƟon of moƟon along C (see Figure 15.1 below).

x

y

0

t = a
C

t = b

t = ti−1
∆si ≈

√
(∆xi)2 + (∆yi)2

t = ti
∆xi

∆yi

Figure 15.1: Curve C : x = x(t), y = y(t) for t in [a, b]
We will assume for now that the funcƟon f(x, y) is conƟnuous and real-

valued, so we only consider the magnitude of the force. ParƟƟon the interval
[a, b] as follows:

a = t0 < t1 < t2 < · · · < tn−1 < tn = b, for some integer n ≥ 2

As we can see from Figure 15.1, over a typical subinterval [ti−1, ti] the distance
∆si traveled along the curve is approximately

√
(∆xi)2 + (∆yi)2, by the Pythagorean



Chapter 15 Line and Surface Integrals

Theorem. Thus, if the subinterval is small enough then the work done in moving
the object along that piece of the curve is approximately

Force × Distance ≈ f(x∗i , y
∗
i )
√

(∆xi)2 + (∆yi)2,

where (x∗i , y∗i ) = (x(t∗i ), y(t∗i )) for some t∗i in [ti−1, ti], and so

W ≈
n∑

i=1

f(x∗i , y
∗
i )
√

(∆xi)2 + (∆yi)2

is approximately the total amount of work done over the enƟre curve. But since

√
(∆xi)2 + (∆yi)2 =

√(
∆xi
∆ti

)2

+

(
∆yi
∆ti

)2

∆ti,

where∆ti = ti − ti−1, then

W ≈
n∑

i=1

f(x∗i , y
∗
i )

√(
∆xi
∆ti

)2

+

(
∆yi
∆ti

)2

∆ti.

Taking the limit of that sum as the length of the largest subinterval goes to 0, the
sum over all subintervals becomes the integral from t = a to t = b, ∆xi

∆ti and
∆yi
∆ti

become x ′(t) and y ′(t), respecƟvely, and f(x∗i , y∗i ) becomes f(x(t), y(t)), so that

W =

ˆ b

a
f(x(t), y(t))

√
x ′(t)2 + y ′(t)2 dt.

The integral on the right side of the above equaƟon gives us our idea of how
to define, for any real-valued funcƟon f(x, y), the integral of f(x, y) along the
curve C, called a line integral:

DefiniƟon 112 Line Integral of a Real Valued FuncƟon
For a real-valued funcƟon f(x, y) and a curve C in R2, parametrized by
x = x(t), y = y(t), a ≤ t ≤ b, the line integral of f(x, y) along C with
respect to arc length s is

ˆ
C
f(x, y) ds =

ˆ b

a
f(x(t), y(t))

√
x ′(t)2 + y ′(t)2 dt.

The symbol ds is the differenƟal of the arc length funcƟon

s = s(t) =
ˆ t

a

√
x ′(u)2 + y ′(u)2 du,

Notes:
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15.1 Line Integrals

which youmay recognize from SecƟon 10.3 as the length of the curve C over the
interval [a, t], for all t in [a, b]. That is,

ds = s ′(t) dt =
√

x ′(t)2 + y ′(t)2 dt,

by the Fundamental Theorem of Calculus.
For a general real-valued funcƟon f(x, y), what does the line integral

´
C f(x, y) ds

represent? The preceding discussion of ds gives us a clue. You can think of dif-
ferenƟals as infinitesimal lengths. So if you think of f(x, y) as the height of a
picket fence along C, then f(x, y) ds can be thought of as approximately the area
of a secƟon of that fence over some infinitesimally small secƟon of the curve,
and thus the line integral

´
C f(x, y) ds is the total area of that picket fence (see

Figure 15.2).

x

y

0

f(x, y)

ds
C

Figure 15.2: Area of shaded rectangle= height× width ≈ f(x, y) ds

Watch the video:
Line Integrals — EvaluaƟng a Line Integral at
https://youtu.be/fjEvsinvtnw

Example 1 Using the Line Integral
Use a line integral to show that the lateral surface area A of a right circular cylin-
der of radius r and height h is 2πrh.

SÊ½çã®ÊÄ We will use the right circular cylinder with base circle C

y

z

x

0

r

h = f(x, y)

C : x2 + y2 = r2

Figure 15.3: Figure for Example 1

given by x2 + y2 = r2 and with height h in the posiƟve z direcƟon (see Fig-
ure 15.3). Parametrize C as follows:

x = x(t) = r cos t, y = y(t) = r sin t, 0 ≤ t ≤ 2π

Notes:
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Chapter 15 Line and Surface Integrals

Let f(x, y) = h for all (x, y). Then

A =

ˆ
C
f(x, y) ds =

ˆ b

a
f(x(t), y(t))

√
x ′(t)2 + y ′(t)2 dt

=

ˆ 2π

0
h
√
(−r sin t)2 + (r cos t)2 dt

= h
ˆ 2π

0
r
√
sin2 t+ cos2 t dt

= rh
ˆ 2π

0
1 dt = 2πrh.

Note in Example 1 that if we had traversed the circle C twice, i.e. let t vary
from 0 to 4π, then we would have goƩen an area of 4πrh, i.e. twice the desired
area, even though the curve itself is sƟll the same (namely, a circle of radius r).
Also, noƟce that we traversed the circle in the counter-clockwise direcƟon. If
we had gone in the clockwise direcƟon, using the parametrizaƟon

x = x(t) = r cos(2π − t), y = y(t) = r sin(2π − t), 0 ≤ t ≤ 2π, (15.1)

then it is easy to verify (see Exercise 12) that the value of the line integral is
unchanged.

In general, it can be shown (see Exercise 15) that reversing the direcƟon in
which a curve C is traversed leaves

´
C f(x, y) ds unchanged, for any f(x, y). If a

curve C has a parametrizaƟon x = x(t), y = y(t), a ≤ t ≤ b, then denote
by −C the same curve as C but traversed in the opposite direcƟon. Then −C is
parametrized by

x = x(a+ b− t), y = y(a+ b− t), a ≤ t ≤ b, (15.2)

and we have ˆ
C
f(x, y) ds =

ˆ
−C

f(x, y) ds.

NoƟce that our definiƟon of the line integral was with respect to the arc
length parameter s. We can also define

ˆ
C
f(x, y) dx =

ˆ b

a
f(x(t), y(t)) x ′(t) dt

as the line integral of f(x, y) along C with respect to x, and
ˆ
C
f(x, y) dy =

ˆ b

a
f(x(t), y(t)) y ′(t) dt

Notes:
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as the line integral of f(x, y) along C with respect to y.
In the derivaƟonof the formula for a line integral, weused the idea ofwork as

forcemulƟplied by distance. However, we know that force is actually a vector. So
it would be helpful to develop a vector form for a line integral. For this, suppose
that we have a funcƟon f⃗(x, y) defined on R2 by

f⃗(x, y) = P(x, y) ı⃗+ Q(x, y) ȷ⃗

for some conƟnuous real-valued funcƟons P(x, y) and Q(x, y) on R2. Such a
funcƟon f⃗ is called a vector field on R2. It is defined at points in R2, and its
values are vectors in R2. For a curve C with a smooth parametrizaƟon x = x(t),
y = y(t), a ≤ t ≤ b, let

r⃗(t) = x(t) ı⃗+ y(t) ȷ⃗

be the posiƟon vector for a point (x(t), y(t)) on C. Then r⃗ ′(t) = x ′(t) ı⃗+ y ′(t) ȷ⃗
and so
ˆ
C
P(x, y) dx+

ˆ
C
Q(x, y) dy =

ˆ b

a
P(x(t), y(t)) x ′(t) dt+

ˆ b

a
Q(x(t), y(t)) y ′(t) dt

=

ˆ b

a
(P(x(t), y(t)) x ′(t) + Q(x(t), y(t)) y ′(t)) dt

=

ˆ b

a
f⃗(x(t), y(t)) · r⃗ ′(t) dt

by definiƟon of f⃗(x, y). NoƟce that the funcƟon f⃗(x(t), y(t)) ·⃗r ′(t) is a real-valued
funcƟon on [a, b], so the last integral on the right looks somewhat similar to our
earlier definiƟon of a line integral. This leads us to the following definiƟon:

DefiniƟon 113 Line Integral of a Vector Valued FuncƟon
For a vector field f⃗(x, y) = P(x, y) ı⃗ + Q(x, y) ȷ⃗ and a curve C with a
smooth parametrizaƟon x = x(t), y = y(t), a ≤ t ≤ b, the line integral
of f along C is

ˆ
C
f⃗ · d⃗r =

ˆ
C
P(x, y) dx+

ˆ
C
Q(x, y) dy (15.3)

=

ˆ b

a
f⃗(x(t), y(t)) · r⃗ ′(t) dt, (15.4)

where r⃗(t) = x(t) ı⃗+ y(t) ȷ⃗ is the posiƟon vector for points on C.

Notes:
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We use the notaƟon d⃗r = r⃗ ′(t) dt = dx ı⃗ + dy ȷ⃗ to denote the differenƟal
of the vector-valued funcƟon r⃗. The line integral in DefiniƟon 113 is oŌen called
a line integral of a vector field to disƟnguish it from the line integral in Defini-
Ɵon 112 which is called a line integral of a scalar field. For convenience we will
oŌen write

ˆ
C
P(x, y) dx+

ˆ
C
Q(x, y) dy =

ˆ
C
P(x, y) dx+ Q(x, y) dy,

where it is understood that the line integral along C is being applied to both P
and Q. The quanƟty P(x, y) dx + Q(x, y) dy is known as a differenƟal form. A

Note: We defined total differenƟal in
DefiniƟon 89 in SecƟon 13.4 as dF =
∂F
∂x dx+

∂F
∂y dy.

differenƟal form P(x, y) dx+Q(x, y) dy is called exact if it equals the total differ-
enƟal dF for some funcƟon F(x, y).

Recall that if the points on a curve C have posiƟon vector r⃗(t) = x(t) ı⃗+y(t) ȷ⃗,
then r⃗ ′(t) is a tangent vector to C at the point (x(t), y(t)) in the direcƟon of
increasing t (which we call the direcƟon of C). Since C is a smooth curve, then
r⃗ ′(t) ̸= 0⃗ on [a, b] and hence

T⃗(t) =
r⃗ ′(t)
∥⃗r ′(t)∥

is the unit tangent vector to C at (x(t), y(t)). Puƫng DefiniƟons 112 and 113
together we get the following theorem:

Theorem 132 Line Integrals and Tangent Vectors
For a vector field f⃗(x, y) = P(x, y) ı⃗ + Q(x, y) ȷ⃗ and a curve C with a
smooth parametrizaƟon x = x(t), y = y(t), a ≤ t ≤ b and posiƟon
vector r⃗(t) = x(t) ı⃗+ y(t) ȷ⃗,

ˆ
C
f⃗ · d⃗r =

ˆ
C
f⃗ · T⃗ ds,

where T⃗(t) = r⃗ ′(t)
∥⃗r ′(t)∥ is the unit tangent vector to C at (x(t), y(t)).

If the vector field f⃗(x, y) represents the force moving an object along a curve
C, then the workW done by this force is

W =

ˆ
C
f⃗ · T⃗ ds =

ˆ
C
f⃗ · d⃗r.

Notes:
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Example 2 EvaluaƟng Line Integrals
Evaluate

´
C(x

2 + y2) dx+ 2xy dy, where:

1. C : x = t, y = 2t, 0 ≤ t ≤ 1

2. C : x = t, y = 2t2, 0 ≤ t ≤ 1

SÊ½çã®ÊÄ Figure 15.4 shows both curves.

1
x

2

y

0

(1, 2)

Figure 15.4: Figure for Example 2

1. Since x ′(t) = 1 and y ′(t) = 2, then

ˆ
C
(x2 + y2) dx+ 2xy dy =

ˆ 1

0

(
(x(t)2 + y(t)2)x ′(t) + 2x(t)y(t) y ′(t)

)
dt

=

ˆ 1

0

(
(t2 + 4t2)(1) + 2t(2t)(2)

)
dt

=

ˆ 1

0
13t2 dt

=
13t3

3

∣∣∣∣∣
1

0

=
13
3

2. Since x ′(t) = 1 and y ′(t) = 4t, then

ˆ
C
(x2 + y2) dx+ 2xy dy =

ˆ 1

0

(
(x(t)2 + y(t)2)x ′(t) + 2x(t)y(t) y ′(t)

)
dt

=

ˆ 1

0

(
(t2 + 4t4)(1) + 2t(2t2)(4t)

)
dt

=

ˆ 1

0
(t2 + 20t4) dt

=
t3

3
+ 4t5

∣∣∣∣∣
1

0

=
1
3
+ 4 =

13
3

So in both cases, if the vector field f⃗(x, y) = (x2 + y2) ı⃗+ 2xy ȷ⃗ represents
the force moving an object from (0, 0) to (1, 2) along the given curve C,
then the work done is 13

3 . This may lead you to think that work (and more
generally, the line integral of a vector field) is independent of the path
taken. However, as we will see in the next secƟon, this is not always the
case.

Notes:
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Although we defined line integrals over a single smooth curve, if C is a piece-
wise smooth curve, that is

C = C1 ∪ C2 ∪ . . . ∪ Cn

is the union of smooth curves C1, . . . , Cn, then we can defineˆ
C
f⃗ · d⃗r =

ˆ
C1
f⃗ · d⃗r1 +

ˆ
C2
f⃗ · d⃗r2 + · · ·+

ˆ
Cn
f⃗ · d⃗rn

where each r⃗i is the posiƟon vector of the curve Ci.

Example 3 A Piecewise Smooth Line Integral
Evaluate

´
C(x

2 + y2) dx + 2xy dy, where C is the polygonal path from (0, 0) to
(0, 2) to (1, 2).

SÊ½çã®ÊÄ Write C = C1 ∪ C2, where C1 is the curve given by x = 0,

1
x

y

0

C1

2
C2

(1, 2)

Figure 15.5: The Figure for Example 3

y = t, 0 ≤ t ≤ 2 and C2 is the curve given by x = t, y = 2, 0 ≤ t ≤ 1 (see
Figure 15.5). Then
ˆ
C
(x2 + y2) dx+ 2xy dy

=

ˆ
C1
(x2 + y2) dx+ 2xy dy

+

ˆ
C2
(x2 + y2) dx+ 2xy dy

=

ˆ 2

0

(
(02 + t2)(0) + 2(0)t(1)

)
dt+

ˆ 1

0

(
(t2 + 4)(1) + 2t(2)(0)

)
dt

=

ˆ 2

0
0 dt+

ˆ 1

0
(t2 + 4) dt

=
t3

3
+ 4t

∣∣∣∣∣
1

0

=
1
3
+ 4 =

13
3

Line integral notaƟon varies quite a bit. For example, in physics it is common
to see the notaƟon

´ b
a f⃗ · d⃗l, where it is understood that the limits of integraƟon

a and b are for the underlying parameter t of the curve, and the leƩer l signifies
length. Also, the formulaƟon

´
C f⃗ · T⃗ ds from Theorem 132 is oŌen preferred

in physics since it emphasizes the idea of integraƟng the tangenƟal component
f⃗ · T⃗ of f⃗ in the direcƟon of T⃗ (i.e., in the direcƟon of C), which is a useful physical
interpretaƟon of line integrals.

Notes:
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Exercises 15.1
Problems
In Exercises 1–4, calculate

´
C f(x, y) ds for the given funcƟon

f(x, y) and curve C.

1. f(x, y) = xy; C : x = cos t, y = sin t, 0 ≤ t ≤ π/2

2. f(x, y) = x
x2 + 1

; C : x = t, y = 0, 0 ≤ t ≤ 1

3. f(x, y) = 2x + y; C: polygonal path from (0, 0) to (3, 0)
to (3, 2)

4. f(x, y) = x + y2; C: path from (2, 0) counterclockwise
along the circle x2 + y2 = 4 to the point (−2, 0) and then
back to (2, 0) along the x-axis

5. Use a line integral to find the lateral surface area of the part
of the cylinder x2 + y2 = 4 below the plane x+ 2y+ z = 6
and above the xy-plane.

In Exercises 6–11, calculate
´
C f⃗ · d⃗r for the given vector field

f⃗(x, y) and curve C.

6. f⃗(x, y) = ı⃗− ȷ⃗; C : x = 3t, y = 2t, 0 ≤ t ≤ 1
7. f⃗(x, y) = y ı⃗− x ȷ⃗; C : x = cos t, y = sin t, 0 ≤ t ≤ 2π
8. f⃗(x, y) = x ı⃗+ y ȷ⃗; C : x = cos t, y = sin t, 0 ≤ t ≤ 2π
9. f⃗(x, y) = (x2 − y) ı⃗+ (x− y2) ȷ⃗; C : x = cos t, y = sin t,

0 ≤ t ≤ 2π

10. f⃗(x, y) = xy2 ı⃗+ xy3 ȷ⃗; C : the polygonal path from (0, 0)
to (1, 0) to (0, 1) to (0, 0)

11. f⃗(x, y) = (x2 + y2) ı⃗; C : x = 2 + cos t, y = sin t,
0 ≤ t ≤ 2π

12. Verify that the value of the line integral in Example 1 is
unchanged when using the parametrizaƟon of the circle C
given in EquaƟon (15.1).

13. Show that if f⃗ ⊥ r⃗ ′(t) at each point r⃗(t) along a smooth
curve C, then

´
C f⃗ · d⃗r = 0.

14. Show that if f⃗ points in the same direcƟon as r⃗ ′(t) at each
point r⃗(t) along a smooth curve C, then

´
C f⃗·d⃗r =

´
C

∥∥∥⃗f∥∥∥ ds.

15. Prove that
´
C f(x, y) ds =

´
−C f(x, y) ds. (Hint: Use Equa-

Ɵon (15.2).)
16. Let C be a smooth curve with arc length L, and suppose

that f⃗(x, y) = P(x, y) ı⃗+Q(x, y) ȷ⃗ is a vector field such that∥∥∥⃗f(x, y)∥∥∥ ≤ M for all (x, y) on C. Show that∣∣∣´C f⃗ · d⃗r∣∣∣ ≤ ML. (Hint: Recall that
∣∣∣´ b

a g(x) dx
∣∣∣ ≤´ b

a |g(x)| dx for Riemann integrals.)

17. Prove that the Riemann integral
´ b
a f(x) dx is a special case

of a line integral.
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Chapter 15 Line and Surface Integrals

15.2 ProperƟes of Line Integrals

We know from the previous secƟon that for line integrals of real-valued func-
Ɵons (scalar fields), reversing the direcƟon in which the integral is taken along a
curve does not change the value of the line integral:

ˆ
C
f(x, y) ds =

ˆ
−C

f(x, y) ds

For line integrals of vector fields, however, the value does change. To see this,
let f⃗(x, y) = P(x, y) ı⃗ + Q(x, y) ȷ⃗ be a vector field, with P and Q conƟnuously
differenƟable funcƟons. Let C be a smooth curve parametrized by x = x(t),
y = y(t), a ≤ t ≤ b, with posiƟon vector r⃗(t) = x(t) ı⃗ + y(t) ȷ⃗ (we will usually
abbreviate this by saying that C : r⃗(t) = x(t) ı⃗ + y(t) ȷ⃗ is a smooth curve). We
know that the curve −C traversed in the opposite direcƟon is parametrized by
x = x(a+ b− t), y = y(a+ b− t), a ≤ t ≤ b. Then

ˆ
−C

P(x, y) dx =
ˆ b

a
P(x(a+ b− t), y(a+ b− t))

d
dt
(x(a+ b− t)) dt

=

ˆ b

a
P(x(a+ b− t), y(a+ b− t)) (−x ′(a+ b− t)) dt (by the Chain Rule)

=

ˆ a

b
P(x(u), y(u)) (−x ′(u)) (−du) (by leƫng u = a+ b− t)

=

ˆ a

b
P(x(u), y(u)) x ′(u) du

= −
ˆ b

a
P(x(u), y(u)) x ′(u) du, since

ˆ a

b
= −
ˆ b

a
, so

ˆ
−C

P(x, y) dx = −
ˆ
C
P(x, y) dx

since we are just using a different leƩer (u) for the line integral along C. A similar
argument shows that

ˆ
−C

Q(x, y) dy = −
ˆ
C
Q(x, y) dy,

Notes:
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15.2 ProperƟes of Line Integrals

and hence
ˆ
−C

f⃗ · d⃗r =
ˆ
−C

P(x, y) dx+
ˆ
−C

Q(x, y) dy

= −
ˆ
C
P(x, y) dx+−

ˆ
C
Q(x, y) dy

= −
(ˆ

C
P(x, y) dx+

ˆ
C
Q(x, y) dy

)
ˆ
−C

f⃗ · d⃗r = −
ˆ
C
f⃗ · d⃗r.

The above formula can be interpreted in terms of the work done by a force
f⃗(x, y) (treated as a vector) moving an object along a curve C: the total work
performed moving the object along C from its iniƟal point to its terminal point,
and then back to the iniƟal pointmoving backwards along the same path, is zero.
This is because when force is considered as a vector, direcƟon is accounted for.

The preceding discussion shows the importance of always taking the direc-
Ɵon of the curve into account when using line integrals of vector fields. For this
reason, the curves in line integrals are someƟmes referred to as directed curves
or oriented curves.

Recall that our definiƟonof a line integral required thatwehave aparametriza-
Ɵon x = x(t), y = y(t), a ≤ t ≤ b for the curve C. But as we know, any curve
has infinitely many parameterizaƟons. So could we get a different value for a
line integral using some other parametrizaƟon of C, say, x = x̃(u), y = ỹ(u),
c ≤ u ≤ d ? If so, this would mean that our definiƟon is not well-defined. Luck-
ily, it turns out that the value of a line integral of a vector field is unchanged as
long as the direcƟon of the curve C is preserved by whatever parametrizaƟon is
chosen:

Theorem 133 Line Integral is Independent of ParameterizaƟon
Let f⃗(x, y) = P(x, y) ı⃗+Q(x, y) ȷ⃗ be a vector field, and let C be a smooth
curve parametrized by x = x(t), y = y(t), a ≤ t ≤ b. Suppose that
t = α(u) for c ≤ u ≤ d, such that a = α(c), b = α(d), and α ′(u) > 0
on the open interval (c, d) (i.e.,α(u) is strictly increasing on [c, d]). Then´
C f⃗ · d⃗r has the same value for the parameterizaƟons x = x(t), y = y(t),
a ≤ t ≤ b and x = x̃(u) = x(α(u)), y = ỹ(u) = y(α(u)), c ≤ u ≤ d.

Proof
Since α(u) is strictly increasing and maps [c, d] onto [a, b], then we know that

Notes:
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t = α(u) has an inverse funcƟon u = α−1(t) defined on [a, b] such that c =
α−1(a), d = α−1(b), and du

dt = 1
α ′(u) . Also, dt = α ′(u) du, and by the Chain

Rule

x̃ ′(u) =
dx̃
du

=
d
du

(x(α(u))) =
dx
dt

dt
du

= x ′(t)α ′(u) ⇒ x ′(t) =
x̃ ′(u)
α ′(u)

so making the subsƟtuƟon t = α(u) gives

ˆ b

a
P(x(t), y(t)) x ′(t) dt =

ˆ α−1(b)

α−1(a)
P(x(α(u)), y(α(u)))

x̃ ′(u)
α ′(u)

(α ′(u) du)

=

ˆ d

c
P(x̃(u), ỹ(u)) x̃ ′(u) du,

which shows that
´
C P(x, y) dx has the same value for both parameterizaƟons. A

similar argument shows that
´
C Q(x, y) dy has the same value for both parame-

terizaƟons, and hence
´
C f⃗ · d⃗r has the same value. □

NoƟce that the condiƟon α ′(u) > 0 in Theorem 133 means that the two
parameterizaƟons move along C in the same direcƟon. That was not the case
with the “reverse” parametrizaƟon for−C: for u = a+b−twe have t = α(u) =
a+ b− u⇒ α ′(u) = −1 < 0.

Example 1 Re-evaluaƟng a Line Integral
Evaluate the line integral

´
C(x

2 + y2) dx + 2xy dy from Example 15.1.2 in Sec-
Ɵon 15.1, along the curve C : x = t, y = 2t2, 0 ≤ t ≤ 1, where t = sin u for
0 ≤ u ≤ π/2.

SÊ½çã®ÊÄ First, we noƟce that 0 = sin 0, 1 = sin(π/2), and dt
du =

cos u > 0 on (0, π/2). So by Theorem 133 we know that if C is parametrized by

x = sin u, y = 2 sin2 u, 0 ≤ u ≤ π/2

then
´
C(x

2 + y2) dx+ 2xy dy should have the same value as we found in Exam-

Notes:
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15.2 ProperƟes of Line Integrals

ple 15.1.2, namely 13
3 . And we can indeed verify this:ˆ

C
(x2 + y2) dx+ 2xy dy

=

ˆ π/2

0

(
(sin2 u+ (2 sin2 u)2) cos u+ 2(sin u)(2 sin2 u)4 sin u cos u

)
du

=

ˆ π/2

0

(
sin2 u+ 20 sin4 u

)
cos u du

=
sin3 u
3

+ 4 sin5 u
∣∣∣∣π/2
0

=
1
3
+ 4 =

13
3

In other words, the line integral is unchanged whether t or u is the parameter
for C.

By a closed curve, we mean a curve Cwhose iniƟal point and terminal point
are the same, i.e. for C: x = x(t), y = y(t), a ≤ t ≤ b, we have (x(a), y(a)) =
(x(b), y(b)).

t = a t = b

▶

◀
C

t = a

▶

◀
C

t = b

(a) Closed (b) Not Closed

Figure 15.6: Closed vs nonclosed curves
A simple closed curve is a closed curve which does not intersect itself. Note

that any closed curve can be regarded as a union of simple closed curves (think
of the loops in a figure eight). We use the special notaƟon

˛
C
f(x, y) ds and

˛
C
f⃗ · d⃗r

to denote line integrals of scalar and vector fields, respecƟvely, along closed
curves. In someolder texts youmay see the notaƟon

‰
or
ȷ

to indicate a line
integral traversing a closed curve in a counterclockwise or clockwise direcƟon,
respecƟvely.

So far, the exampleswehave seenof line integrals (e.g., Example 15.1.2) have
had the same value for different curves joining the iniƟal point to the terminal

Notes:
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Chapter 15 Line and Surface Integrals

point. That is, the line integral has been independent of the path joining the
two points. As we menƟoned before, this is not always the case. The following
theorem gives a necessary and sufficient condiƟon for this path independence:

Theorem 134 Path Independence of Line Integrals
In a regionR, the line integral

´
C f⃗·d⃗r is independent of the path between

any two points in R if and only if
¸
C f⃗ · d⃗r = 0 for every closed curve C

which is contained in R.

Proof
Suppose that

¸
C f⃗ · d⃗r = 0 for every closed curve C which is contained in R. Let

P1

▶C1

▶
C2

P2

Figure 15.7: The idea of proving Theo-
rem 134.

P1 and P2 be two disƟnct points in R. Let C1 be a curve in R going from P1 to P2,
and let C2 be another curve in R going from P1 to P2, as in Figure 15.7.

Then C = C1 ∪−C2 is a closed curve in R (from P1 to P1), and so
¸
C f⃗ · d⃗r = 0.

Thus,

0 =

˛
C
f⃗ · d⃗r

=

ˆ
C1
f⃗ · d⃗r+

ˆ
−C2

f⃗ · d⃗r

=

ˆ
C1
f⃗ · d⃗r−

ˆ
C2
f⃗ · d⃗r, and so

´
C1 f⃗ · d⃗r =

´
C2 f⃗ · d⃗r. This proves path independence.

Conversely, suppose that the line integral
´
C f⃗ · d⃗r is independent of the path

between any two points in R. Let C be a closed curve contained in R. Let P1 and
P2 be two disƟnct points on C. Let C1 be a part of the curve C that goes from P1
to P2, and let C2 be the remaining part of C that goes from P1 to P2, again as in

Notes:
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15.2 ProperƟes of Line Integrals

Figure 15.7. Then by path independence we have
ˆ
C1
f⃗ · d⃗r =

ˆ
C2
f⃗ · d⃗r

ˆ
C1
f⃗ · d⃗r−

ˆ
C2
f⃗ · d⃗r = 0

ˆ
C1
f⃗ · d⃗r+

ˆ
−C2

f⃗ · d⃗r = 0, so

˛
C
f⃗ · d⃗r = 0

since C = C1 ∪ −C2 . □

Clearly, the above theorem does not give a pracƟcal way to determine path
independence, since it is impossible to check the line integrals around all possi-
ble closed curves in a region. What it mostly does is give an idea of the way in
which line integrals behave, and how seemingly unrelated line integrals can be
related (in this case, a specific line integral between two points and all line inte-
grals around closed curves). Wewill nowprove the following sufficient condiƟon
for path independence of line integrals:

Theorem 135 Fundamental Theorem of Line Integrals
Let f⃗(x, y) = P(x, y) ı⃗+Q(x, y) ȷ⃗ be a vector field in some region Rwith-
out holes, with P and Q conƟnuously differenƟable funcƟons on R. Let
C be a smooth curve in R parametrized by x = x(t), y = y(t), a ≤ t ≤ b.
Suppose that there is a real-valued funcƟon F(x, y) such that∇F = f⃗ on
R. Then ˆ

C
f⃗ · d⃗r = F(B)− F(A),

where A = (x(a), y(a)) and B = (x(b), y(b)) are the endpoints of C.
Thus, the line integral is independent of the path between its endpoints,
since it depends only on the values of F at those endpoints.

Proof

Notes:
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By definiƟon of
´
C f⃗ · d⃗r, we haveˆ

C
f⃗ · d⃗r =

ˆ b

a

(
P(x(t), y(t)) x ′(t) + Q(x(t), y(t)) y ′(t)

)
dt

=

ˆ b

a

(
∂F
∂x

dx
dt

+
∂F
∂y

dy
dt

)
dt (since∇F = f⃗⇒ ∂F

∂x
= P and

∂F
∂y

= Q)

=

ˆ b

a
F ′(x(t), y(t)) dt (by Theorem 110)

= F(x(t), y(t)) |ba = F(B)− F(A)

by the Fundamental Theorem of Calculus. □

Theorem 135 can be thought of as the line integral version of the Funda-
mental Theorem of Calculus. A real-valued funcƟon F(x, y) such that∇F(x, y) =
f⃗(x, y) is called a potenƟal for f⃗. A conservaƟve vector field is one which has a
potenƟal.

Watch the video:
Ex 1: Fundamental Theorem of Line Integrals —
Given Vector Field in a Plane at
https://youtu.be/62oBGKSjYiY

Example 2 Using the Fundamental Theorem of Line Integrals
Recall from Examples 15.1.2 and 15.1.3 in SecƟon 15.1 that the line integral´
C(x

2+ y2) dx+2xy dywas found to have the value 13
3 for three different curves

C going from the point (0, 0) to the point (1, 2). Use Theorem 135 to show that
this line integral is indeed path independent.

SÊ½çã®ÊÄ We need to find a real-valued funcƟon F(x, y) such that

∂F
∂x

= x2 + y2 and
∂F
∂y

= 2xy.

Suppose that ∂F
∂x = x2 + y2, Then we must have F(x, y) = 1

3x
3 + xy2 + g(y) for

some funcƟon g(y). So ∂F
∂y = 2xy + g ′(y) saƟsfies the condiƟon ∂F

∂y = 2xy if
g ′(y) = 0, i.e., g(y) = K, where K is a constant. Since any choice for K will do
(why?), we pick K = 0. Thus, a potenƟal F(x, y) for f⃗(x, y) = (x2 + y2) ı⃗ + 2xy ȷ⃗
exists, namely

F(x, y) =
1
3
x3 + xy2.

Notes:
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15.2 ProperƟes of Line Integrals

Hence the line integral
´
C(x

2 + y2) dx+ 2xy dy is path independent.
Note that we can also verify that the value of the line integral of f⃗ along any

curve C going from (0, 0) to (1, 2) will always be 13
3 , since by Theorem 135

ˆ
C
f⃗ · d⃗r = F(1, 2)− F(0, 0) =

1
3
(1)3 + (1)(2)2 − (0+ 0) =

1
3
+ 4 =

13
3
.

A consequence of Theorem 135 in the special case where C is a closed curve,
so that the endpoints A and B are the same point, is the following:

Theorem 136 Closed Line Integrals of ConservaƟve Fields
If a vector field f⃗ has a potenƟal in a region R without holes, then

˛
C
f⃗ ·

d⃗r = 0 for any closed curve C in R (i.e.,
˛
C
∇F·d⃗r = 0 for any real-valued

funcƟon F(x, y)).

Example 3 CalculaƟng a Closed Line Integral of a ConservaƟve Field
Evaluate

˛
C
x dx+ y dy for C : x = 2 cos t, y = 3 sin t, 0 ≤ t ≤ 2π.

SÊ½çã®ÊÄ The vector field f⃗(x, y) = x ı⃗+ y ȷ⃗ has a potenƟal F(x, y):

∂F
∂x

= x⇒ F(x, y) =
1
2
x2 + g(y), so

∂F
∂y

= y⇒ g ′(y) = y⇒ g(y) =
1
2
y2 + K

for any constant K, so F(x, y) =
1
2
x2 +

1
2
y2 is a potenƟal for f⃗(x, y). Thus,

˛
C
x dx+ y dy =

˛
C
f⃗ · d⃗r = 0

by Theorem 136, since the curve C is closed (it is the ellipse x2
4 + y2

9 = 1).
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Exercises 15.2
Problems

1. Evaluate
˛
C
(x2+ y2) dx+2xy dy for C : x = cos t, y = sin t,

0 ≤ t ≤ 2π.

2. Evaluate
ˆ
C
(x2+ y2) dx+2xy dy for C : x = cos t, y = sin t,

0 ≤ t ≤ π.

3. Is there a potenƟal F(x, y) for f⃗(x, y) = y ı⃗− x ȷ⃗? If so, find
one.

4. Is there a potenƟal F(x, y) for f⃗(x, y) = x ı⃗− y ȷ⃗? If so, find
one.

5. Is there a potenƟal F(x, y) for f⃗(x, y) = xy2 ı⃗+ x3y ȷ⃗? If so,
find one.

6. Let f⃗(x, y) and g⃗(x, y) be vector fields, let a and b be con-
stants, and let C be a curve in R2. Show that

ˆ
C
(a f⃗± b g⃗) · d⃗r = a

ˆ
C
f⃗ · d⃗r± b

ˆ
C
g⃗ · d⃗r.

7. Let C be a curve whose arc length is L. Show that
´
C 1 ds =

L.
8. Let f(x, y) and g(x, y) be conƟnuously differenƟable real-

valued funcƟons in a region R. Show that
˛
C
(f∇g) · d⃗r = −

˛
C
(g∇f) · d⃗r

for any closed curve C in R.

9. Let f⃗(x, y) = −y
x2+y2 ı⃗+

x
x2+y2 ȷ⃗ for all (x, y) ̸= (0, 0), and C :

x = cos t, y = sin t, 0 ≤ t ≤ 2π.

(a) Show that f⃗ = ∇F, for F(x, y) = tan−1(y/x).

(b) Show that
˛
C
f⃗ · d⃗r = 2π. Does this contradict Theo-

rem 136? Explain.

10. Let g(x) and h(y) be differenƟable funcƟons, and let
f⃗(x, y) = h(y) ı⃗ + g(x) ȷ⃗. Is it possible for f⃗ to have a po-
tenƟal F(x, y)? If so, find an example. You may assume
that F would be smooth. (Hint: Consider the mixed parƟal
derivaƟves of F.)
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15.3 Green’s Theorem

15.3 Green’s Theorem

We will now see a way of evaluaƟng the line integral of a smooth vector field
around a simple closed curve. A vector field f⃗(x, y) = P(x, y) ı⃗ + Q(x, y) ȷ⃗ is
smooth if its component funcƟons P(x, y) and Q(x, y) are smooth. We will use
Green’s Theorem (someƟmes called Green’s Theorem in the plane) to relate the
line integral around a closed curve with a double integral over the region inside
the curve:

Theorem 137 Green’s Theorem
Let R be a region inR2 whose boundary is a simple closed curve Cwhich
is piecewise smooth. Let f⃗(x, y) = P(x, y) ı⃗ + Q(x, y) ȷ⃗ be a smooth
vector field defined on both R and C. Then

˛
C
f⃗ · d⃗r =

¨
R

(
∂Q
∂x
− ∂P

∂y

)
dA, (15.5)

where C is traversed so that R is always on the leŌ side of C.

Proof
We will prove the theorem in the case for a simple region R, that is, where the
boundary curve C can be wriƩen as C = C1 ∪ C2 in two disƟnct ways:

C1 = the curve y = y1(x) from the point X1 to the point X2 (15.6)
C2 = the curve y = y2(x) from the point X2 to the point X1, (15.7)

where X1 and X2 are the points on C farthest to the leŌ and right, respecƟvely;
and

C1 = the curve x = x1(y) from the point Y2 to the point Y1 (15.8)
C2 = the curve x = x2(y) from the point Y1 to the point Y2, (15.9)

where Y1 and Y2 are the lowest and highest points, respecƟvely, on C. See Fig-
ure 15.8.
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x

y

x = x1(y) X1

◀ Y2

y = y2(x)

x = x2(y)X2

▶CY1
y = y1(x)

R

a b

d

c

Figure 15.8: Figure for Green’s Theorem on a simple region.
Integrate P(x, y) around C using the representaƟon C = C1 ∪ C2 given by

EquaƟons (15.6) and (15.7). Since y = y1(x) along C1 (as x goes from a to b) and
y = y2(x) along C2 (as x goes from b to a), as we see from Figure 15.8, then we
have
˛
C
P(x, y) dx =

ˆ
C1
P(x, y) dx+

ˆ
C2
P(x, y) dx

=

ˆ b

a
P(x, y1(x)) dx+

ˆ a

b
P(x, y2(x)) dx

=

ˆ b

a
P(x, y1(x)) dx−

ˆ b

a
P(x, y2(x)) dx

= −
ˆ b

a
(P(x, y2(x))− P(x, y1(x))) dx

= −
ˆ b

a

(
P(x, y)

∣∣∣y=y2(x)

y=y1(x)

)
dx

= −
ˆ b

a

ˆ y2(x)

y1(x)

∂P(x, y)
∂y

dy dx (by the Fundamental Theorem of Calculus)

= −
¨

R

∂P
∂y

dA.

Likewise, integrate Q(x, y) around C using the representaƟon C = C1 ∪ C2 given
by EquaƟons (15.8) and (15.9). Since x = x1(y) along C1 (as y goes from d to c)
and x = x2(y) along C2 (as y goes from c to d), as we see from Figure 15.8, then
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we have
˛
C
Q(x, y) dy =

ˆ
C1
Q(x, y) dy+

ˆ
C2
Q(x, y) dy

=

ˆ c

d
Q(x1(y), y) dy+

ˆ d

c
Q(x2(y), y) dy

= −
ˆ d

c
Q(x1(y), y) dy+

ˆ d

c
Q(x2(y), y) dy

=

ˆ d

c
(Q(x2(y), y)− Q(x1(y), y)) dy

=

ˆ d

c

(
Q(x, y)

∣∣∣x=x2(y)

x=x1(y)

)
dy

=

ˆ d

c

ˆ x2(y)

x1(y)

∂Q(x, y)
∂x

dx dy (by the Fundamental Theorem of Calculus)

=

¨
R

∂Q
∂x

dA.

Puƫng this together, we have
˛
C
f⃗ · d⃗r =

˛
C
P(x, y) dx+

˛
C
Q(x, y) dy

= −
¨

R

∂P
∂y

dA+

¨
R

∂Q
∂x

dA

=

¨
R

(
∂Q
∂x
− ∂P

∂y

)
dA. □

Though we proved Green’s Theorem only for a simple region R, the theorem
can also be proved for more general regions (say, a union of simple regions).

Watch the video:
Green’s Theorem at
https://youtu.be/a_zdFvYXX_c

Notes:
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Chapter 15 Line and Surface Integrals

Example 1 Using Green’s Theorem
Evaluate

¸
C(x

2 + y2) dx + 2xy dy, where C is the boundary (traversed counter-
clockwise) of the region R = {(x, y) : 0 ≤ x ≤ 1, 2x2 ≤ y ≤ 2x}.

SÊ½çã®ÊÄ R is the shaded region in Figure 15.9. By Green’s Theorem,
(1, 2)

x

y

0

2

1

C

Figure 15.9: Figure for Example 1

for P(x, y) = x2 + y2 and Q(x, y) = 2xy, we have
˛
C
(x2 + y2) dx+ 2xy dy =

¨
R

(
∂Q
∂x
− ∂P

∂y

)
dA

=

¨
R
(2y− 2y) dA =

¨
R
0 dA = 0.

We actually already knew that the answer was zero. Recall from Example 15.2.2
in SecƟon 15.2 that the vector field f⃗(x, y) = (x2 + y2) ı⃗ + 2xy ȷ⃗ has a potenƟal
funcƟon F(x, y) = 1

3x
3 + xy2, and so

¸
C f⃗ · d⃗r = 0 by Theorem 136.

Example 2 Green’s Theorem with a Hole
Let f⃗(x, y) = P(x, y) ı⃗+ Q(x, y) ȷ⃗, where

P(x, y) =
−y

x2 + y2
and Q(x, y) =

x
x2 + y2

,

and let R = { (x, y) : 0 < x2+ y2 ≤ 1 }. For the boundary curve C : x2+ y2 = 1,
traversed counterclockwise, it was shown in Exercise 9(b) in SecƟon 15.2 that¸
C f⃗ · d⃗r = 2π. But

∂Q
∂x

=
y2 − x2

(x2 + y2)2
=

∂P
∂y
⇒
¨

R

(
∂Q
∂x
− ∂P

∂y

)
dA =

¨
R
0 dA = 0.

This would seem to contradict Green’s Theorem. However, note that R is not
the enƟre region enclosed by C, since the point (0, 0) is not contained in R. That
is, R has a “hole” at the origin, so Green’s Theorem does not apply.

x

y

0

C1

C2

1

1

1
2

1
2

R
▶

◀

Figure 15.10: The annulus R

If wemodify the regionR to be the annulus R = { (x, y) : 1/4 ≤ x2+y2 ≤ 1 }
(see Figure 15.10), and take the “boundary” C of R to be C = C1 ∪ C2, where C1
is the unit circle x2 + y2 = 1 traversed counterclockwise and C2 is the circle
x2 + y2 = 1/4 traversed clockwise, then it can be shown (see Exercise 8) that˛

C
f⃗ · d⃗r = 0.

We would sƟll have
˜

R

(
∂Q
∂x −

∂P
∂y

)
dA = 0, so for this R we would have

˛
C
f⃗ · d⃗r =

¨
R

(
∂Q
∂x
− ∂P

∂y

)
dA,

Notes:

950



15.3 Green’s Theorem

which shows that Green’s Theorem holds for the annular region R.

It turns out that Green’s Theorem can be extended to mulƟply connected
regions, that is, regions like the annulus in Example 2, which have one or more
regions cut out from the interior, as opposed to discrete points being cut out. For
such regions, the “outer” boundary and the “inner” boundaries are traversed so
that R is always on the leŌ side.

C1

C2

R1

R2

▶

◀

◀

▶

→
←

→
←

C1

C2C3

R1

R2

▶ ▶

◀ ◀

◀

▶

→
←

→
←

→
←

Region R with one hole Region R with two holes

Figure 15.11: MulƟply connected regions
The intuiƟve idea for why Green’s Theorem holds for mulƟply connected re-

gions is shown in Figure 15.11 above. The idea is to cut “slits” between the
boundaries of a mulƟply connected region R so that R is divided into subregions
which do not have any “holes”. For example, in Figure 15.11(a) the region R is
the union of the regions R1 and R2, which are divided by the slits indicated by
the dashed lines. Those slits are part of the boundary of both R1 and R2, and
we traverse then in the manner indicated by the arrows. NoƟce that along each
slit the boundary of R1 is traversed in the opposite direcƟon as that of R2, which
means that the line integrals of f⃗ along those slits add to 0. Since R1 and R2 do
not have holes in them, then Green’s Theorem holds in each subregion, so that
˛

bdy
of R1

f⃗ · d⃗r =
¨

R1

(
∂Q
∂x
− ∂P

∂y

)
dA and

˛
bdy
of R2

f⃗ · d⃗r =
¨

R2

(
∂Q
∂x
− ∂P

∂y

)
dA.

But since the line integrals along the slits are opposite each other, we have
˛
C1∪C2

f⃗ · d⃗r =
˛

bdy
of R1

f⃗ · d⃗r+
˛

bdy
of R2

f⃗ · d⃗r,

and so
˛
C1∪C2

f⃗·d⃗r =
¨

R1

(
∂Q
∂x
− ∂P

∂y

)
dA+
¨

R2

(
∂Q
∂x
− ∂P

∂y

)
dA =

¨
R

(
∂Q
∂x
− ∂P

∂y

)
dA,

Notes:
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Chapter 15 Line and Surface Integrals

which shows that Green’s Theorem holds in the region R. A similar argument
shows that the theoremholds in the regionwith twoholes shown in Figure 15.11(b).

Weknow fromTheorem136 thatwhen a smooth vector field f⃗(x, y) = P(x, y) ı⃗+
Q(x, y) ȷ⃗ on a region R (whose boundary is a piecewise smooth, simple closed
curve C) has a potenƟal in R, then

¸
C f⃗ · d⃗r = 0. And if the potenƟal F(x, y) is

smooth in R, then ∂F
∂x = P and ∂F

∂y = Q, and so we know that

∂2F
∂y ∂x

=
∂2F
∂x ∂y

⇒ ∂P
∂y

=
∂Q
∂x

in R.

Conversely, if ∂P
∂y = ∂Q

∂x in R then
˛
C
f⃗ · d⃗r =

¨
R

(
∂Q
∂x
− ∂P

∂y

)
dA =

¨
R
0 dA = 0.

For a simply connected region R (i.e. a region with no holes), the following can
be shown:

Theorem 138 Equivalence of Path Independence
The following statements are equivalent for a simply connected region
R in R2:

1. f⃗(x, y) = P(x, y) ı⃗+ Q(x, y) ȷ⃗ has a smooth potenƟal F(x, y) in R

2.
ˆ
C
f⃗ · d⃗r is independent of the path for any curve C in R

3.
˛
C
f⃗ · d⃗r = 0 for every simple closed curve C in R

4.
∂P
∂y

=
∂Q
∂x

in R (in this case, the differenƟal form P dx+ Qdy is
exact)

Notes:
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Exercises 15.3
Problems
In Exercises 1–4, use Green’s Theorem to evaluate the given
line integral around the curve C, traversed counterclockwise.

1.
˛
C
(x2 − y2) dx+ 2xy dy; C is the boundary of R = { (x, y) :

0 ≤ x ≤ 1, 2x2 ≤ y ≤ 2x }

2.
˛
C
x2y dx+ 2xy dy; C is the boundary of R = { (x, y) : 0 ≤

x ≤ 1, x2 ≤ y ≤ x }

3.
˛
C
2y dx− 3x dy; C is the circle x2 + y2 = 1

4.
˛
C
(ex

2
+ y2) dx + (ey

2
+ x2) dy; C is the boundary of the

triangle with verƟces (0, 0), (4, 0) and (0, 4)

5. Is there a potenƟal F(x, y) for f⃗(x, y) = (y2+3x2) ı⃗+2xy ȷ⃗?
If so, find one.

6. Is there a potenƟal F(x, y) for f⃗(x, y) = (x3 cos(xy) +
2x sin(xy)) ı⃗+ x2y cos(xy) ȷ⃗? If so, find one.

7. Is there a potenƟal F(x, y) for f⃗(x, y) = (8xy+3) ı⃗+4(x2+
y) ȷ⃗? If so, find one.

8. Show that for any constants a, b and any closed simple
curve C,

˛
C
a dx+ b dy = 0.

9. For the vector field f⃗ as in Example 2, show directly that¸
C f⃗ · d⃗r = 0, where C is the boundary of the annulus
R = { (x, y) : 1/4 ≤ x2 + y2 ≤ 1 } traversed so that R
is always on the leŌ.

10. Evaluate
˛
C
ex sin y dx + (y3 + ex cos y) dy, where C is the

boundary of the rectangle with verƟces (1,−1), (1, 1),
(−1, 1) and (−1,−1), traversed counterclockwise.

11. For a region R bounded by a simple closed curve C, show
that the area A of R is

A = −
˛
C
y dx =

˛
C
x dy = 1

2

˛
C
x dy− y dx,

where C is traversed so that R is always on the leŌ. (Hint:
Use Green’s Theorem and the fact that A =

˜
R 1 dA.)
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Chapter 15 Line and Surface Integrals

15.4 Surface Integrals and the Divergence Theorem
In SecƟon 15.1 we learned how to integrate along a curve. We will now learn
how toperform integraƟonover a surface inR3, such as a sphere or a paraboloid.
Recall from SecƟon 12.1 how we idenƟfied points (x, y, z) on a curve C in R3,
parametrized by x = x(t), y = y(t), z = z(t), a ≤ t ≤ b, with the terminal
points of the posiƟon vector

r⃗(t) = x(t)⃗ı+ y(t)ȷ⃗+ z(t)⃗k for t in [a, b].

The idea behind a parametrizaƟon of a curve is that it “transforms” a subset
of R1 (normally an interval [a, b]) into a curve in R2 or R3 (see Figure 15.12).

R1

a t b

x = x(t)
y = y(t)
z = z(t)

y

z

x

0

(x(a), y(a), z(a))

(x(b), y(b), z(b))r⃗(t)

(x(t), y(t), z(t))

C

Figure 15.12: ParametrizaƟon of a curve C in R3

Similar to howweused aparametrizaƟonof a curve to define the line integral
along the curve, we will use a parametrizaƟon of a surface to define a surface
integral. We will use two variables, u and v, to parametrize a surface Σ in R3:
x = x(u, v), y = y(u, v), z = z(u, v), for (u, v) in some region R in R2 (see
Figure 15.13).

u

v

0

R

R2

(u, v)

x = x(u, v)
y = y(u, v)
z = z(u, v)

y

z

x

0

Σ

r⃗(u, v)

Figure 15.13: ParametrizaƟon of a surfaceΣ in R3
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954



15.4 Surface Integrals and the Divergence Theorem

In this case, the posiƟon vector of a point on the surface Σ is given by the
vector-valued funcƟon

r⃗(u, v) = x(u, v)⃗ı+ y(u, v)ȷ⃗+ z(u, v)⃗k for (u, v) in R.

Since r⃗(u, v) is a funcƟon of two variables, define the parƟal derivaƟves ∂⃗r
∂u

and ∂⃗r
∂v for (u, v) in R by

∂⃗r
∂u

(u, v) =
∂x
∂u

(u, v)⃗ı+
∂y
∂u

(u, v)ȷ⃗+
∂z
∂u

(u, v)⃗k, and

∂⃗r
∂v

(u, v) =
∂x
∂v

(u, v)⃗ı+
∂y
∂v

(u, v)ȷ⃗+
∂z
∂v

(u, v)⃗k.

The parametrizaƟon ofΣ can be thought of as “transforming” a region inR2

(in the uv-plane) into a 2-dimensional surface inR3. This parametrizaƟon of the
surface is someƟmes called a patch, based on the idea of “patching” the region
R ontoΣ in the grid-like manner shown in Figure 15.13.

In fact, those gridlines in R lead us to how we will define a surface integral
overΣ. Along the verƟcal gridlines in R, the variable u is constant. So those lines
get mapped to curves on Σ, and the variable u is constant along the posiƟon
vector r⃗(u, v). Thus, the tangent vector to those curves at a point (u, v) is ∂⃗r

∂v .
Similarly, the horizontal gridlines in R get mapped to curves onΣ whose tangent
vectors are ∂⃗r

∂u .
Now take a point (u, v) in R as, say, the lower leŌ corner of one of the rect-

angular grid secƟons in R, as shown in Figure 15.13. Suppose that this rectangle
has a small width and height of ∆u and ∆v, respecƟvely. The corner points of
that rectangle are (u, v), (u+∆u, v), (u+∆u, v+∆v) and (u, v+∆v). So the
area of that rectangle is A = ∆u∆v. Then that rectangle gets mapped by the
parametrizaƟon onto some secƟon of the surfaceΣ which, for∆u and∆v small
enough, will have a surface area (call it dσ) that is very close to the area of the
parallelogram which has adjacent sides r⃗(u+∆u, v)− r⃗(u, v) (corresponding to
the line segment from (u, v) to (u+∆u, v) in R) and r⃗(u, v+∆v)− r⃗(u, v) (corre-
sponding to the line segment from (u, v) to (u, v+∆v) in R). By combining our
usual noƟon of a parƟal derivaƟve (see DefiniƟon 86 in SecƟon 13.3) with that
of the derivaƟve of a vector-valued funcƟon (see DefiniƟon 73 in SecƟon 12.2)
applied to a funcƟon of two variables, we have

∂⃗r
∂u
≈ r⃗(u+∆u, v)− r⃗(u, v)

∆u
, and

∂⃗r
∂v
≈ r⃗(u, v+∆v)− r⃗(u, v)

∆v
,

Notes:
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Chapter 15 Line and Surface Integrals

and so the surface area element dσ is approximately

∥(⃗r(u+∆u, v)− r⃗(u, v))× (⃗r(u, v+∆v)− r⃗(u, v))∥

≈
∥∥∥∥(∆u

∂⃗r
∂u

)× (∆v
∂⃗r
∂v

)

∥∥∥∥ =

∥∥∥∥ ∂⃗r∂u × ∂⃗r
∂v

∥∥∥∥ ∆u∆v

by EquaƟon (11.5). Thus, the total surface area S ofΣ is approximately the sum
of all the quanƟƟes

∥∥∥ ∂⃗r
∂u ×

∂⃗r
∂v

∥∥∥ ∆u∆v, summed over the rectangles in R. Taking
the limit of that sum as the diagonal of the largest rectangle goes to 0 gives

S =
¨

R

∥∥∥∥ ∂⃗r∂u × ∂⃗r
∂v

∥∥∥∥ du dv.

We will write the double integral on the right using the special notaƟon

¨
Σ

dσ =

¨
R

∥∥∥∥ ∂⃗r∂u × ∂⃗r
∂v

∥∥∥∥ du dv.

This is a special case of a surface integral over the surfaceΣ, where the surface
area element dσ can be thought of as 1 dσ. Replacing 1 by a general real-valued
funcƟon f(x, y, z) defined in R3, we have the following:

DefiniƟon 114 Scalar Surface Integral
Let Σ be a surface in R3 parametrized by x = x(u, v), y = y(u, v),
z = z(u, v), for (u, v) in some region R in R2. Let r⃗(u, v) = x(u, v)⃗ı +
y(u, v)ȷ⃗ + z(u, v)⃗k be the posiƟon vector for any point on Σ, and let
f(x, y, z) be a real-valued funcƟon defined on some subset of R3 that
containsΣ. The surface integral of f(x, y, z) overΣ is
¨

Σ

f(x, y, z) dσ =

¨
R
f(x(u, v), y(u, v), z(u, v))

∥∥∥∥ ∂⃗r∂u × ∂⃗r
∂v

∥∥∥∥ du dv.

In parƟcular, the surface area S ofΣ is

S =
¨

Σ

1 dσ.SomeƟmes, the notaƟon‚
Σ
f(x, y, z) dσ is used instead

of
˜

Σ
f(x, y, z) dσ whenΣ is a closed

surface. Especially in physics texts, it
is common to see simply

¸
Σ
instead

of
‚

Σ
.
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15.4 Surface Integrals and the Divergence Theorem

Watch the video:
Ex: Evaluate a Surface Integral (Parametric Surface—
Helicoid) at
https://youtu.be/pAWLCFYsrVs

Example 1 CompuƟng a Surface Integral
A torus T is a surface obtained by revolving a circle of radius a in the yz-plane
around the z-axis, where the circle’s center is at a distance b from the z-axis
(0 < a < b), as in Figure 15.14. Find the surface area of T.

a

b

u

(y − b)2 + z2 = a2

0

z

y

Circle in the yz-plane Torus T

Figure 15.14: CreaƟng a torus

SÊ½çã®ÊÄ For any point on the circle, the line segment from the center
of the circle to that point makes an angle uwith the y-axis in the posiƟve y direc-
Ɵon (see Figure 15.14(a)). And as the circle revolves around the z-axis, the line
segment from the origin to the center of that circle sweeps out an angle v with
the posiƟve x-axis (see Figure 15.14(b)). Thus, the torus can be parametrized as:

x = (b+ a cos u) cos v, y = (b+ a cos u) sin v, z = a sin u,

where 0 ≤ u ≤ 2π, and 0 ≤ v ≤ 2π. So for the posiƟon vector

r⃗(u, v) = x(u, v)⃗ı+ y(u, v)ȷ⃗+ z(u, v)⃗k

= (b+ a cos u) cos v ı⃗+ (b+ a cos u) sin v ȷ⃗+ a sin u k⃗

we see that
∂⃗r
∂u

= −a sin u cos v ı⃗− a sin u sin v ȷ⃗+ a cos u k⃗

∂⃗r
∂v

= −(b+ a cos u) sin v ı⃗+ (b+ a cos u) cos v ȷ⃗+ 0⃗k,

Notes:
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and so compuƟng the cross product gives

∂⃗r
∂u
× ∂⃗r

∂v
=

−a(b+a cos u) cos v cos u ı⃗−a(b+a cos u) sin v cos u ȷ⃗−a(b+a cos u) sin u k⃗,

which has magnitude ∥∥∥∥ ∂⃗r∂u × ∂⃗r
∂v

∥∥∥∥ = a(b+ a cos u).

Thus, the surface area of T is

S =
¨

Σ

1 dσ

=

ˆ 2π

0

ˆ 2π

0

∥∥∥∥ ∂⃗r∂u × ∂⃗r
∂v

∥∥∥∥ du dv

=

ˆ 2π

0

ˆ 2π

0
a(b+ a cos u) du dv

=

ˆ 2π

0

(
abu+ a2 sin u

∣∣∣u=2π

u=0

)
dv

=

ˆ 2π

0
2πab dv

= 4π2ab

Since ∂⃗r
∂u and

∂⃗r
∂v are tangent to the surfaceΣ (i.e. lie in the tangent plane to

Σ at each point onΣ), then their cross product ∂⃗r
∂u ×

∂⃗r
∂v is perpendicular to the

tangent plane to the surface at each point ofΣ. Thus,¨
Σ

f(x, y, z) dσ =

¨
R
f(x(u, v), y(u, v), z(u, v)) ∥n⃗∥ dσ,

where n⃗ = ∂⃗r
∂u ×

∂⃗r
∂v . We say that n⃗ is a normal vector toΣ.

y

z

x

0

Figure 15.15: Outward Unit Normal Vec-
tors

Recall that normal vectors to a plane can point in two opposite direcƟons. By
an outward unit normal vector to a surfaceΣ, we will mean the unit vector that
is normal toΣ and points away from the “top” (or “outer” part) of the surface.
This is a hazy definiƟon, but the picture in Figure 15.15 gives a beƩer idea of
what outward normal vectors look like, in the case of a sphere. With this idea in
mind, we make the following definiƟon of a surface integral of a 3-dimensional
vector field over a surface:

Notes:
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15.4 Surface Integrals and the Divergence Theorem

DefiniƟon 115 Vector Surface Integral
Let Σ be a surface in R3 and let f⃗(x, y, z) = f1(x, y, z)⃗ı + f2(x, y, z)ȷ⃗ +
f3(x, y, z)⃗k be a vector field defined on some subset ofR3 that contains
Σ. The surface integral of f⃗ overΣ is

¨
Σ

f⃗ · dσ⃗ =

¨
R
f⃗ · n⃗ dσ, (15.10)

where, at any point onΣ, n⃗ is the outward unit normal vector toΣ.
SomeƟmes, the notaƟon

‚
Σ
f⃗ · dσ⃗ is

used instead of
˜

Σ
f⃗ · dσ⃗ when Σ is

a closed surface. Especially in physics
texts, it is common to see simply

¸
Σ

instead of
‚

Σ
.Note in the above definiƟon that the dot product inside the integral on the

right is a real-valued funcƟon, and hence we can use DefiniƟon 114 to evaluate
the integral.

Example 2 EvaluaƟng a Surface Integral
Evaluate the surface integral

˜
Σ
f⃗ · dσ⃗, where f⃗(x, y, z) = yz⃗ı+ xzȷ⃗+ xy⃗k andΣ

is the part of the plane x + y + z = 1 with x ≥ 0, y ≥ 0, and z ≥ 0, with the
outward unit normal n⃗ poinƟng in the posiƟve z direcƟon (see Figure 15.16).

1

1

Σ

1

y

z

x

0
x+ y+ z = 1

n⃗

Figure 15.16: The surface in Example 2

SÊ½çã®ÊÄ Since the vector v⃗ = (1, 1, 1) is normal to the plane x +
y + z = 1 (why?), then dividing v⃗ by its length yields the outward unit normal
vector n⃗ =

(
1√
3 ,

1√
3 ,

1√
3

)
. We now need to parametrize Σ. As we can see

from Figure 15.16, projecƟngΣ onto the xy-plane yields a triangular region R =
{ (x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x }. Thus, using (u, v) instead of (x, y), we see
that

x = u, y = v, z = 1− (u+ v), for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u
is a parametrizaƟon ofΣ over R (since z = 1− (x+ y) onΣ). So onΣ,

f⃗ · n⃗ = (yz, xz, xy) ·
(

1√
3
,
1√
3
,
1√
3

)
=

1√
3
(yz+ xz+ xy)

=
1√
3
((x+ y)z+ xy) =

1√
3
((u+ v)(1− (u+ v)) + uv)

=
1√
3
((u+ v)− (u+ v)2 + uv)

for (u, v) in R, and for r⃗(u, v) = x(u, v)⃗ı + y(u, v)ȷ⃗ + z(u, v)⃗k = u⃗ı + vȷ⃗ + (1 −
(u+ v))⃗k we have

∂⃗r
∂u
× ∂⃗r

∂v
= (1, 0,−1)× (0, 1,−1) = (1, 1, 1) ⇒

∥∥∥∥ ∂⃗r∂u × ∂⃗r
∂v

∥∥∥∥ =
√
3.
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Chapter 15 Line and Surface Integrals

Thus, integraƟng over R using verƟcal slices (e.g. as indicated by the dashed line
in Figure 15.16) gives

¨
Σ

f⃗ · dσ⃗ =

¨
Σ

f⃗ · n⃗ dσ

=

¨
R
(⃗f(x(u, v), y(u, v), z(u, v)) · n⃗)

∥∥∥∥ ∂⃗r∂u × ∂⃗r
∂v

∥∥∥∥ dv du

=

ˆ 1

0

ˆ 1−u

0

1√
3
((u+ v)− (u+ v)2 + uv)

√
3 dv du

=

ˆ 1

0

(
(u+ v)2

2
− (u+ v)3

3
+

uv2

2

∣∣∣∣v=1−u

v=0

)
du

=

ˆ 1

0

(
1
6
+

u
2
− 3u2

2
+

5u3

6

)
du

=
u
6
+

u2

4
− u3

2
+

5u4

24

∣∣∣∣1
0
=

1
8
.

NoƟce that we divided n⃗ by its norm, and later mulƟplied by the same factor
with

∥∥∥ ∂⃗r
∂u ×

∂⃗r
∂v

∥∥∥. This is generally the case:
n⃗ =

∂⃗r
∂u ×

∂⃗r
∂v∥∥∥ ∂⃗r

∂u ×
∂⃗r
∂v

∥∥∥
σ =

∥∥∥∥ ∂⃗r∂u × ∂⃗r
∂v

∥∥∥∥ dv du

n⃗dσ =
∂⃗r
∂u
× ∂⃗r

∂v
dv du,

which simplifies the calculaƟon.
CompuƟng surface integrals can oŌen be tedious, especially when the for-

mula for the outward unit normal vector at each point of Σ changes. The fol-
lowing theorem provides an easier way in the case when Σ is a closed surface,
that is, when Σ encloses a bounded solid in R3. For example, spheres, cubes,
and ellipsoids are closed surfaces, but planes and paraboloids are not.
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15.4 Surface Integrals and the Divergence Theorem

Theorem 139 Divergence Theorem
Let Σ be a closed surface in R3 which bounds a solid S, and let
f⃗(x, y, z) = f1(x, y, z)⃗ı + f2(x, y, z)ȷ⃗ + f3(x, y, z)⃗k be a vector field de-
fined on some subset of R3 that containsΣ. Then¨

Σ

f⃗ · dσ⃗ =

˚
S
div f⃗dV, (15.11)

where
div f⃗ =

∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

(15.12)

is called the divergence of f⃗.

The proof of the Divergence Theorem is very similar to the proof of Green’s
Theorem, i.e. it is first proved for the simple case when the solid S is bounded
above by one surface, bounded belowby another surface, and bounded laterally
by one ormore surfaces. The proof can then be extended tomore general solids.

In DefiniƟon 95 in SecƟon 13.6, we defined the operator∇ as a vector inR3,
namely

∇ =
∂

∂x
ı⃗+

∂

∂y
ȷ⃗+

∂

∂z
k⃗.

This definiƟon allows us to write div f⃗ = ∇ · f⃗.

Example 3 Using the Divergence Theorem
Evaluate

˜
Σ
f⃗ · dσ⃗, where f⃗(x, y, z) = x⃗ı + yȷ⃗ + z⃗k and Σ is the unit sphere

x2 + y2 + z2 = 1.

SÊ½çã®ÊÄ We see that div f⃗ = 1+ 1+ 1 = 3, so
¨

Σ

f⃗ · dσ⃗ =

˚
S
div f⃗dV =

˚
S
3dV

= 3
˚

S
1dV = 3 vol(S) = 3 · 4π(1)

3

3
= 4π.

In physical applicaƟons, the surface integral
˜

Σ
f⃗ · dσ⃗ is oŌen referred to as

the flux of f⃗ through the surfaceΣ. For example, if f⃗ represents the velocity field
of a fluid, then the flux is the net quanƟty of fluid to flow through the surface
Σ per unit Ɵme. A posiƟve flux means there is a net flow out of the surface
(i.e. in the direcƟon of the outward unit normal vector n⃗), while a negaƟve flux
indicates a net flow inward (in the direcƟon of−n⃗).

Notes:
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Chapter 15 Line and Surface Integrals

The term divergence comes from interpreƟng div f⃗ as a measure of how
much a vector field “diverges” from a point. This is best seen by using another
definiƟon of div f⃗which is equivalent to the definiƟon given by EquaƟon (15.12).
Namely, for a point (x, y, z) in R3,

div f⃗(x, y, z) = lim
V→0

1
V

¨
Σ

f⃗ · dσ⃗, (15.13)

where V is the volume enclosed by a closed surfaceΣ around the point (x, y, z).
In the limit, V → 0 means that we take smaller and smaller closed surfaces
around (x, y, z), which means that the volumes they enclose are going to zero.
It can be shown that this limit is independent of the shapes of those surfaces.
NoƟce that the limit being taken is of the raƟo of the flux through a surface to
the volume enclosed by that surface, which gives a rough measure of the flow
“leaving” a point, as we menƟoned. Vector fields which have zero divergence
are oŌen called solenoidal fields.

The following theorem is a simple consequence of EquaƟon (15.13).

Theorem 140 Zero Flux
If the flux of a vector field f⃗ is zero through every closed surface con-
taining a given point, then div f⃗ = 0 at that point.

Proof
By EquaƟon (15.13), at the given point (x, y, z) we have

div f⃗(x, y, z) = lim
V→0

1
V

¨
Σ

f⃗ · dσ⃗ for closed surfacesΣ containing (x, y, z), so

= lim
V→0

1
V

(0) by our assumpƟon that the flux through eachΣ is zero, so

= lim
V→0

0

= 0. □

This secƟon and the previous introduced four new types of integrals, which
we gather in Key Idea 64.

Notes:
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Key Idea 64 IntegraƟng Parameterized Curves and Surfaces
c⃗ : R→ R3

parameterizes a curve
r⃗ : R2 → R3

parameterizes a surface

f : R3 → R scalar line integral:´
c⃗(D) fds

=
´
D f(⃗c(t)) ∥⃗c

′(t)∥ dt

scalar surface integral:˜
r⃗(D) fdσ

=
˜

D f(⃗r(u, v)) ∥⃗ru × r⃗v∥ du dv

F⃗ : R3 → R3 vector line integral:´
c⃗(D) F⃗ · d⃗r

=
´
D F⃗(⃗c(t)) · c⃗

′(t)dt

vector surface integral:˜
r⃗(D) F⃗ · dσ⃗

=
˜

D F⃗(⃗r(u, v)) · (⃗ru × r⃗v)du dv

If we are in the boƩom leŌ entry, where c⃗ : R → R3 and F⃗ : R3 → R3,
we may be able to use the Fundamental Theorem for Gradient Vector Fields:´
C∇ϕ · d⃗s = ϕ(Q)− ϕ(P).
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Exercises 15.4
Problems
In Exercises 1–4, use the Divergence Theorem to evaluate the
surface integral

˜
Σ
f⃗ ·dσ of the given vector field f⃗(x, y, z) over

the surfaceΣ.

1. f⃗(x, y, z) = x⃗ı+ 2yȷ⃗+ 3z⃗k,Σ : x2 + y2 + z2 = 9
2. f⃗(x, y, z) = x⃗ı + yȷ⃗ + z⃗k, Σ : boundary of the solid cube

S = { (x, y, z) : 0 ≤ x, y, z ≤ 1 }

3. f⃗(x, y, z) = x3⃗ı+ y3ȷ⃗+ z3⃗k,Σ : x2 + y2 + z2 = 1
4. f⃗(x, y, z) = 2⃗ı+ 3ȷ⃗+ 5⃗k,Σ : x2 + y2 + z2 = 1
5. Show that the flux of any constant vector field through any

closed surface is zero.
6. Evaluate the surface integral from Exercise 2without using

the Divergence Theorem, i.e. using only DefiniƟon 114, as
in Example 2. Note that there will be a different outward
unit normal vector to each of the six faces of the cube.

7. Evaluate the surface integral
˜

Σ
f⃗ · dσ, where f⃗(x, y, z) =

x2⃗ı+xyȷ⃗+z⃗k andΣ is the part of the plane 6x+3y+2z = 6
with x ≥ 0, y ≥ 0, and z ≥ 0, with the outward unit nor-
mal n⃗ poinƟng in the posiƟve z direcƟon.

8. Use a surface integral to show that the surface area of a
sphere of radius r is 4πr2. (Hint: Use spherical coordinates
to parametrize the sphere.)

9. Use a surface integral to show that the surface area of a
right circular cone of radius R and height h is πR

√
h2 + R2.

(Hint: Use the parametrizaƟon x = r cos θ, y = r sin θ,
z = h

R r, for 0 ≤ r ≤ R and 0 ≤ θ ≤ 2π.)

10. The ellipsoid x2
a2 + y2

b2 + z2
c2 = 1 can be parametrized using

ellipsoidal coordinates

x = a sinϕ cos θ, y = b sinϕ sin θ, z = c cosϕ,

for 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π. Show that the surface
area S of the ellipsoid is

S =
ˆ π

0

ˆ 2π

0
sinϕ

√
a2b2 cos2 ϕ + c2(a2 sin2 θ + b2 cos2 θ) sin2 ϕ dθ dϕ.

(Note: The above double integral can not be evaluated by
elementary means. For specific values of a, b and c it can
be evaluated using numerical methods. An alternaƟve is to
express the surface area in terms of ellipƟc integrals.)

11. Use DefiniƟon 114 to prove that the surface area S over a
region R in R2 of a surface z = f(x, y) is given by the for-
mula

S =
¨

R

√
1+

(
∂f
∂x

)2
+
(

∂f
∂y

)2
dA.

(Hint: Think of the parametrizaƟon of the surface.)
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15.5 Stokes’ Theorem

15.5 Stokes’ Theorem

So far the only types of line integrals which we have discussed are those along
curves inR2. But the definiƟons and properƟes which were covered in SecƟons
15.1 and 15.2 can easily be extended to include funcƟons of three variables, so
that we can now discuss line integrals along curves in R3.

DefiniƟon 116 Scalar Line Integral
For a real-valued funcƟon f(x, y, z) and a curve C inR3, parametrized by
x = x(t), y = y(t), z = z(t), a ≤ t ≤ b, the line integral of f(x, y, z)
along C with respect to arc length s is
ˆ
C
f(x, y, z) ds =

ˆ b

a
f(x(t), y(t), z(t))

√
x ′(t)2 + y ′(t)2 + z ′(t)2 dt.

The line integral of f(x, y, z) along C with respect to x is
ˆ
C
f(x, y, z) dx =

ˆ b

a
f(x(t), y(t), z(t)) x ′(t) dt.

The line integral of f(x, y, z) along C with respect to y is
ˆ
C
f(x, y, z) dy =

ˆ b

a
f(x(t), y(t), z(t)) y ′(t) dt.

The line integral of f(x, y, z) along C with respect to z is
ˆ
C
f(x, y, z) dz =

ˆ b

a
f(x(t), y(t), z(t)) z ′(t) dt.

Similar to the two-variable case, if f(x, y, z) ≥ 0 then the line integral
´
C f(x, y, z) ds

can be thought of as the total area of the “picket fence” of height f(x, y, z) at each
point along the curve C in R3.

Vector fields in R3 are defined in a similar fashion to those in R2, which al-
lows us to define the line integral of a vector field along a curve in R3.

Notes:
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DefiniƟon 117 Vector Line Integral
For a vector field f⃗(x, y, z) = P(x, y, z) ı⃗ + Q(x, y, z) ȷ⃗ + R(x, y, z) k⃗ and
a curve C in R3 with a smooth parametrizaƟon x = x(t), y = y(t),
z = z(t), a ≤ t ≤ b, the line integral of f along C is

ˆ
C
f⃗ · d⃗r =

ˆ
C
P(x, y, z) dx+

ˆ
C
Q(x, y, z) dy+

ˆ
C
R(x, y, z) dz

=

ˆ b

a
f⃗(x(t), y(t), z(t)) · r⃗ ′(t) dt,

where r⃗(t) = x(t) ı⃗+ y(t) ȷ⃗+ z(t) k⃗ is the posiƟon vector for points on
C.

Similar to the two-variable case, if f⃗(x, y, z) represents the force applied to
an object at a point (x, y, z) then the line integral

´
C f · d⃗r represents the work

done by that force in moving the object along the curve C in R3.

Some of the most important results we will need for line integrals in R3 are
stated below without proof (the proofs are similar to their two-variable equiva-
lents).

Theorem 141 Vector Line Integral Along a Curve
For a vector field f⃗(x, y, z) = P(x, y, z) ı⃗ + Q(x, y, z) ȷ⃗ + R(x, y, z) k⃗ and
a curve C with a smooth parametrizaƟon x = x(t), y = y(t), z = z(t),
a ≤ t ≤ b and posiƟon vector r⃗(t) = x(t) ı⃗+ y(t) ȷ⃗+ z(t) k⃗,

ˆ
C
f⃗ · d⃗r =

ˆ
C
f⃗ · T⃗ ds,

where T⃗(t) = r⃗ ′(t)
∥⃗r ′(t)∥ is the unit tangent vector to C at (x(t), y(t), z(t)).
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Theorem 142 Fundamental Theorem of Line Integrals in Three Di-
mensions
Let f⃗(x, y, z) = P(x, y, z) ı⃗+ Q(x, y, z) ȷ⃗+ R(x, y, z) k⃗ be a vector field in
some solid S, with P, Q and R conƟnuously differenƟable funcƟons on
S. Let C be a smooth curve in S parametrized by x = x(t), y = y(t),
z = z(t), a ≤ t ≤ b. Suppose that there is a real-valued funcƟon
F(x, y, z) such that∇F = f⃗ on S. Then

ˆ
C
f⃗ · d⃗r = F(B)− F(A), (15.14)

where A = (x(a), y(a), z(a)) and B = (x(b), y(b), z(b)) are the end-
points of C.

Theorem 143 Zero Line Integral
If a vector field f⃗ has a potenƟal in a solid Swithout holes, then

˛
C
f⃗·d⃗r =

0 for any closed curve C in S (i.e.,
˛
C
∇F · d⃗r = 0 for any real-valued

funcƟon F(x, y, z)).

Watch the video:
Fundamental Theorem for Line Integrals at
https://youtu.be/xVhHow_usMQ

Figure 15.17: Conical helix C for Exam-
ple 1.

Example 1 EvaluaƟng a Line Integral
Let f(x, y, z) = z and let C be the curve in R3 parametrized by

x = t sin t, y = t cos t, z = t, 0 ≤ t ≤ 8π.

Evaluate
´
C f(x, y, z) ds. (Note: C is called a conical helix. See Figure 15.17).

Notes:
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SÊ½çã®ÊÄ Since x ′(t) = sin t+t cos t, y ′(t) = cos t−t sin t, and z ′(t) =
1, we have

x ′(t)2 + y ′(t)2 + z ′(t)2 = (sin2 t+ 2t sin t cos t+ t2 cos2 t)
+ (cos2 t− 2t sin t cos t+ t2 sin2 t) + 1

= t2(sin2 t+ cos2 t) + sin2 t+ cos2 t+ 1
= t2 + 2,

so since f(x(t), y(t), z(t)) = z(t) = t along the curve C, then
ˆ
C
f(x, y, z) ds =

ˆ 8π

0
f(x(t), y(t), z(t))

√
x ′(t)2 + y ′(t)2 + z ′(t)2 dt

=

ˆ 8π

0
t
√

t2 + 2 dt

=

(
1
3
(t2 + 2)3/2

) ∣∣∣∣8π
0

=
1
3

(
(64π2 + 2)3/2 − 2

√
2
)
.

Example 2 EvaluaƟng a Line Integral
Let f⃗(x, y, z) = x ı⃗ + y ȷ⃗ + 2z k⃗ be a vector field in R3. Using the same curve C
from Example 1, evaluate

´
C f · d⃗r.

SÊ½çã®ÊÄ It is easy to see that F(x, y, z) = x2
2 + y2

2 + z2 is a potenƟal
for f⃗(x, y, z) (i.e.,∇F = f⃗). So by Theorem 142 we know that
ˆ
C
f⃗ · d⃗r = F(B)− F(A), where A = (x(0), y(0), z(0)) and B = (x(8π), y(8π), z(8π)), so

= F(8π sin 8π, 8π cos 8π, 8π)− F(0 sin 0, 0 cos 0, 0)
= F(0, 8π, 8π)− F(0, 0, 0)

= 0+
(8π)2

2
+ (8π)2 − (0+ 0+ 0) = 96π2.

Wewill now discuss a generalizaƟon of Green’s Theorem inR2 to orientable
surfaces in R3, called Stokes’ Theorem. A surface Σ in R3 is orientable if there
is a conƟnuous vector field n⃗ in R3 such that n⃗ is nonzero and normal to Σ (i.e.
perpendicular to the tangent plane) at each point of Σ. We say that such an n⃗
is a normal vector field.

y

z

x

0

n⃗

−n⃗

Figure 15.18: An orientaƟon of the
sphere.

For example, the unit sphere x2+ y2+ z2 = 1 is orientable, since the conƟn-
uous vector field n⃗(x, y, z) = x ı⃗+y ȷ⃗+z k⃗ is nonzero and normal to the sphere at
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15.5 Stokes’ Theorem

each point. In fact,−n⃗(x, y, z) is another normal vector field (see Figure 15.18).
We see in this case that n⃗(x, y, z) is what we have called an outward normal vec-
tor, and −n⃗(x, y, z) is an inward normal vector. These “outward” and “inward”
normal vector fields on the sphere correspond to an “outer” and “inner” side,
respecƟvely, of the sphere. That is, we say that the sphere is a two-sided sur-
face. Roughly, “two-sided” means “orientable”. Other examples of two-sided,
and hence orientable, surfaces are cylinders, paraboloids, ellipsoids, and planes.

You may be wondering what kind of surface would not have two sides. An
example is theMöbius strip, which is constructed by taking a thin rectangle and
connecƟng its ends at the opposite corners, resulƟng in a “twisted” strip (see
Figure 15.19).

B A
◀

BA

◀

−→

→

→

Connect A to A and B to B along the ends Not orientable

Figure 15.19: Möbius strip

If you imagine walking along a line down the center of theMöbius strip, as in
Figure 15.19(b), then you arrive back at the same place from which you started
but upside down! That is, your orientaƟon changed even though your moƟon
was conƟnuous along that center line. Informally, thinking of your verƟcal di-
recƟon as a normal vector field along the strip, there is a disconƟnuity at your
starƟng point (and, in fact, at every point) since your verƟcal direcƟon takes two
different values there. The Möbius strip has only one side, and hence is nonori-
entable.

For an orientable surfaceΣwhich has a boundary curve C, pick a unit normal
vector n⃗ such that if you walked along Cwith your head poinƟng in the direcƟon
of n⃗, then the surface would be on your leŌ. We say in this situaƟon that n⃗ is
a posiƟve unit normal vector and that C is traversed n⃗-posiƟvely. We can now
state Stokes’ Theorem:

Notes:
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Theorem 144 Stokes’ Theorem
LetΣ be an orientable surface inR3 whose boundary is a simple closed
curve C, and let f⃗(x, y, z) = P(x, y, z)⃗ı + Q(x, y, z)ȷ⃗ + R(x, y, z)⃗k be a
smooth vector field definedon some subset ofR3 that containsΣ. Then˛

C
f⃗ · d⃗r =

¨
Σ

(curl f⃗ ) · n⃗ dσ, (15.15)

where

curl f⃗ =
(
∂R
∂y
− ∂Q

∂z

)
ı⃗+

(
∂P
∂z
− ∂R

∂x

)
ȷ⃗+

(
∂Q
∂x
− ∂P

∂y

)
k⃗, (15.16)

n⃗ is a posiƟve unit normal vector overΣ, and C is traversed n⃗-posiƟvely.

The formula for curl f⃗ is unfortunately complicated. If we recall that we have
defined the operator∇ as a vector in R3 by

∇ =
∂

∂x
ı⃗+

∂

∂y
ȷ⃗+

∂

∂z
k⃗,

then we can write curl f⃗ = ∇× f⃗.

Proof
As the general case is beyond the scope of this text, we will prove the theorem
only for the special case where Σ is the graph of z = z(x, y) for some smooth
real-valued funcƟon z(x, y), with (x, y) varying over a region D in R2. Project-

y

z

x

0

n⃗

(x, y)D

CD

C

Σ : z = z(x, y)

Figure 15.20: A parƟcular case of Stokes’
Theorem

ingΣ onto the xy-plane, we see that the closed curve C (the boundary curve of
Σ) projects onto a closed curve CD which is the boundary curve of D (see Fig-
ure 15.20). Assuming that C has a smooth parametrizaƟon, its projecƟon CD in
the xy-plane also has a smooth parametrizaƟon, say

CD : x = x(t), y = y(t), a ≤ t ≤ b,

and so C can be parametrized (in R3) as

C : x = x(t), y = y(t), z = z(x(t), y(t)), a ≤ t ≤ b,

since the curve C is part of the surface z = z(x, y). Now, by the Chain Rule
(Theorem 110 in SecƟon 13.5), for z = z(x(t), y(t)) as a funcƟon of t, we know
that

z ′(t) =
∂z
∂x

x ′(t) +
∂z
∂y

y ′(t),
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15.5 Stokes’ Theorem

and so˛
C
f⃗ · d⃗r =

ˆ
C
P(x, y, z) dx+ Q(x, y, z) dy+ R(x, y, z) dz

=

ˆ b

a

(
P x ′(t) + Qy ′(t) + R

(
∂z
∂x

x ′(t) +
∂z
∂y

y ′(t)
))

dt

=

ˆ b

a

((
P+ R

∂z
∂x

)
x ′(t) +

(
Q+ R

∂z
∂y

)
y ′(t)

)
dt

=

ˆ
CD
P̃(x, y) dx+ Q̃(x, y) dy,

where

P̃(x, y) = P(x, y, z(x, y)) + R(x, y, z(x, y))
∂z
∂x

(x, y), and

Q̃(x, y) = Q(x, y, z(x, y)) + R(x, y, z(x, y))
∂z
∂y

(x, y)

for (x, y) in D. Thus, by Green’s Theorem applied to the region D, we have
˛
C
f⃗ · d⃗r =

¨
D

(
∂Q̃
∂x
− ∂P̃

∂y

)
dA. (15.17)

Thus,

∂Q̃
∂x

=
∂

∂x

(
Q(x, y, z(x, y)) + R(x, y, z(x, y))

∂z
∂y

(x, y)
)
, so by the Product Rule we get

=
∂

∂x
(Q(x, y, z(x, y))) +

(
∂

∂x
R(x, y, z(x, y))

)
∂z
∂y

(x, y) + R(x, y, z(x, y))
∂

∂x

(
∂z
∂y

(x, y)
)
.

Now, by Theorem 111, we have

∂

∂x
(Q(x, y, z(x, y))) =

∂Q
∂x

∂x
∂x

+
∂Q
∂y

∂y
∂x

+
∂Q
∂z

∂z
∂x

=
∂Q
∂x
· 1+ ∂Q

∂y
· 0+ ∂Q

∂z
∂z
∂x

=
∂Q
∂x

+
∂Q
∂z

∂z
∂x

.

Similarly,

∂

∂x
(R(x, y, z(x, y))) =

∂R
∂x

+
∂R
∂z

∂z
∂x

.

Notes:

971



Chapter 15 Line and Surface Integrals

Thus,
∂Q̃
∂x

=
∂Q
∂x

+
∂Q
∂z

∂z
∂x

+

(
∂R
∂x

+
∂R
∂z

∂z
∂x

)
∂z
∂y

+ R(x, y, z(x, y))
∂2z
∂x ∂y

=
∂Q
∂x

+
∂Q
∂z

∂z
∂x

+
∂R
∂x

∂z
∂y

+
∂R
∂z

∂z
∂x

∂z
∂y

+ R
∂2z
∂x ∂y

.

In a similar fashion, we can calculate

∂P̃
∂y

=
∂P
∂y

+
∂P
∂z

∂z
∂y

+
∂R
∂y

∂z
∂x

+
∂R
∂z

∂z
∂y

∂z
∂x

+ R
∂2z
∂y ∂x

.

So subtracƟng gives

∂Q̃
∂x
− ∂P̃

∂y
=

(
∂Q
∂z
− ∂R

∂y

)
∂z
∂x

+

(
∂R
∂x
− ∂P

∂z

)
∂z
∂y

+

(
∂Q
∂x
− ∂P

∂y

)
(15.18)

since ∂2z
∂x ∂y = ∂2z

∂y ∂x by the smoothness of z = z(x, y). Hence, by EquaƟon (15.17),
˛
C
f⃗ · d⃗r =

¨
D

(
−
(
∂R
∂y
− ∂Q

∂z

)
∂z
∂x
−
(
∂P
∂z
− ∂R

∂x

)
∂z
∂y

+

(
∂Q
∂x
− ∂P

∂y

))
dA

(15.19)
aŌer factoring out a −1 from the terms in the first two products in EquaƟon
(15.18).

Now, recall from SecƟon 13.7 that the vector n⃗ = − ∂z
∂x ı⃗−

∂z
∂y ȷ⃗+ k⃗ is normal

to the tangent plane to the surface z = z(x, y) at each point ofΣ. Thus,

n⃗ =
n⃗
∥n⃗∥

=
− ∂z

∂x ı⃗−
∂z
∂y ȷ⃗+ k⃗√

1+
(
∂z
∂x

)2
+
(

∂z
∂y

)2
is in fact a posiƟve unit normal vector to Σ (see Figure 15.20). Hence, using
the parametrizaƟon r⃗(x, y) = x ı⃗ + y ȷ⃗ + z(x, y) k⃗, for (x, y) in D, of the sur-
face Σ, we have ∂⃗r

∂x = ı⃗ + ∂z
∂x k⃗ and ∂⃗r

∂y = ȷ⃗ + ∂z
∂y k⃗, and so

∥∥∥ ∂⃗r
∂x ×

∂⃗r
∂y

∥∥∥ =√
1+

(
∂z
∂x

)2
+
(

∂z
∂y

)2
. So we see that using EquaƟon (15.16) for curl f⃗, we have

¨
Σ

(curl f⃗) · n⃗ dσ

=

¨
D
(curl f⃗ ) · n⃗

∥∥∥∥ ∂⃗r∂x × ∂⃗r
∂y

∥∥∥∥ dA

=

¨
D

((
∂R
∂y
− ∂Q

∂z

)
ı⃗+

(
∂P
∂z
− ∂R

∂x

)
ȷ⃗+

(
∂Q
∂x
− ∂P

∂y

)
k⃗
)
·
(
−∂z
∂x

ı⃗− ∂z
∂y

ȷ⃗+ k⃗
)
dA

=

¨
D

(
−
(
∂R
∂y
− ∂Q

∂z

)
∂z
∂x
−
(
∂P
∂z
− ∂R

∂x

)
∂z
∂y

+

(
∂Q
∂x
− ∂P

∂y

))
dA,
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15.5 Stokes’ Theorem

which, upon comparing to EquaƟon (15.19), proves the Theorem. □

Note: The condiƟon in Stokes’ Theorem that the surface Σ have a (conƟn-
uously varying) posiƟve unit normal vector n⃗ and a boundary curve C traversed
n⃗-posiƟvely can be expressed more precisely as follows: if r⃗(t) is the posiƟon
vector for C and T⃗(t) = r⃗ ′(t)/ ∥⃗r ′(t)∥ is the unit tangent vector to C, then the
vectors T⃗, n⃗, T⃗× n⃗ form a right-handed system.

Also, it should be noted that Stokes’ Theoremholds evenwhen the boundary
curve C is piecewise smooth.

Example 3 Verifying Stokes’ Theorem
Verify Stokes’ Theorem for f⃗(x, y, z) = z ı⃗ + x ȷ⃗ + y k⃗ when Σ is the paraboloid
z = x2 + y2 such that z ≤ 1 (see Figure 15.21).

y

z

x

n⃗

0

C

Σ

1

Figure 15.21: z = x2 + y2 for Example 3.

SÊ½çã®ÊÄ The posiƟve unit normal vector to the surface z = z(x, y) =
x2 + y2 is

n⃗ =
− ∂z

∂x ı⃗−
∂z
∂y ȷ⃗+ k⃗√

1+
(
∂z
∂x

)2
+
(

∂z
∂y

)2 =
−2x ı⃗− 2y ȷ⃗+ k⃗√
1+ 4x2 + 4y2

,

and curl f⃗ = (1− 0) ı⃗+ (1− 0) ȷ⃗+ (1− 0) k⃗ = ı⃗+ ȷ⃗+ k⃗, so

(curl f⃗ ) · n⃗ = (−2x− 2y+ 1)/
√
1+ 4x2 + 4y2.

Since Σ can be parametrized as r⃗(x, y) = x ı⃗+ y ȷ⃗+ (x2 + y2) k⃗ for (x, y) in the
region D = { (x, y) : x2 + y2 ≤ 1 }, then¨

Σ

(curl f⃗ ) · n⃗ dσ =

¨
D
(curl f⃗ ) · n⃗

∥∥∥∥ ∂⃗r∂x × ∂⃗r
∂y

∥∥∥∥ dA

=

¨
D

−2x− 2y+ 1√
1+ 4x2 + 4y2

√
1+ 4x2 + 4y2 dA

=

¨
D
(−2x− 2y+ 1) dA, so switching to polar coordinates gives

=

ˆ 2π

0

ˆ 1

0
(−2r cos θ − 2r sin θ + 1)r dr dθ

=

ˆ 2π

0

ˆ 1

0
(−2r2 cos θ − 2r2 sin θ + r) dr dθ

=

ˆ 2π

0

(
− 2r3

3 cos θ − 2r3
3 sin θ + r2

2

∣∣∣r=1

r=0

)
dθ

=

ˆ 2π

0

(
− 2

3 cos θ −
2
3 sin θ +

1
2
)
dθ

= − 2
3 sin θ +

2
3 cos θ +

1
2θ
∣∣2π
0 = π.
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The boundary curve C is the unit circle x2 + y2 = 1 laying in the plane z = 1
(see Figure 15.21), which can be parametrized as x = cos t, y = sin t, z = 1 for
0 ≤ t ≤ 2π. So
˛
C
f⃗ · d⃗r =

ˆ 2π

0
((1)(− sin t) + (cos t)(cos t) + (sin t)(0)) dt

=

ˆ 2π

0

(
− sin t+

1+ cos 2t
2

)
dt

(
here we used cos2 t =

1+ cos 2t
2

)
= cos t+

t
2
+

sin 2t
4

∣∣∣∣2π
0

= π.

So we see that
¸
C f⃗ · d⃗r =

˜
Σ
(curl f⃗ ) · n⃗ dσ, as predicted by Stokes’ Theorem.

The line integral in the preceding example was far simpler to calculate than
the surface integral, but this will not always be the case.

Example 4 Using Stokes’ Theorem
LetΣ be the ellipƟc paraboloid z = x2

4 + y2
9 for z ≤ 1, and let C be its boundary

curve. Calculate
¸
C f⃗ · d⃗r for f⃗(x, y, z) = (9xz+ 2y)⃗ı+(2x+ y2)ȷ⃗+(−2y2+ 2z)⃗k,

where C is traversed counterclockwise.

SÊ½çã®ÊÄ The surface is similar to the one in Example 3, except now
the boundary curve C is the ellipse x2

4 + y2
9 = 1 laying in the plane z = 1. In this

case, using Stokes’ Theorem is easier than compuƟng the line integral directly.
As in Example 3, at each point (x, y, z(x, y)) on the surface z = z(x, y) = x2

4 + y2
9

the vector

n⃗ =
− ∂z

∂x ı⃗−
∂z
∂y ȷ⃗+ k⃗√

1+
(
∂z
∂x

)2
+
(

∂z
∂y

)2 =
− x

2 ı⃗−
2y
9 ȷ⃗+ k⃗√

1+ x2
4 + 4y2

9

,

is a posiƟve unit normal vector toΣ. And calculaƟng the curl of f⃗ gives

curl f⃗ = (−4y− 0)⃗ı+ (9x− 0)ȷ⃗+ (2− 2)⃗k = −4y ı⃗+ 9x ȷ⃗+ 0 k⃗,

so

(curl f⃗ ) · n⃗ =
(−4y)(− x

2 ) + (9x)(− 2y
9 ) + (0)(1)√

1+ x2
4 + 4y2

9

=
2xy− 2xy+ 0√
1+ x2

4 + 4y2
9

= 0,

and so by Stokes’ Theorem˛
C
f⃗ · d⃗r =

¨
Σ

(curl f⃗ ) · n⃗ dσ =

¨
Σ

0 dσ = 0.
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In physical applicaƟons, for a simple closed curve C the line integral
¸
C f⃗ · d⃗r

is oŌen called the circulaƟon of f⃗ around C. For example, if E⃗ represents the
electrostaƟc field due to a point charge, then it turns out that curl E⃗ = 0⃗, which
means that the circulaƟon

¸
C E⃗ · d⃗r = 0 by Stokes’ Theorem. Vector fields which

have zero curl are oŌen called irrotaƟonal fields.
In fact, the term curl was created by the 19th century Scoƫsh physicist James

Clerk Maxwell in his study of electromagneƟsm, where it is used extensively. In
physics, the curl is interpreted as a measure of circulaƟon density. This is best
seen by using another definiƟon of curl f⃗ which is equivalent to the definiƟon
given by EquaƟon (15.16). Namely, for a point (x, y, z) in R3,

n⃗ · (curl f⃗ )(x, y, z) = lim
S→0

1
S

˛
C
f⃗ · d⃗r,

where S is the surface area of a surfaceΣ containing the point (x, y, z) and with
a simple closed boundary curve C and posiƟve unit normal vector n⃗at (x, y, z).
In the limit, think of the curve C shrinking to the point (x, y, z), which causesΣ,
the surface it bounds, to have smaller and smaller surface area. That raƟo of
circulaƟon to surface area in the limit is what makes the curl a rough measure
of circulaƟon density (i.e., circulaƟon per unit area).

x

y

0

f⃗

Figure 15.22: Curl and rotaƟon
An idea of how the curl of a vector field is related to rotaƟon is shown in

Figure 15.22. Suppose we have a vector field f⃗(x, y, z) which is always parallel
to the xy-plane at each point (x, y, z) and that the vectors grow larger the fur-
ther the point (x, y, z) is from the y-axis. For example, f⃗(x, y, z) = (1 + x2) ȷ⃗.
Think of the vector field as represenƟng the flow of water, and imagine drop-
ping two wheels with paddles into that water flow, as in Figure 15.22. Since the
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975



Chapter 15 Line and Surface Integrals

flow is stronger (i.e., the magnitude of f⃗ is larger) as you move away from the
y-axis, then such a wheel would rotate counterclockwise if it were dropped to
the right of the y-axis, and it would rotate clockwise if it were dropped to the
leŌ of the y-axis. In both cases the curl would be nonzero (curl f⃗(x, y, z) = 2x k⃗
in our example) and would obey the right-hand rule, that is, curl f⃗(x, y, z) points
in the direcƟon of your thumb as you cup your right hand in the direcƟon of the
rotaƟon of the wheel. So the curl points outward (in the posiƟve z-direcƟon) if
x > 0 and points inward (in the negaƟve z-direcƟon) if x < 0. NoƟce that if all
the vectors had the same direcƟon and the same magnitude, then the wheels
would not rotate and hence there would be no curl (which is why such fields are
called irrotaƟonal, meaning no rotaƟon).

Finally, by Stokes’ Theorem, we know that if C is a simple closed curve in
some solid region S inR3 and if f⃗(x, y, z) is a smooth vector field such that curl f⃗ =
0⃗ in S, then˛

C
f⃗ · d⃗r =

¨
Σ

(curl f⃗ ) · n⃗ dσ =

¨
Σ

0⃗ · n⃗ dσ =

¨
Σ

0 dσ = 0,

whereΣ is any orientable surface inside S whose boundary is C (such a surface
is someƟmes called a capping surface for C). So similar to the two-variable case,
we have a three-dimensional version of a result from SecƟon 15.3, for solid re-
gions in R3 which are simply connected (i.e. regions having no holes):

Theorem 145 IrrotaƟonal Equivalences
The following statements are equivalent for a simply connected solid
region S in R3:

1. f⃗(x, y, z) = P(x, y, z) ı⃗ + Q(x, y, z) ȷ⃗ + R(x, y, z) k⃗ has a smooth
potenƟal F(x, y, z) in S

2.
ˆ
C
f⃗ · d⃗r is independent of the path for any curve C in S

3.
˛
C
f⃗ · d⃗r = 0 for every simple closed curve C in S

4.
∂R
∂y

=
∂Q
∂z

,
∂P
∂z

=
∂R
∂x

, and
∂Q
∂x

=
∂P
∂y

in S (i.e., curl f⃗ = 0⃗ in S, or
the differenƟal form P dx+ Qdy+ R dz is exact)

Example 5 Determining IrrotaƟon
Determine if the vector field f⃗(x, y, z) = xyz ı⃗+ xz ȷ⃗+ xy k⃗ has a potenƟal in R3.
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SÊ½çã®ÊÄ SinceR3 is simply connected, we just need to checkwhether
curl f⃗ = 0⃗ throughout R3, that is,

∂R
∂y

=
∂Q
∂z

,
∂P
∂z

=
∂R
∂x

, and
∂Q
∂x

=
∂P
∂y

throughout R3, where P(x, y, z) = xyz, Q(x, y, z) = xz, and R(x, y, z) = xy. But
we see that

∂P
∂z

= xy,
∂R
∂x

= y ⇒ ∂P
∂z
̸= ∂R

∂x
for some (x, y, z) in R3.

Thus, f⃗(x, y, z) does not have a potenƟal in R3.

The theorems in this chapter all relate an integral over a domain to an inte-
gral over the boundary of the domain. This means that we need to pay special
aƩenƟon to the orientaƟon of the domain. We’ll occasionally use the symbol ∂
to indicate the boundary of something (so the boundary of Dwould be ∂D). This
is the same symbol as a parƟal derivaƟve, so you’ll have to look at the context
to figure out which definiƟon is being used.

We also have four new theorems about these types of integrals. These are
similar to the Fundamental Theorem of Calculus, so we’ll put all five together
into Key Idea 65.

Key Idea 65 Fundamental Theorems RelaƟng Integrals and Domains
Theorem EquaƟon OrientaƟon

Fundamental Theorem
of Calculus

f(b)− f(a) =
´ b
a f ′(x)dx

Fundamental Theorem
of Gradient Fields

ϕ(Q)− ϕ(P) =
´
C∇ϕ · ds C goes from P to Q

Green’s Theorem
¸
∂D Pdx+ Qdy =

˜
D Qx − PydA ∂D oriented counterclockwise

Stokes’ Theorem
´
∂S F⃗ · d⃗r =

˜
S curl F⃗ · n⃗dσ ∂S oriented with S to the leŌ

Divergence Theorem
˜

∂W F⃗ · dσ⃗ =
˝

W div F⃗dV ∂W oriented outwards
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Exercises 15.5
Problems
In Exercises 1–3, calculate

´
C f(x, y, z) ds for the given funcƟon

f(x, y, z) and curve C.

1. f(x, y, z) = z; C : x = cos t, y = sin t, z = t, 0 ≤ t ≤ 2π

2. f(x, y, z) =
x
y
+ y + 2yz; C : x = t2, y = t, z = 1,

1 ≤ t ≤ 2
3. f(x, y, z) = z2; C : x = t sin t, y = t cos t, z = 2

√
2

3 t3/2,
0 ≤ t ≤ 1

In Exercises 4–9, calculate
´
C f⃗ · d⃗r for the given vector field

f⃗(x, y, z) and curve C.

4. f⃗(x, y, z) = ı⃗− ȷ⃗+ k⃗; C : x = 3t, y = 2t, z = t, 0 ≤ t ≤ 1
5. f⃗(x, y, z) = y ı⃗− x ȷ⃗+ z k⃗; C : x = cos t, y = sin t, z = t,

0 ≤ t ≤ 2π
6. f⃗(x, y, z) = x ı⃗+ y ȷ⃗+ z k⃗; C : x = cos t, y = sin t, z = 2,

0 ≤ t ≤ 2π
7. f⃗(x, y, z) = (y − 2z) ı⃗ + xy ȷ⃗ + (2xz + y) k⃗; C : x = t,

y = 2t, z = t2 − 1, 0 ≤ t ≤ 1
8. f⃗(x, y, z) = yz ı⃗+ xz ȷ⃗+ xy k⃗; C : the polygonal path from

(0, 0, 0) to (1, 0, 0) to (1, 2, 0)
9. f⃗(x, y, z) = xy ı⃗+(z−x) ȷ⃗+2yz k⃗; C : the polygonal path

from (0, 0, 0) to (1, 0, 0) to (1, 2, 0) to (1, 2,−2)
In Exercises 10–13, state whether or not the vector field
f⃗(x, y, z) has a potenƟal in R3 (you do not need to find the po-
tenƟal itself).

10. f⃗(x, y, z) = y ı⃗− x ȷ⃗+ z k⃗

11. f⃗(x, y, z) = a ı⃗+ b ȷ⃗+ c k⃗ (a, b, c constant)

12. f⃗(x, y, z) = (x+ y) ı⃗+ x ȷ⃗+ z2 k⃗

13. f⃗(x, y, z) = xy ı⃗− (x− yz2) ȷ⃗+ y2z k⃗

In Exercises 14–15, verify Stokes’ Theorem for the given vector
field f⃗(x, y, z) and surfaceΣ.

14. f⃗(x, y, z) = 2y ı⃗− x ȷ⃗+ z k⃗; Σ : x2 + y2 + z2 = 1, z ≥ 0

15. f⃗(x, y, z) = xy ı⃗+ xz ȷ⃗+ yz k⃗; Σ : z = x2 + y2, z ≤ 1

16. Construct aMöbius strip from a piece of paper, then draw a
line down its center (like the doƩed line in Figure 15.19(b)).
Cut the Möbius strip along that center line completely
around the strip. How many surfaces does this result in?
How would you describe them? Are they orientable?

17. Use a computer algebra system to plot the Möbius strip
parametrized as:

r⃗(u, v) =
⟨
cos u (1+ v cos u

2 ), sin u (1+ v cos u
2 ), v sin

u
2

⟩
,

where 0 ≤ u ≤ 2π,− 1
2 ≤ v ≤ 1

2

18. Let Σ be a closed surface and f⃗(x, y, z) a smooth vector

field. Show that
¨

Σ

(curl f⃗ ) · n⃗ dσ = 0. (Hint: Split Σ in

half.)
19. Show that Green’s Theorem is a special case of Stokes’ The-

orem.
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15.6 Gradient, Divergence, Curl and Laplacian

In this final secƟon we will establish some relaƟonships between the gradient,
divergence and curl, and we will also introduce a new quanƟty called the Lapla-
cian. Wewill then showhow towrite these quanƟƟes in cylindrical and spherical
coordinates.

For a real-valued funcƟon f(x, y, z) onR3, the gradient∇f(x, y, z) is a vector-
valued funcƟon on R3, that is, its value at a point (x, y, z) is the vector

∇f(x, y, z) =
⟨
∂f
∂x

,
∂f
∂y

,
∂f
∂z

⟩
=

∂f
∂x

ı⃗+
∂f
∂y

ȷ⃗+
∂f
∂z

k⃗

inR3, where each of the parƟal derivaƟves is evaluated at the point (x, y, z). So
in this way, you can think of the symbol ∇ as being “applied” to a real-valued
funcƟon f to produce a vector∇f.

In SecƟon 15.4 and SecƟon 15.5, we noted that the divergence and curl can
also be expressed in terms of the symbol ∇ by thinking of ∇ as a vector in R3,
namely

∇ =
∂

∂x
ı⃗+

∂

∂y
ȷ⃗+

∂

∂z
k⃗. (15.20)

Here, the symbols ∂
∂x ,

∂
∂y and

∂
∂z are to be thought of as “parƟal derivaƟve oper-

ators” that will get “applied” to a real-valued funcƟon, say f(x, y, z), to produce
the parƟal derivaƟves ∂f

∂x ,
∂f
∂y and

∂f
∂z . For instance,

∂
∂x “applied” to f(x, y, z) pro-

duces ∂f
∂x .

Is∇ really a vector? Strictly speaking, no, since ∂
∂x ,

∂
∂y and

∂
∂z are not actual

numbers. But it helps to think of ∇ as a vector, especially with the divergence
and curl, as we will soon see. The process of “applying” ∂

∂x ,
∂
∂y ,

∂
∂z to a real-

valued funcƟon f(x, y, z) is normally thought of asmulƟplying the quanƟƟes:

(
∂

∂x

)
(f) =

∂f
∂x

,

(
∂

∂y

)
(f) =

∂f
∂y

,

(
∂

∂z

)
(f) =

∂f
∂z

For this reason,∇ is oŌen referred to as the “del operator”, since it “operates”
on funcƟons.

For example, it is oŌen convenient to write the divergence div f⃗ as∇·⃗ f, since
for a vector field f⃗(x, y, z) = f1(x, y, z)⃗ı+f2(x, y, z)ȷ⃗+f3(x, y, z)⃗k, the dot product
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of f⃗ with∇ (thought of as a vector) makes sense:

∇ · f⃗ =
(

∂

∂x
ı⃗+

∂

∂y
ȷ⃗+

∂

∂z
k⃗
)
·
(
f1(x, y, z)⃗ı+ f2(x, y, z)ȷ⃗+ f3(x, y, z)⃗k

)
=

(
∂

∂x

)
(f1) +

(
∂

∂y

)
(f2) +

(
∂

∂z

)
(f3)

=
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

= div f⃗ (15.21)

We can also write curl f⃗ in terms of ∇, namely as ∇ × f⃗, since for a vector
field f⃗(x, y, z) = P(x, y, z)⃗ı+ Q(x, y, z)ȷ⃗+ R(x, y, z)⃗k, we have:

∇× f⃗ =

∣∣∣∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
∂

∂x
∂

∂y
∂

∂z
P(x, y, z) Q(x, y, z) R(x, y, z)

∣∣∣∣∣∣∣∣∣
=

(
∂R
∂y
− ∂Q

∂z

)
ı⃗−
(
∂R
∂x
− ∂P

∂z

)
ȷ⃗+

(
∂Q
∂x
− ∂P

∂y

)
k⃗

=

(
∂R
∂y
− ∂Q

∂z

)
ı⃗+

(
∂P
∂z
− ∂R

∂x

)
ȷ⃗+

(
∂Q
∂x
− ∂P

∂y

)
k⃗

= curl f⃗ (15.22)

For a real-valued funcƟon f(x, y, z), the gradient∇f(x, y, z) = ∂f
∂x ı⃗ +

∂f
∂y ȷ⃗ +

∂f
∂z k⃗ is a vector field, so we can take its divergence:

div∇f = ∇ · ∇f

=

(
∂

∂x
ı⃗+

∂

∂y
ȷ⃗+

∂

∂z
k⃗
)
·
(
∂f
∂x

ı⃗+
∂f
∂y

ȷ⃗+
∂f
∂z

k⃗
)

=
∂

∂x

(
∂f
∂x

)
+

∂

∂y

(
∂f
∂y

)
+

∂

∂z

(
∂f
∂z

)
=

∂2f
∂x2

+
∂2f
∂y2

+
∂2f
∂z2

Note that this is a real-valued funcƟon, to which we will give a special name:
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DefiniƟon 118 Laplacian
For a real-valued funcƟon f(x, y, z), the Laplacian of f, denoted by ∆f,
is given by

∆f(x, y, z) = ∇ · ∇f = ∂2f
∂x2

+
∂2f
∂y2

+
∂2f
∂z2

.

OŌen the notaƟon ∇2f is used for the Laplacian instead of ∆f, using the
convenƟon∇2 = ∇ · ∇.

Watch the video:
Laplacian intuiƟon at
https://youtu.be/EW08rD-GFh0

Example 1 CompuƟng a Laplacian
Let r⃗(x, y, z) = x ı⃗+y ȷ⃗+z k⃗be theposiƟon vector field onR3. Then ∥⃗r(x, y, z)∥2 =
r⃗ · r⃗ = x2 + y2 + z2 is a real-valued funcƟon. Find

1. the gradient of ∥⃗r∥2

2. the divergence of r⃗

3. the curl of r⃗

4. the Laplacian of ∥⃗r∥2

SÊ½çã®ÊÄ

1. ∇ ∥⃗r∥2 = 2x ı⃗+ 2y ȷ⃗+ 2z k⃗ = 2 r⃗

2. ∇ · r⃗ = ∂
∂x (x) +

∂
∂y (y) +

∂
∂z (z) = 1+ 1+ 1 = 3

3.

∇× r⃗ =

∣∣∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
∂

∂x
∂

∂y
∂

∂z
x y z

∣∣∣∣∣∣∣∣ = (0− 0) ı⃗− (0− 0) ȷ⃗+ (0− 0) k⃗ = 0⃗

Notes:
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4. ∆ ∥⃗r∥2 = ∂2

∂x2 (x
2 + y2 + z2) + ∂2

∂y2 (x
2 + y2 + z2) + ∂2

∂z2 (x
2 + y2 + z2) =

2+ 2+ 2 = 6.
Note that we could have calculated∆ ∥⃗r∥2 another way, using the∇ no-
taƟon along with the first two parts:

∆ ∥⃗r∥2 = ∇ · ∇ ∥⃗r∥2 = ∇ · 2 r⃗ = 2∇ · r⃗ = 2(3) = 6

NoƟce that in Example 1 if we take the curl of the gradient of ∥⃗r∥2 we get

∇× (∇ ∥⃗r∥2) = ∇× 2 r⃗ = 2∇× r⃗ = 2 0⃗ = 0⃗.

The following theorem shows that this will be the case in general:

Theorem 146 Gradient is IrrotaƟonal
For any smooth real-valued funcƟon f(x, y, z),∇× (∇f) = 0⃗.

Proof
We see by the smoothness of f that

∇×(∇f)

=

∣∣∣∣∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
∂

∂x
∂

∂y
∂

∂z
∂f
∂x

∂f
∂y

∂f
∂z

∣∣∣∣∣∣∣∣∣∣
=

(
∂2f
∂y ∂z

− ∂2f
∂z ∂y

)
ı⃗−
(

∂2f
∂x ∂z

− ∂2f
∂z ∂x

)
ȷ⃗+

(
∂2f
∂x ∂y

− ∂2f
∂y ∂x

)
k⃗

= 0⃗,

since the mixed parƟal derivaƟves in each component are equal. □

Another way of staƟng Theorem 146 is that potenƟals are irrotaƟonal.

Theorem 147 PotenƟals are IrrotaƟonal
If a vector field f⃗(x, y, z) has a potenƟal, then curl f⃗ = 0⃗.
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Also, noƟce that in Example 1 if we take the divergence of the curl of r⃗ we
trivially get

∇ · (∇× r⃗) = ∇ · 0⃗ = 0.

The following theorem shows that this will be the case in general:

Theorem 148 Curl is Divergence Free
For any smooth vector field f⃗(x, y, z),∇ · (∇× f⃗) = 0.

The proof is straighƞorward and leŌ as Exercise 24.

Theorem 149 Flux of a Curl Through a Closed Surface
The flux of the curl of a smooth vector field f⃗(x, y, z) through any closed
surface is zero.

Proof
LetΣ be a closed surface which bounds a solid S. The flux of∇× f⃗ throughΣ is¨

Σ

(∇× f⃗ ) · dσ =

˚
S
∇ · (∇× f⃗ )dV (by the Divergence Theorem)

=

˚
S
0dV (by Theorem 148)

= 0. □

There is another method for proving Theorem 146 which can be useful, and
is oŌen used in physics. Namely, if the surface integral

¨
Σ

f(x, y, z) dσ = 0

for all surfaces Σ in some solid region (usually all of R3), then we must have
f(x, y, z) = 0 throughout that region. The proof is not trivial, and physicists do
not usually bother to prove it. But the result is true, and can also be applied to
double and triple integrals.

For instance, to prove Theorem 146, assume that f(x, y, z) is a smooth real-
valued funcƟon on R3. Let C be a simple closed curve in R3 and let Σ be any
capping surface for C (i.e., Σ is orientable and its boundary is C). Since ∇f is a
vector field, then¨

Σ

(∇× (∇f)) · n⃗ dσ =

˛
C
∇f · d⃗r by Stokes’ Theorem, so

= 0 by Theorem 143.
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Since the choice of Σ was arbitrary, then we must have (∇ × (∇f)) · n⃗ = 0
throughout R3, where n⃗ is any unit vector. Using ı⃗, ȷ⃗ and k⃗ in place of n⃗, we see
that we must have∇× (∇f) = 0⃗ in R3, which completes the proof.

Example 2 Maxwell’s EquaƟon
A system of electric charges has a charge density ρ(x, y, z) and produces an elec-
trostaƟc field E⃗(x, y, z) at points (x, y, z) in space. Gauss’ Law states that

¨
Σ

E⃗ · dσ = 4π
˚

S
ρdV

for any closed surface Σ which encloses the charges, with S being the solid re-
gion enclosed byΣ. Show that∇· E⃗ = 4πρ. This is one ofMaxwell’s EquaƟons.

SÊ½çã®ÊÄ By the Divergence Theorem, we have

˚
S
∇ · E⃗dV =

¨
Σ

E⃗ · dσ

= 4π
˚

S
ρdV by Gauss’ Law

Combining the integrals gives

˚
S
(∇ · E⃗− 4πρ)dV = 0, so

∇ · E⃗− 4πρ = 0 sinceΣ and hence S was arbitrary, so

∇ · E⃗ = 4πρ.

OŌen (especially in physics) it is convenient to use other coordinate systems
when dealing with quanƟƟes such as the gradient, divergence, curl and Lapla-
cian. We will present the formulas for these in cylindrical and spherical coordi-
nates.

Recall from SecƟon 11.7 that a point (x, y, z) can be represented in cylindrical
coordinates (r, θ, z), where x = r cos θ, y = r sin θ, z = z. At each point (r, θ, z),
let e⃗r, e⃗θ, e⃗z be unit vectors in the direcƟon of increasing r, θ, z, respecƟvely (see
Figure 15.23(a)). Then e⃗r, e⃗θ, e⃗z form an orthonormal set of vectors. Note, by
the right-hand rule, that e⃗z × e⃗r = e⃗θ.
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(a) (b)

Figure 15.23: Orthonormal vectors in cylindrical (a) and spherical (b) coordinates
Similarly, a point (x, y, z) canbe represented in spherical coordinates (ρ, θ,ϕ),

where x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ. At each point (ρ, θ,ϕ), let
e⃗ρ, e⃗θ, e⃗ϕ be unit vectors in the direcƟon of increasing ρ, θ, ϕ, respecƟvely (see
Figure 15.23(b)). Then the vectors e⃗ρ, e⃗θ, e⃗ϕ are orthonormal. By the right-hand
rule, we see that e⃗θ × e⃗ρ = e⃗ϕ.

We can now summarize the expressions for the gradient, divergence, curl
and Laplacian in Cartesian, cylindrical and spherical coordinates in the following
tables:

Key Idea 66 Vector Calculus in Cartesian Coordinates
For the scalar funcƟon F or vector field f⃗ = f1 ı⃗+ f2 ȷ⃗+ f3 k⃗,

gradient : ∇F = ∂F
∂x

ı⃗+
∂F
∂y

ȷ⃗+
∂F
∂z

k⃗

divergence : ∇ · f⃗ = ∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

curl :∇× f⃗ =
(
∂f3
∂y
− ∂f2

∂z

)
ı⃗+

(
∂f1
∂z
− ∂f3

∂x

)
ȷ⃗+

(
∂f2
∂x
− ∂f1

∂y

)
k⃗

Laplacian : ∆ F =
∂2F
∂x2

+
∂2F
∂y2

+
∂2F
∂z2
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Key Idea 67 Vector Calculus in Cylindrical Coordinates
For the scalar funcƟon F or vector field f⃗ = fr e⃗r + fθ e⃗θ + fz e⃗z,

gradient : ∇F = ∂F
∂r

e⃗r +
1
r
∂F
∂θ

e⃗θ +
∂F
∂z

e⃗z

divergence : ∇ · f⃗ = 1
r

∂

∂r
(rfr) +

1
r
∂fθ
∂θ

+
∂fz
∂z

curl :∇× f⃗ =
(
1
r
∂fz
∂θ
− ∂fθ

∂z

)
e⃗r +

(
∂fr
∂z
− ∂fz

∂r

)
e⃗θ +

1
r

(
∂

∂r
(rfθ)−

∂fr
∂θ

)
e⃗z

Laplacian : ∆ F =
1
r

∂

∂r

(
r
∂F
∂r

)
+

1
r2

∂2F
∂θ2

+
∂2F
∂z2

Key Idea 68 Vector Calculus in Spherical Coordinates
For the scalar funcƟon F or vector field f⃗ = fρ e⃗ρ + fθ e⃗θ + fϕ e⃗ϕ

gradient : ∇F = ∂F
∂ρ

e⃗ρ +
1

ρ sinϕ
∂F
∂θ

e⃗θ +
1
ρ

∂F
∂ϕ

e⃗ϕ

divergence : ∇ · f⃗ = 1
ρ2

∂

∂ρ
(ρ2fρ) +

1
ρ sinϕ

∂fθ
∂θ

+
1

ρ sinϕ
∂

∂ϕ
(sinϕ fϕ)

curl :∇× f⃗ =
1

ρ sinϕ

(
∂

∂ϕ
(sinϕ fθ)−

∂fϕ
∂θ

)
e⃗ρ +

1
ρ

(
∂

∂ρ
(ρfϕ)−

∂fρ
∂ϕ

)
e⃗θ

+

(
1

ρ sinϕ
∂fρ
∂θ
− 1

ρ

∂

∂ρ
(ρfθ)

)
e⃗ϕ

Laplacian : ∆ F =
1
ρ2

∂

∂ρ

(
ρ2

∂F
∂ρ

)
+

1
ρ2 sin2 ϕ

∂2F
∂θ2

+
1

ρ2 sinϕ
∂

∂ϕ

(
sinϕ

∂F
∂ϕ

)

The derivaƟon of the above formulas for cylindrical and spherical coordi-
nates is straighƞorward but extremely tedious. The basic idea is to take the
Cartesian equivalent of the quanƟty in quesƟon and to subsƟtute into that for-
mula using the appropriate coordinate transformaƟon. As an example, we will
derive the formula for the gradient in spherical coordinates.

Example 3 Spherical Coordinates Gradient
Show that the gradient of a real-valued funcƟon F(ρ, θ,ϕ) in spherical coordi-
nates is:

∇F = ∂F
∂ρ

e⃗ρ +
1

ρ sinϕ
∂F
∂θ

e⃗θ +
1
ρ

∂F
∂ϕ

e⃗ϕ
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SÊ½çã®ÊÄ The idea is that in theCartesian gradient formula∇F(x, y, z) =
∂F
∂x ı⃗+

∂F
∂y ȷ⃗+

∂F
∂z k⃗, wewant to put the Cartesian basis vectors ı⃗, ȷ⃗, k⃗ in terms of the

spherical coordinate basis vectors e⃗ρ, e⃗θ, e⃗ϕ and funcƟons of ρ, θ and ϕ. Then
put the parƟal derivaƟves ∂F

∂x ,
∂F
∂y ,

∂F
∂z in terms of ∂F

∂ρ ,
∂F
∂θ ,

∂F
∂ϕ and funcƟons of ρ,

θ and ϕ.
Our first step is to get formulas for e⃗ρ, e⃗θ, e⃗ϕ in terms of ı⃗, ȷ⃗, k⃗.
We can see from Figure 15.23(b) that the unit vector e⃗ρ in the ρ direcƟon at

a general point (ρ, θ,ϕ) is e⃗ρ = r⃗
∥⃗r∥ , where r⃗ = x ı⃗ + y ȷ⃗ + z k⃗ is the posiƟon

vector of the point in Cartesian coordinates. Thus,

e⃗ρ =
r⃗
∥⃗r∥

=
x ı⃗+ y ȷ⃗+ z k⃗√
x2 + y2 + z2

,

so using x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ, and ρ =
√

x2 + y2 + z2,
we get:

e⃗ρ = sinϕ cos θ ı⃗+ sinϕ sin θ ȷ⃗+ cosϕ k⃗ (15.23)

Now, since the angle θ is measured in the xy-plane, then the unit vector e⃗θ
in the θ direcƟon must be parallel to the xy-plane. That is, e⃗θ is of the form
a ı⃗ + b ȷ⃗ + 0 k⃗. To figure out what a and b are, note that since e⃗θ ⊥ e⃗ρ, then in
parƟcular e⃗θ ⊥ e⃗ρ when e⃗ρ is in the xy-plane. That occurs when the angle ϕ is
π/2. Puƫng ϕ = π/2 into the formula for e⃗ρ gives e⃗ρ = cos θ ı⃗ + sin θ ȷ⃗ + 0 k⃗,
and we see that a vector perpendicular to that is− sin θ ı⃗+ cos θ ȷ⃗+ 0 k⃗. Since
this vector is also a unit vector and points in the (posiƟve) θ direcƟon, it must be
e⃗θ:

e⃗θ = − sin θ ı⃗+ cos θ ȷ⃗+ 0 k⃗ (15.24)

Lastly, since e⃗ϕ = e⃗θ × e⃗ρ, we get:

e⃗ϕ = cosϕ cos θ ı⃗+ cosϕ sin θ ȷ⃗− sinϕ k⃗ (15.25)

Now thatwe have formulas for the three spherical unit vectors, our next step
is to solve those for ı⃗, ȷ⃗, k⃗ in terms of e⃗ρ, e⃗θ, e⃗ϕ.

This comes down to solving a system of three equaƟons in three unknowns.
There are many ways of doing this, but we will do it by combining the formulas
for e⃗ρ and e⃗ϕ to eliminate k⃗, which will give us an equaƟon involving just ı⃗ and ȷ⃗.
This, with the formula for e⃗θ, will then leave us with a system of two equaƟons
in two unknowns (⃗ı and ȷ⃗), which we will use to solve first for ȷ⃗ then for ı⃗. Lastly,
we will solve for k⃗.

First, note that

sinϕ e⃗ρ + cosϕ e⃗ϕ = cos θ ı⃗+ sin θ ȷ⃗
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so that

sin θ (sinϕ e⃗ρ + cosϕ e⃗ϕ) + cos θ e⃗θ = (sin2 θ + cos2 θ)ȷ⃗ = ȷ⃗,

and so:
ȷ⃗ = sinϕ sin θ e⃗ρ + cos θ e⃗θ + cosϕ sin θ e⃗ϕ (15.26)

Likewise, we see that

cos θ (sinϕ e⃗ρ + cosϕ e⃗ϕ)− sin θ e⃗θ = (cos2 θ + sin2 θ)⃗ı = ı⃗,

and so:
ı⃗ = sinϕ cos θ e⃗ρ − sin θ e⃗θ + cosϕ cos θ e⃗ϕ (15.27)

Lastly, we see that:
k⃗ = cosϕ e⃗ρ − sinϕ e⃗ϕ (15.28)

Now that we have formulas for the three Cartesian unit vectors, our next
step is to get formulas for ∂F

∂ρ ,
∂F
∂θ ,

∂F
∂ϕ in terms of ∂F

∂x ,
∂F
∂y ,

∂F
∂z .

By the Chain Rule, we have

∂F
∂ρ

=
∂F
∂x

∂x
∂ρ

+
∂F
∂y

∂y
∂ρ

+
∂F
∂z

∂z
∂ρ

,

∂F
∂θ

=
∂F
∂x

∂x
∂θ

+
∂F
∂y

∂y
∂θ

+
∂F
∂z

∂z
∂θ

,

∂F
∂ϕ

=
∂F
∂x

∂x
∂ϕ

+
∂F
∂y

∂y
∂ϕ

+
∂F
∂z

∂z
∂ϕ

,

which yields:

∂F
∂ρ

= sinϕ cos θ
∂F
∂x

+ sinϕ sin θ
∂F
∂y

+ cosϕ
∂F
∂z

(15.29)

∂F
∂θ

= −ρ sinϕ sin θ
∂F
∂x

+ ρ sinϕ cos θ
∂F
∂y

(15.30)

∂F
∂ϕ

= ρ cosϕ cos θ
∂F
∂x

+ ρ cosϕ sin θ
∂F
∂y
− ρ sinϕ

∂F
∂z

(15.31)

Our next step is to invert the previous relaƟon to solve for ∂F
∂x ,

∂F
∂y ,

∂F
∂z in terms

of ∂F
∂ρ ,

∂F
∂θ ,

∂F
∂ϕ .

Again, this involves solving a system of three equaƟons in three unknowns.

Notes:

988



15.6 Gradient, Divergence, Curl and Laplacian

Using a similar process of eliminaƟon as before, we get:

∂F
∂x

=
1

ρ sinϕ

(
ρ sin2 ϕ cos θ

∂F
∂ρ
− sin θ

∂F
∂θ

+ sinϕ cosϕ cos θ
∂F
∂ϕ

)
(15.32)

∂F
∂y

=
1

ρ sinϕ

(
ρ sin2 ϕ sin θ

∂F
∂ρ

+ cos θ
∂F
∂θ

+ sinϕ cosϕ sin θ
∂F
∂ϕ

)
(15.33)

∂F
∂z

=
1
ρ

(
ρ cosϕ

∂F
∂ρ
− sinϕ

∂F
∂ϕ

)
(15.34)

Finally, we subsƟtute the EquaƟons (15.26), (15.27), (15.28), and (15.34) into
the Cartesian gradient formula∇F(x, y, z) = ∂F

∂x ı⃗+
∂F
∂y ȷ⃗+

∂F
∂z k⃗.

Doing this last step is perhaps the most tedious, since it involves simplifying
3× 3+ 3× 3+ 2× 2 = 22 terms! Namely,

∇F = 1
ρ sinϕ

(
ρ sin2 ϕ cos θ

∂F
∂ρ
− sin θ

∂F
∂θ

+ sinϕ cosϕ cos θ
∂F
∂ϕ

)
(sinϕ cos θ e⃗ρ − sin θ e⃗θ

+ cosϕ cos θ e⃗ϕ)

+
1

ρ sinϕ

(
ρ sin2 ϕ sin θ

∂F
∂ρ

+ cos θ
∂F
∂θ

+ sinϕ cosϕ sin θ
∂F
∂ϕ

)
(sinϕ sin θ e⃗ρ + cos θ e⃗θ

+ cosϕ sin θ e⃗ϕ)

+
1
ρ

(
ρ cosϕ

∂F
∂ρ
− sinϕ

∂F
∂ϕ

)
(cosϕ e⃗ρ − sinϕ e⃗ϕ),

whichwe see has 8 terms involving e⃗ρ, 6 terms involving e⃗θ, and 8 terms involving
e⃗ϕ. But the algebra is straighƞorward and yields the desired result:

∇F = ∂F
∂ρ

e⃗ρ +
1

ρ sinϕ
∂F
∂θ

e⃗θ +
1
ρ

∂F
∂ϕ

e⃗ϕ

Example 4 PracƟcing in Spherical Coordinates
In Example 1 we showed that ∇ ∥⃗r∥2 = 2 r⃗ and ∆ ∥⃗r∥2 = 6, where r⃗(x, y, z) =
x ı⃗ + y ȷ⃗ + z k⃗ in Cartesian coordinates. Verify that we get the same answers if
we switch to spherical coordinates.

SÊ½çã®ÊÄ Since ∥⃗r∥2 = x2 + y2 + z2 = ρ2 in spherical coordinates,
let F(ρ, θ,ϕ) = ρ2 (so that F(ρ, θ,ϕ) = ∥⃗r∥2). The gradient of F in spherical

Notes:
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Chapter 15 Line and Surface Integrals

coordinates is

∇F = ∂F
∂ρ

e⃗ρ +
1

ρ sinϕ
∂F
∂θ

e⃗θ +
1
ρ

∂F
∂ϕ

e⃗ϕ

= 2ρ e⃗ρ +
1

ρ sinϕ
(0) e⃗θ +

1
ρ
(0) e⃗ϕ

= 2ρ e⃗ρ = 2ρ
r⃗
∥⃗r∥

, as we showed earlier, so

= 2ρ
r⃗
ρ
= 2 r⃗, as expected. And the Laplacian is

∆ F =
1
ρ2

∂

∂ρ

(
ρ2

∂F
∂ρ

)
+

1
ρ2 sin2 ϕ

∂2F
∂θ2

+
1

ρ2 sinϕ
∂

∂ϕ

(
sinϕ

∂F
∂ϕ

)
=

1
ρ2

∂

∂ρ
(ρ2 2ρ) +

1
ρ2 sinϕ

(0) +
1

ρ2 sinϕ
∂

∂ϕ
(sinϕ (0))

=
1
ρ2

∂

∂ρ
(2ρ3) + 0+ 0

=
1
ρ2

(6ρ2) = 6, as expected.

Notes:
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Exercises 15.6
Problems
In Exercises 1–6, find the Laplacian of the funcƟon f(x, y, z) in
Cartesian coordinates.

1. f(x, y, z) = x+ y+ z

2. f(x, y, z) = x5

3. f(x, y, z) = (x2 + y2 + z2)3/2

4. f(x, y, z) = ex+y+z

5. f(x, y, z) = x3 + y3 + z3

6. f(x, y, z) = e−x2−y2−z2

7. Find the Laplacian of the funcƟon in Exercise 3 in spherical
coordinates.

8. Find the Laplacian of the funcƟon in Exercise 6 in spherical
coordinates.

9. Let f(x, y, z) =
z

x2 + y2
in Cartesian coordinates. Find ∇f

in cylindrical coordinates.

10. For f⃗(r, θ, z) = r e⃗r + z sin θ e⃗θ + rz e⃗z in cylindrical coordi-
nates, find div f⃗ and curl f⃗.

11. For f⃗(ρ, θ,ϕ) = e⃗ρ + ρ cos θ e⃗θ + ρ e⃗ϕ in spherical coordi-
nates, find div f⃗ and curl f⃗.

In Exercises 12–23, prove the given formula (r = ∥⃗r∥ is the
length of the posiƟon vector field r⃗(x, y, z) = x ı⃗+ y ȷ⃗+ z k⃗).

12. ∇ (1/r) = −⃗r/r3

13. ∆ (1/r) = 0
14. ∇ · (⃗r/r3) = 0

15. ∇ (ln r) = r⃗/r2

16. div (⃗F+ G⃗) = div F⃗+ div G⃗

17. curl (⃗F+ G⃗) = curl F⃗+ curl G⃗

18. div (f F⃗) = f div F⃗+ F⃗ · ∇f

19. div (⃗F× G⃗) = G⃗ · curl F⃗− F⃗ · curl G⃗
20. div (∇f∇g) = 0

21. curl (f F⃗) = f curl F⃗+ (∇f )× F⃗

22. curl (curl F⃗) = ∇(div F⃗)−∆ F⃗

23. ∆ (fg) = f∆ g+ g∆ f+ 2(∇f · ∇g)

24. Prove Theorem 148.

25. Derive the gradient formula in cylindrical coordinates:
∇F = ∂F

∂r e⃗r +
1
r

∂F
∂θ

e⃗θ + ∂F
∂z e⃗z

26. Use f⃗ = u∇v in the Divergence Theorem to prove:

(a) Green’s first idenƟty:
˚

S
(u∆ v+(∇u)·(∇v)) dV =¨

Σ

(u∇v) · dσ

(b) Green’s second idenƟty:
˚

S
(u∆ v − v∆ u) dV =¨

Σ

(u∇v− v∇u) · dσ

27. Suppose that∆ u = 0 (i.e. u is harmonic) over R3. Define
the normal derivaƟve ∂u

∂n of u over a closed surfaceΣ with
outward unit normal vector n⃗ by ∂u

∂n = D⃗nu = n⃗·∇u. Show

that
¨

Σ

∂u
∂n

dσ = 0. (Hint: Use Green’s second idenƟty.)
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A: SÊ½çã®ÊÄÝ TÊ S�½��ã�� PÙÊ�½�ÃÝ
Chapter 1

Exercises 1.0

1. (−∞,∞)

2. [−7,∞)

3. (−∞,−1] ∪ [7,∞)

4. (−∞,∞)

5. (−∞, 2) ∪ (2,∞)

6. (−∞,∞)

7. (−∞,∞)

8. (−∞,−2) ∪ (−2, 2) ∪ (2,∞)

9. (−∞, 0) ∪ (0,∞)

10. (−∞,∞)

11.

−4 −2 2 4

−4

−2

2

4

x

y

12.

−4 −2 2 4

−4

−2

2

4

x

y

13.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

14.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

15.
(a) 14

(b) 11

(c) 3a2 − 2a+ 6

(d) 3(x+ h)2 − 2(x+ h) + 6

(e) h(3h+ 6x− 2)
h

16.
(a)

√
2

(b) undefined

(c)
√
t− 2

(d)
√
x+ h− 2

(e)
√
x+ h− 2−

√
x− 2

h
=

h
h(
√
x+ h− 2+

√
x− 2)

17.
(a) −1

(b) 1
9

(c) 1
t+ 3

(d) 1
x+ h

(e)
1

x+h −
1
x

h
= − h

hx(x+ h)

18. {2.12} ∪ [2.13, 2.14) ∪ (2.15,∞)

19. (−∞, 5.677) ∪ [5.678, 5.679) ∪ (5.679,∞)

20. (0.3, 0.8]

21. (0.1, 0.2]

Exercises 1.1

1. Answers will vary.

3. F

5. Answers will vary.

7. −5

9. 2

11. Limit does not exist.

13. 7

15. Limit does not exist.

17.

h f(a+h)−f(a)
h

−0.1 9
−0.01 9
0.01 9
0.1 9

The limit seems to be exactly 9.



19.

h f(a+h)−f(a)
h

−0.1 −0.114943
−0.01 −0.111483
0.01 −0.110742
0.1 −0.107527

The limit is approx.−0.11.

21.

h f(a+h)−f(a)
h

−0.1 0.202027
−0.01 0.2002
0.01 0.1998
0.1 0.198026

The limit is approx. 0.2.

23.

h f(a+h)−f(a)
h

−0.1 −0.0499583
−0.01 −0.00499996
0.01 0.00499996
0.1 0.0499583

The limit is approx. 0.

Exercises 1.2
1. ε should be given first, and the restricƟon |x− a| < δ im-

plies |f(x)− K| < ε, not the other way around.
3. T
5. δ ≤ 0.45
7. Given ε > 0, choose δ = ε.

|x− 5| < δ = ε

|5− x| < ε

|3− x− (−2)| < ε.

Thus lim
x→5

3− x = −2.

9. Given ε > 0, let δ =
ε

2
. Then:

|x− 3| < δ =
ε

2
2 |x− 3| < ε

2
· 2

|−2x+ 6| < ε

|5− 2x+ 1| < ε

Thus lim
x→3

5− 2x = −1.

11. Given ε > 0, let δ = ε
10 . Then:

|x− 4| < δ =
ε

10
|x− 4| < ε

x+ 5
|x− 4| · |x+ 5| < ε

x+ 5
· |x+ 5|

Assuming x is near 4, x+ 5 is posiƟve and we can drop the
absolute value signs on the right.

|x− 4| · |x+ 5| < ε

x+ 5
· (x+ 5)∣∣x2 + x− 20

∣∣ < ε∣∣(x2 + x− 5)− 15
∣∣ < ε.

Thus, lim
x→4

x2 + x− 5 = 15.

13. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 2| < δ, |f(x)− 5| < ε. However, since f(x) = 5, a
constant funcƟon, the laƩer inequality is simply |5− 5| <
ε, which is always true. Thus we can choose any δ we like;
we arbitrarily choose δ = ε.

Exercises 1.3
1. Answers will vary.

3. Answers will vary.

5. As x is near 1, both f and g are near 0, but f is approximately
twice the size of g. (I.e., f(x) ≈ 2g(x).)

7. 6

9. Limit does not exist.

11. Not possible to know.

13. −45

15. −1

17. π

19. −0.000000015 ≈ 0

21. Limit does not exist

23. 2

25. π2+3π+5
5π2−2π−3 ≈ 0.6064

27. −8

29. 10

31. −3/2

33. 1/6

35. −1/9

37. −8

39. 0

41. 1

43. 0

45. 5/8

47. π/180

49. 5/7

Exercises 1.4
1. The funcƟon approaches different values from the leŌ and

right; the funcƟon grows without bound; the funcƟon os-
cillates.

3. F

5.
(a) 2

(b) 2

(c) 2

(d) 1

(e) As f is not defined for x < 0, this limit is not defined.

(f) 1

A.2



7.
(a) 2

(b) 0

(c) Does not exist.

(d) 1

9.
(a) 4

(b) −4

(c) Does not exist.

(d) 0

11.
(a) a− 1

(b) a

(c) Does not exist.

(d) a

13. 0
15. DNE
17.

(a) −1

(b) 0

(c) Does not exist.

(d) 0

19.
(a) −1

(b) 0

(c) Does not exist.

(d) 0

21.
(a) 2

(b) 0

(c) Does not exist

(d) 1

23.
(a) c

(b) c

(c) c

(d) c

25.
(a) −1

(b) 1

(c) Does not exist.

(d) Undefined

27. Answers will vary.
29. Answers will vary.
31. −3/5

33. 1
2
√
3

35. −1.63

Exercises 1.5

1. F

3. F

5. T

7. Answers will vary.

9.
(a) ∞
(b) ∞

11.
(a) 1

(b) 0

(c) 1/2

(d) 1/2

13.
(a) Limit does not exist

(b) Limit does not exist

15. Tables will vary.

(a)

x f(x)
2.9 −15.1224
2.99 −159.12
2.999 −1599.12

It seems limx→3− f(x) =

−∞.

(b)

x f(x)
3.1 16.8824
3.01 160.88
3.001 1600.88

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) does not exist.

17. Tables will vary.

(a)
x f(x)
2.9 132.857
2.99 12124.4

It seems limx→3− f(x) = ∞.

(b)
x f(x)
3.1 108.039
3.01 11876.4

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) = ∞.

19. Horizontal asymptote at y = 2; verƟcal asymptotes at
x = −5, 4.

21. Horizontal asymptote at y = 0; verƟcal asymptotes at
x = −1, 0.

23. No horizontal or verƟcal asymptotes.

25. y = 2

27. ∞

29. −∞

31. −2/3

33. −
√
10/2
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35. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 1| < δ, |f(x)− 3| < ε.
Scratch-Work: Consider |f(x)− 3| < ε, keeping in mind
we want to make a statement about |x− 1|:

|f(x)− 3| < ε

|5x− 2− 3| < ε

|5x− 5| < ε

5 |x− 1| < ε

|x− 1| < ε

5

suggesƟng δ = ε
5 .

Proof: Given ε > 0, let δ =
ε

5
. Then:

|x− 1| < δ

|x− 1| < ε

5
5 |x− 1| < ε

5
· 5

|5x− 5| < ε

|5x− 2− 3| < ε

Thus lim
x→1

5x− 2 = 3.

37. 1

Exercises 1.6

1. Answers will vary.

3. A root of a funcƟon f is a value c such that f(c) = 0.

5. F

7. T

9. F

11. No; lim
x→1

f(x) = 2, while f(1) = 1.

13. No; f(1) does not exist.

15. Yes

17.
(a) No; lim

x→−2
f(x) ̸= f(−2)

(b) Yes

(c) No; f(2) is not defined.

19.
(a) Yes

(b) No; the leŌ and right hand limits at 1 are not equal.

21.
(a) Yes

(b) No. limx→8 f(x) = 16/5 ̸= f(8) = 5.

23. (−∞,−2] ∪ [2,∞)

25. (−∞,−
√
6] ∪ [

√
6,∞)

27. (−∞,∞)

29. (0,∞)

31. (−∞, 0]

33. (−∞,−4) ∪ (−4, 2) ∪ (2, 5) ∪ (5,∞)

35. Yes. The only “quesƟonable” place is at x = 3, but the leŌ
and right limits agree.

37. Yes, by the Intermediate Value Theorem. In fact, we can be
more specific and state such a value c exists in (0, 2), not
just in (−3, 7).

39. We cannot say; the Intermediate Value Theorem only ap-
plies to conƟnuous funcƟons. As we do know know if h is
conƟnuous, we cannot say.

41. a = −1 and 4
3

43. a = −1

45. Answers will vary.

47. Answers will vary.

49. Use the BisecƟon Method with an appropriate interval.

51. Use the BisecƟon Method with an appropriate interval.

53.

x f(x)
−0.81 −2.34129
−0.801 −2.33413
−0.79 −2.32542
−0.799 −2.33254

The top two lines give an approximaƟon of the limit from
the leŌ: −2.33. The boƩom two lines give an approxima-
Ɵon from the right: −2.33 as well.

Chapter 2

Exercises 2.0

1. 80x12y17

2. a
16b7

3. −x3

16y22z35

4. x2y4z5 4
√
z = x2y4z21/4

5. 5(x−1)

3x
1
3

6. −5x+4

2x
1
2 (x+4)2

7. 6x(3x2 + 2)3(x2 − 5)2(7x2 − 18)

8. (a) 8 (b) 44 (c) x2 − 6x+ 8 (d) x2 + 2x− 4

9. (a) − 1
3 (b) undefined (c) 1√

x− 2− 5
(d)√

1
x− 5

− 2

10. (a) Possible soluƟon: f(x) = 5
x and g(x) = x+ 4

(b) Possible soluƟon: f(x) = |x| and g(x) = 4− x2

(c) Possible soluƟon: f(x) =
√
x− 5 and g(x) = (x+ 2)2

11. (a) Possible soluƟon: f(x) = 3
√
x, g(x) = x2, and h(x) =

2x+ 1
(b) Possible soluƟon: f(x) = 2x + 1, g(x) = 3

√
x, and

h(x) = x2
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Exercises 2.1
1. T
3. Answers will vary.
5. Answers will vary.
7. (a) f ′(x) = 2, (b) y = 2x
9. (a) g′(x) = 2x, (b) y = −4x− 4

11. (a) f ′′(x) = 6x− 1, (b) y = −7x+ 1
13. (a) r ′(x) = −1

x2 , (b) y = − x
4 − 1

15. (a) f ′(x) = −1
(s− 2)2

, (b) y = −x+ 4

17. f(x) = x4, c = 3
19. f(x) = cos x, c = −π.
21. y = .248x+ 1.006
23. y = 7.77(x− 2) + e2, or y = 7.77(x− 2) + 7.39.
25.

(a) ApproximaƟons will vary; they should match (c)
closely.

(b) f ′(x) = 2x

(c) At (−1, 0), slope is −2. At (0,−1), slope is 0. At
(2, 3), slope is 4.

27.

−2 −1 1 2 3 4

−1

1

2

3

x

y

29.

−2 −1 1 2

−5

5

x

y

31.
(a) Approximately on (−1.5, 1.5).

(b) Approximately on (−∞,−1.5) ∪ (1.5,∞).

(c) Approximately at x = ±1.5.

(d) On (−∞,−1) ∪ (0, 1).

(e) On (−1, 0) ∪ (1,∞).

(f) At x = ±1.

33. Approximately 0.54.
35.

(a) 1

(b) 3

(c) Does not exist

(d) (−∞,−3) ∪ (3,∞)

Exercises 2.2
1. Velocity
3. Linear funcƟons.
5. −17
7. f(10.1) is likely most accurate, as accuracy is lost the far-

ther from x = 10 we go.
9. 6

11. Ō/s2

13.
(a) thousands of dollars per car

(b) It is likely that P(0) < 0. That is, negaƟve profit for
not producing any cars.

15. f(x) = g′(x)
17. g(x) = f ′(x)
19. f(6) = 1, f ′(6) = − 3

4

21. Answers vary. Possible soluƟon

1 2 3

−1

1

2

3

x

y

23.

−2 −1 1 2 3 4 5
−2

2

−4

4

−6

6

x

y

25. f ′(x) = 10x
27. f ′(π) ≈ 0.

Exercises 2.3
1. Power Rule.
3. One answer is f(x) = 10ex.
5. f(x), g(x), h(x), andm(x)
7. One possible answer is f(x) = 17x− 205.
9. f ′(x) is a velocity funcƟon, and f ′′(x) is acceleraƟon.

11. f ′(x) = 14x− 5
13. m′(t) = 45t4 − 3

8 t
2 + 3

15. f ′(r) = 6er

17. f ′(x) = 2
x − 1

19. h′(t) = et − cos t+ sin t
21. f ′(t) = 0
23. g′(x) = 24x2 − 120x+ 150
25. f ′(x) = 18x− 12

27. f ′(x) = 3
2
√
x− 1

2x
√
x
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29.

31. n = −3, 2

33. d is f, c is f ′, b is f ′′, and a is f ′′′

35. g′(x) = −2 sin x g′′(x) = −2 cos x g′′′(x) = 2 sin x
g(4)(x) = 2 cos x

37. p′(θ) = 4θ3 − 3θ2 p′′(θ) = 12θ2 − 6θ p′′′(θ) = 24θ − 6
p(4)(θ) = 24

39. f ′(x) = f ′′(x) = f ′′′(x) = f(4)(x) = 0

41.
(a) v(t) = 5ex − 5, a(t) = 5ex

(b) a(2) = 5e2 Ō/s2

(c) v(t) = 0 at t = 0 sec, a(0) = 5 in/s2

43. Tangent line: y = t+ 4

45. Tangent line: y = 4

47. Tangent line: y = 2x+ 3

49. The tangent line to f(x) = x4 at x = 3 is y = 108(x− 3) +
81; thus (3.01)4 ≈ y(3.01) = 108(.01) + 81 = 82.08.

Exercises 2.4

1. F

3. T

5. F

7.

d
dx

(cot x) = d
dx

( cos x
sin x

)
=

sin x(− sin x)− (cos x)(cos x)
(sin x)2

=
−[(sin x)2 + (cos x)2]

(sin x)2

=
−1

(sin x)2
= − csc2 x

9.

d
dx

(csc x) = d
dx

(
1

sin x

)
=

sin x · 0− 1 · (cos x)
(sin x)2

=
− cos x
(sin x)2

= − csc x cot x

11.
(a) g′(x) = 4x(5x3) + 2x2(15x2)

(b) g′(x) = 50x4

(c) They are equal.

13.
(a) f ′(x) = 2x(3− x3) + (x2 + 5)(−3x2)

(b) f ′(x) = −5x4 − 15x2 + 6x

(c) They are equal.

15.

(a) g′(x) = 2x2(3x2−4x)−(x3−2x2)(4x)
4x4

(b) g′(x) = 1/2

(c) They are equal.

17.

(a) f ′(t) = (t+1)(2t)−(t2−1)(1)
(t+1)2

(b) f(t) = t− 1 when t ̸= −1, so f ′(t) = 1.

(c) They are equal.

19. f ′(t) = −2
t3 (csc t− 4) + 1

t2 (− csc t cot t)

21. F ′(y) = 8
3
y5/3 + 15y2/3 =

3
√

y2(8y+45)
3

23. y′ = 4− x
2
√
x(x+ 4)2

25. g′(t) = (cos t−2t2)(5t4)−(t5)(− sin t−4t)
(cos t−2t2)2

27. h′(t) = 14t+ 6

29. f ′(x) = − 1
x2

+
5

2x3
√
x
=

−2x
√
x+ 5

2x3
√
x

31. g′(x) = − 1+2x+3x2
(1+x+x2+x3)2

33. f ′(x) = 7

35. f ′(x) = sin2(x)+cos2(x)+3 cos(x)
(cos(x)+3)2

37. g′(t) = 12t2et + 4t3et − cos2 t+ sin2 t
39. F ′(x) = (8x−1)(x2+4x+7)(3x2)+(8x−1)(2x+4)(x3−

5) + (8)(x2 + 4x+ 7)(x3 − 5)
41. f ′(x) = 2xex tan x = x2ex tan x+ x2ex sec2 x
43. y = 2x+ 2
45. y = 4
47. x = 3/2
49. f ′(x) is never 0.
51. f ′′(x) = 2 cos x− x sin x
53. f ′′(x) = cot2 x csc x+ csc3 x
55. 1
57. −4

59. − 1
25

61. (a)− 7
2 (b)

1
8 (c)−

9
2 (d)

15
2

Exercises 2.5
1. T
3. F
5. T
7. f ′(x) = 10(4x3−x)9 ·(12x2−1) = (120x2−10)(4x3−x)9

9. g′(θ) = 3(sin θ + cos θ)2(cos θ − sin θ)

11. f ′(x) = 4
(
x+ 1

x

)3(1− 1
x2
)

13. f ′(x) = −3 sin(3x)
15. h′(t) = 8 sin3(2t) cos(2t)
17. g′(x) = 2(tan x sec2 x− x sec2(x2))
19. f ′(x) = − tan x
21. f ′(x) = 2/x

A.6



23. r′(x) = −6(x− 1)
x3
√
4x− 3

25. h′(x) = 200(2x+ 1)9[(2x+ 1)10+ 1]9

27. F ′(x) = 2(2x+ 1)(2x+ 3)2(24x2 + 26x+ 3)

29. g′(t) = 5 cos(t2 + 3t) cos(5t − 7) − (2t + 3) sin(t2 +
3t) sin(5t− 7)

31. a′(t) = 7t2etan(t
2)(2t2 sec2(t2) + 3)

33. k′(x) = − sin(x sin x3)(3x3 cos x3 + sin x3)

35. 90

37. (a) 12 (b) 2.5 (c) 9 (d) 35

39. y = 15(t− 1) + 1

41. y = −5e(t+ 1) + e

43. In both cases the derivaƟve is the same: k/x.

45. Let h(x) = x−1. Then d
dx

f(x)
g(x)

=
d
dx

[f(x) · h(g(x))] =

d
dx

[f(x)] · h(g(x))+ f(x) · d
dx

[h(g(x))] = f ′(x) · h(g(x))+
f(x)·h′(g(x))·g′(x) = f ′(x)[g(x)]−1−f(x)[g(x)]−2g′(x) =
f ′(x)g(x)− f(x)g′(x)

[g(x)]2

47.
(a) ◦ F/mph

(b) The sign would be negaƟve; when the wind is blow-
ing at 10 mph, any increase in wind speed will make
it feel colder, i.e., a lower number on the Fahrenheit
scale.

Exercises 2.6

1. Answers will vary.

3. T

5. dy
dx = −4x3

2y+1

7. dy
dx = sin x sec y

9. dy
dx = y

x

11. − x
y2

13. x2+2xy2−y
2x2y−x+y2

15. − x
y

17. ex(x+ 1)
ey(y+ 1)

19.
y− 4xy√xy
2x2√xy− x

21. dy
dx = − y+2x

2y+x

23.
(a) y = 0

(b) y = −1.859(x− 0.1) + 0.281

25.
(a) y = 4

(b) y = 0.93(x− 2) + 4√108

27.

(a) y = − 1√
3 (x−

7
2 ) +

6+3
√
3

2

(b) y =
√
3(x− 4+3

√
3

2 ) + 3
2

29. d2y
dx2 =

(2y+1)(−12x2)+4x3
(
2−4x3
2y+1

)
(2y+1)2

31. d2y
dx2 = cos x cos y+sin2 x tan y

cos2 y

Chapter 3
Exercises 3.1
1. Answers will vary.
3. Answers will vary.
5. F
7. A: abs. min; B: none; C: abs. max; D: none; E: none
9. f ′(0) = 0

11. f ′(π/2) = 0; f ′(3π/2) = 0
13. f ′(0) = 0
15. f ′(2) is not defined; f ′(6) = 0
17. min: (5,−134.5)

max: (0, 3)
19. min: (0, 0) and (±2, 0)

max: (±2
√

2/3, 16
√
3/9)

21. min: (0, 0)
max: (5, 5/6)

23. min: (0, 0) and (π, 0)
max: (3π/4,

√
2e3π/4
2 )

25. min: (2, 22/3 − 2)
max: (8/27, 4/27)

27.
(a) x3−x, x3, and x3+x have 2, 1, and 0 criƟcal numbers

respecƟvely. Because the derivaƟve is a quadraƟc
with at most 2 roots, a cubic cannot have 3 or more
criƟcal numbers.

(b) A cubic can only have 2 or 0 extreme values.

29. dy
dx = y(y−2x)

x(x−2y)

31. 3x2 + 1

Exercises 3.2
1. Answers will vary.
3. Any c in [−1, 1] is valid.
5. c = −1/2
7. Rolle’s Thm. does not apply.
9. Rolle’s Thm. does not apply.

11. c = 0
13. c = 3/

√
2

15. The Mean Value Theorem does not apply.
17. c = ± sec−1(2/

√
π)
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19. c = 5±7
√
7

6

21. No. Otherwise, with c given by the Mean Value Theorem,
4−−1
2− 0

= f ′(c) ≤ 2, a contradicƟon.

23. If f hasmore than 3 real roots, then Rolle’s Theorem implies
f ′ is a quadraƟc with more than 2 real roots.

25. 2pc + q = f ′(c) = f(b)−f(a)
b−a = pb2+qb+r−pa2−qa−r

b−a =
p(b2−a2)+q(b−a)

b−a = p(b+ a) + q implies that c = a+b
2 .

27. They are the odd, integer valued mulƟples of π/2 (such as
0,±π/2,±3π/2,±5π/2, etc.)

Exercises 3.3

1. Answers will vary.

3. Answers will vary.

5. Increasing

7. decreasing on (0, π
6 ); (

π
2 ,

5π6
)
; ( 3π2 , 2π),

increasing on ( π
6 ,

π
2 ); (

5π
6 ,

3π
2 );

local maxima when x = π
2 ,

3π
2 ,

local minima when x = π
6 ,

5π
6 .

9. decreasing on (−1, 1),
increasing on (−∞,−1); (1,∞);
local maxima when x = −1,
local minima when x = 1.

11. Graph and verify.

13. Graph and verify.

15. Graph and verify.

17. Graph and verify.

19. domain=(−∞,∞);
c.p. at c = −2, 0;
increasing on (−∞,−2); (0,∞);
decreasing on (−2, 0);
rel. min at x = 0;
rel. max at x = −2.

21. domain=(−∞,∞)
c.p. at c = 1;
increasing on (−∞,∞)

23. domain=(−∞,−1) ∪ (−1, 1) ∪ (1,∞);
c.p. at c = 0;
decreasing on (−∞,−1); (−1, 0);
increasing on (0, 1); (1,∞);
rel. min at x = 0.

25. domain=(−∞, 0) ∪ (0,∞);
c.p. at c = 2, 6;
decreasing on (−∞, 0); (0, 2); (6,∞);
increasing on (2, 6);
rel. min at x = 2;
rel. max at x = 6.

27. domain = (−∞,∞);
c.p. at c = −1, 1;
decreasing on (−1, 1);
increasing on (−∞,−1); (1,∞);
rel. min at x = 1;
rel. max at x = −1

29. domain=(−∞,∞);
c.p. at c = π

2 ,
3π
2 ;

decreasing on (0, π
2 ); (

3π
2 , 2π);

increasing on ( π
2 ,

3π
2 );

rel. min at x = π
2 ;

rel. max at x = 3π
2

31. domain=(−∞,∞);
c.p. at c = −1, 0, 1;
decreasing on (−∞, 0);
increasing on (0,∞);
rel. min at x = 0

33. domain=[0, 2π];
c.p. at c = 0, π, 2π;
decreasing on (0, π);
increasing on (π, 2π);
rel. min at x = π

35. domain=(−∞,∞);
c.p. at c = 0, 1;
decreasing on (−∞, 0); (1,∞);
increasing on (0, 1);
rel. min at x = 0;
rel. max at x = 1

37. domain=[0, 2π];
c.p. at c = 0, π/2, π, 3π/2, 2π;
decreasing on (π/2, 3π/2);
increasing on (0, π/2); (3π/2, 2π);
rel. max at x = π/2;
rel. min at x = 3π/2

39. c = 1/2

Exercises 3.4
1. Answers will vary.
3. Yes; Answers will vary.
5. concave up on (−2, 2);

concave down on (−∞,−2); (2,∞);
inflecƟon points when x = ±2

7. concave up on (−∞,−1); (1,∞);
concave down on (−1, 1);
inflecƟon points when x = ±1

9. Graph and verify.
11. Graph and verify.
13. Graph and verify.
15. Graph and verify.
17. Graph and verify.
19.

(a) Possible points of inflecƟon: none

(b) concave up on (−∞,∞)

(c) min: x = 1

(d) f ′ has no maximal or minimal value.

21.
(a) Possible points of inflecƟon: x = 0

(b) concave down on (−∞, 0); concave up on (0,∞)

(c) max: x = −1/
√
3, min: x = 1/

√
3

(d) f ′ has a minimal value at x = 0
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23.
(a) Possible points of inflecƟon: x = −2/3, 0

(b) concave down on (−2/3, 0);
concave up on (−∞,−2/3), (0,∞)

(c) min: x = 1

(d) f ′ has a relaƟve min at: x = 0,
relaƟve max at: x = −2/3

25.
(a) Possible points of inflecƟon: x = 1

(b) concave up on (−∞,∞)

(c) min: x = 1

(d) f ′ has no relaƟve extrema

27.
(a) Possible points of inflecƟon: x = 0,±1

(b) concave down on (−∞,−1), (0, 1);
concave up on (−1, 0), (1,∞)

(c) criƟcal values: x = −1, 1, no max/min

(d) f ′ has a relaƟve max at x = 0

29.
(a) Possible points of inflecƟon: x = −2±

√
2

(b) concave down on (−2−
√
2,−2+

√
2);

concave up on (−∞,−2−
√
2), (−2+

√
2,∞)

(c) max: x = −2, min: x = 0

(d) f ′ has a relaƟve max at x = −2−
√
2,

relaƟve min at x = −2+
√
2

31.
(a) Possible points of inflecƟon: x = ±1/

√
2

(b) concave down on (−1/
√
2, 1/

√
2);

concave up on (−∞,−1/
√
2), (1/

√
2,∞)

(c) max: x = 0

(d) f ′ has a relaƟve max at x = −1/
√
2,

a relaƟve min at x = 1/
√
2

33.
(a) Possible points of inflecƟon: x = π/6, 5π/6, 3π/2

(b) concave down on (0, π/6), (5π/6, 2π);
concave up on (π/6, 5π/6)

(c) max: x = 3π/2, min: x = 3π/2

(d) f ′ has a relaƟve max at x = 5π/6,
f ′ has a relaƟve min at x = π/6

35.
(a) Possible points of inflecƟon: x = ±1/

√
3

(b) concave down on (−1/
√
3, 1/

√
3);

concave up on (−∞,−1/
√
3); (1/

√
3,∞)

(c) min: x = ±1, max: x = 0

(d) f ′ has a relaƟve max at x = −1/
√
3,

f ′ has a relaƟve min at x = 1/
√
3

37.
(a) Possible points of inflecƟon: x = 81/256

(b) concave up on (0, 81/256);
concave down on (81/256,∞)

(c) min: x = 1
16

(d) f ′ has a relaƟve max at x = 81/256

Exercises 3.5
1. Answers will vary.
3. T
5. concave up on (−∞,−1); (1,∞)

concave down on (−1, 1)
inflecƟon points when x = ±1
increasing on (−2, 0); (2,∞)
decreasing on (−∞,−2); (0, 2)
relaƟve maximum when x = 0
relaƟve minima when x = ±2

7. A good sketch will include the x and y intercepts and draw
the appropriate line.

9. Use technology to verify sketch.
11. Use technology to verify sketch.
13. Use technology to verify sketch.
15. Use technology to verify sketch.
17. Use technology to verify sketch.
19. Use technology to verify sketch.
21. Use technology to verify sketch.
23. Use technology to verify sketch.
25. Use technology to verify sketch.
27. Use technology to verify sketch.
29. Use technology to verify sketch.
31. Use technology to verify sketch.
33. Use technology to verify sketch.
35. Use technology to verify sketch.
37. Use technology to verify sketch.
39. Use technology to verify sketch.
41. Use technology to verify sketch.
43. Use technology to verify sketch.
45. Use technology to verify sketch.
47. various possibiliƟes
49. various possibiliƟes
51. various possibiliƟes
53. CriƟcal point: x = 0 Points of inflecƟon: ±b/

√
3

55. CriƟcal point: x = (a+ b)/2 Points of inflecƟon: none

Chapter 4
Exercises 4.1
1. T
3. 3 Ō/min
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5.
(a) 5/(2π) ≈ 0.796cm/s

(b) 1/(40π) ≈ 0.00796 cm/s

(c) 1/(4000π) ≈ 0.0000796 cm/s

7.
(a) 64.44 mph

(b) 78.89 mph

9. Due to the height of the plane, the gun does not have to
rotate very fast.

(a) 0.073 rad/s

(b) 3.66 rad/s (about 1/2 revoluƟon/sec)

(c) In the limit, rate goes to 7.33 rad/s (more than 1 rev-
oluƟon/sec)

11.
(a) 30.59 Ō/min

(b) 36.1 Ō/min

(c) 301 Ō/min

(d) The boat no longer floats as usual, but is being pulled
up by thewinch (assuming it has the power to do so).

13.
(a) 0.63 Ō/sec

(b) 1.6 Ō/sec

About 52 Ō.
15.

(a) The balloon is 105Ō in the air.

(b) The balloon is rising at a rate of 17.45Ō/min. (Hint:
convert all angles to radians.)

Exercises 4.2

1. T

3. 2500; the two numbers are each 50.

5. There is no maximum sum; the fundamental equaƟon has
only 1 criƟcal value that corresponds to a minimum.

7. Area = 1/4, with sides of length 1/
√
2.

9. The radius should be about 3.84cm and the height should
be 2r = 7.67cm. No, this is not the size of the standard
can.

11. The height and width should be 18 and the length should
be 36, giving a volume of 11, 664in3.

13. 5− 10/
√
39 ≈ 3.4 miles should be run underground, giv-

ing a minimum cost of $374,899.96.
15. The dog should run about 19 feet along the shore before

starƟng to swim.
17. The largest area is 2 formed by a squarewith sides of length√

2.
19. A length of 2 in and height of 2.5 will give a cost of 60 ¢.

Exercises 4.3

1. T

3. F
5. Answers will vary.
7. Use y = x2; dy = 2x · dxwith x = 6 and dx = −0.07. Thus

dy = −0.84; knowing 62 = 36, we have 5.932 ≈ 35.16.
9. Use y = x3; dy = 3x2 · dxwith x = 7 and dx = −0.2. Thus

dy = −29.4; knowing 73 = 343, we have 6.83 ≈ 313.6.
11. Use y =

√
x; dy = 1/(2

√
x) ·dxwith x = 25 and dx = −1.

Thus dy = −0.1; knowing
√
25 = 5, we have

√
24 ≈ 4.9.

13. Use y = 3
√
x; dy = 1/(3 3√x2) · dxwith x = 8 and dx = 0.5.

Thus dy = 1/24 ≈ 1/25 = 0.04; knowing 3√8 = 2, we
have 3√8.5 ≈ 2.04.

15. Use y = cos x; dy = − sin x · dx with x = π/2 ≈ 1.57 and
dx ≈ −0.07. Thus dy = 0.07; knowing cos π/2 = 0, we
have cos 1.5 ≈ 0.07.

17. dy = (2x+ 3)dx
19. dy = −2

4x3 dx

21. dy =
(
2xe3x + 3x2e3x

)
dx

23. dy = 2(tan x+1)−2x sec2 x
(tan x+1)2 dx

25. dy = (ex sin x+ ex cos x)dx
27. dy = 1

(x+2)2 dx

29. dy = (ln x)dx

31. 1− 6x
33. 1− x

2

35. 22/3 + x
24/3

37. dV = ±0.157
39. ±15π/8 ≈ ±5.89in2

41.
(a) 297.8 feet

(b) ±62.3 Ō

(c) ±20.9%

43.
(a) 298.9 feet

(b) ±8.67 Ō

(c) ±2.9%

45. 1%

Exercises 4.4
1. F
3. x0 = 1.5, x1 = 1.5709148, x2 = 1.5707963, x3 =

1.5707963, x4 = 1.5707963, x5 = 1.5707963
5. x0 = 0, x1 = 2, x2 = 1.2, x3 = 1.0117647, x4 =

1.0000458, x5 = 1
7. x0 = 2, x1 = 0.6137056389, x2 = 0.9133412072, x3 =

0.9961317034, x4 = 0.9999925085, x5 = 1
9. roots are: x = −3.714, x = −0.857, x = 1 and x = 1.571

11. roots are: x = −2.165, x = 0, x = 0.525 and x = 1.813
13. x = −0.637, x = 1.410
15. x = ±4.493, x = 0
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17. The approximaƟons alternate between x = 1, x = 2 and
x = 3.

19. f(x) = x2 − 24 and x0 = 5 yield x1 = 49
10 = 4.9 and

x2 = 4801/980
≈ 4.898980.

21. f(x) = x3 − 8.5 and x0 = 2 yield x1 = 49
24 ≈ 2.0416667

and x2 ≈ 2.0408279.

Chapter 5

Exercises 5.1

1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. x9/9+ C

11. t+ C

13. −3/(t) + C

15. tan θ + C

17. sec x− csc x+ C

19. 4/3t3 + 6t2 + 9t+ C

21. x6/6+ C

23. −x−3 + C

25. 2
9
x9/2 + C

27. 5x+ 2
9 x

3 + 3
16 x

4 + C

29. 2
3u

3 + 9
2u

2 + 4u+ C

31. 2
√
x+ x+ 2

3 x
√
x+ C

33. θ + tan θ + C

35. − cot t− t+ C

37. 8
√
u+ 4u

√
u+ C

39. 6t1/3 + 3
4 t

4/3 + C

41.
(a) x > 0

(b) 1/x

(c) x < 0

(d) 1/x

(e) ln |x|+ C. ExplanaƟons will vary.

43. 5ex + 5

45. tan x+ 4

47. 7x3
6 − 9x

2 + 40
3

49. θ − sin(θ)− π + 4

51. x−2 + 1

53. s(t) = 2t3/2.

55.

2 4

2

4

x

y

Other anƟderivaƟves are verƟcal shiŌs of this one.
57. No answer provided.

Exercises 5.2
1. Answers will vary.
3. 0
5.

(a) 3

(b) 4

(c) 3

(d) 0

(e) −4

(f) 9

7.
(a) 4

(b) 2

(c) 4

(d) 2

(e) 1

(f) 2

9.
(a) π

(b) π

(c) 2π

(d) 10π

11.
(a) 4/π

(b) −4/π

(c) 0

(d) 2/π

(e) 4/π

(f) 8/π

13.
(a) 40/3

(b) 26/3

(c) 8/3

(d) 38/3
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15.
(a) 3Ō/s

(b) 9.5Ō

(c) 9.5Ō

17.
(a) 96Ō/s

(b) 6 seconds

(c) 6 seconds

(d) Never; the maximum height is 208Ō.

19. 5

21. Answers can vary; one soluƟon is a = −2, b = 7

23. −7

25. Answers can vary; one soluƟon is a = −11, b = 18

27. − cos x− sin x+ tan x+ C

29. ln |x|+ csc x+ C

Exercises 5.3

1. limits

3. Rectangles.

5. 22 + 32 + 42 = 29

7. 0− 1+ 0+ 1+ 0 = 0

9. −1+ 2− 3+ 4− 5+ 6 = 3

11. 1+ 1+ 1+ 1+ 1+ 1 = 6

13. Answers may vary;
∑8

i=0(i
2 − 1)

15. Answers may vary;
∑4

i=0(−1)iei

17. 1045

19. −8525

21. 5050

23. 155

25. 24

27.
ˆ π

0

sin x
1+ x

dx

29.
ˆ 7

2
5x3 − 4x+ 7 dx

31. lim
n→∞

3
n

n∑
i=1

4− 2
(
2+ 3i

n

)

33. lim
n→∞

π

n

n∑
i=1

sin3(−π/2+ πi/n)
2+ cos(−π/2+ πi/n)

35. 59/8

37. 8.16986

39. 496/315 ≈ 1.5746

41.
(a) Exact expressions will vary; 2+ 4/n2.

(b) 51/25, 5001/2500, 500001/250000

(c) 2

43.
(a) Exact expressions will vary; 20/3 − 96/(3n) +

64/(3n2).

(b) 92/25, 3968/625, 103667/15625

(c) 20/3

45.
(a) Exact expressions will vary;−1/12(1− 1/n2).

(b) −33/400,−3333/40000,−333333/4000000

(c) −1/12

47.
(a) (5 s)((0+6+14+23+30+36)mph) = 545mi s

hr ×
1 hr

3600 s × 5280 Ō1 mi = 799 Ō

(b) (5 s)((6+14+23+30+36+40)mph) = 585mi s
hr ×

1 hr
3600 s × 5280 Ō1 mi = 858 Ō

49. Let f andM be as given.
ˆ b

a
f(x) dx = lim

n→∞

n∑
i=1

f(ci)∆x T36.2

≤ lim
n→∞

n∑
i=1

M∆x

=

ˆ b

a
Mdx T36.2

= M(b− a)

51. F(x) = 7 ln |x|+ 14

53. G(t) = sin t− cos t− 78

Exercises 5.4

1. Answers will vary.

3. T

5. 20

7. 0

9. 1

11. 23/2

13. e3 − e

15. 4

17. ln 2

19. 1/4

21. 15

23. 2

25. − 9
2

27. 6π
7

A.12



29.
√
2

31. 36
33. 69

4

35. ExplanaƟons will vary. A sketch will help.
37. c = ±2/

√
3

39. c = 64/9 ≈ 7.1

41. 2/pi
43. 16/3
45. 1/(e− 1)

47. (a) 400Ō; (b) 850Ō
49. (a) 128/5Ō; (b) same
51. 50Ō/s
53. 0Ō/s

55. F′(x) = −3x11

57. F′(x) = ex sin(ex)− 1
x sin(ln x)

59. F′(x) = [cos3(sin x) + 3 tan3(sin x)] cos x

61. F′(x) = −2 tan x sec2 x[ln(tan2 x) + etan
4 x−7]

Exercises 5.5
1. Chain Rule.
3. 1

8 (x
3 − 5)8 + C

5. 1
18

(
x2 + 1

)9
+ C

7. 1
2 ln |2x+ 7|+ C

9. 2
3 (x+ 3)3/2 − 6(x+ 3)1/2 + C = 2

3 (x− 6)
√
x+ 3+ C

11. 2e
√

x + C

13. − 1
2x2 − 1

x + C

15. sin3(x)
3 + C

17. − tan(4− x) + C

19. tan3(x)
3 + C

21. The key is to rewrite cot x as cos x/ sin x, and let u = sin x.
23. 1

3e
3x−1 + C

25. 1
2e

(x−1)2 + C

27. e−3x

3 − e−x + C

29.
(
ln x
)3

3 + C

31. 1
2 ln
(
ln
(
x2
))

+ C

33. 1
45 (5x

3 + 5x2 + 2)9 + C

35. − 1
3 cot

(
x3 + 1

)
+ C

37. ln |x− 5|+ C

39. ln
∣∣x2 + 7x+ 3

∣∣+ C

41. 3
√
x2 − 2x− 6+ C

43. 2 sin
√
x+ C

45. 1
10 (2x+ 3)5/2 − 1

2 (2x+ 3)3/2 + C

47. 1
2 (x

2 + 1)2 − 2(x2 + 1) + ln(x2 + 1) + C
49. −3 cos( x

3 ) + C

51. 2
3 sin(x

3/2 + 1) + C
53. 352/15
55. 1/5
57. e− 1

59. ln
(

4
1+e

)
61. 2

3

Chapter 6
Exercises 6.1
1. T
3. Answers will vary.
5. 16/3
7. π

9. 2
√
2

11. 4/3
13. 8
15. 37/12
17. 8

3

19. 9
21. 1
23. 9/2
25. 1/12(9− 2

√
2) ≈ 0.514

27. 5
29. 133/20

Exercises 6.2
1. T
3. Recall that “dx” does not just “sit there;” it is mulƟplied

by A(x) and represents the thickness of a small slice of the
solid. Therefore dx has units of in, giving A(x) dx the units
of in3.

5. 175π/3 units3

7. 768π
7

9. 35π/3 units3

11. 96π
5

13.
(a) 512π/15

(b) 256π/5

(c) 832π/15

(d) 128π/3

15.
(a) 104π/15

(b) 64π/15

(c) 32π/5
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17.

(a) π2

8 + π
4

(b) 3π2
8 + π

4 − π
√
2

(c) π2

8 + π
4 + π

√
2

19. The cross–secƟons of this cone are the same as the cone
in item 18. Thus they have the same volume of 250π/3
units3.

21. Orient the solid so that the x-axis is parallel to long side
of the base. All cross–secƟons are trapezoids (at the far
leŌ, the trapezoid is a square; at the far right, the trape-
zoid has a top length of 0, making it a triangle). The area
of the trapezoid at x is A(x) = 1/2(−1/2x+ 5+ 5)(5) =
−5/4x+ 25. The volume is 187.5 units3.

Exercises 6.3

1. T

3. F

5. 9π/2 units3

7. 96π
5

9. 48π
√
3/5 units3

11. 768π
7

13.
(a) 4π/5

(b) 8π/15

(c) π/2

(d) 5π/6

15.
(a) 4π/3

(b) π/3

(c) 4π/3

(d) 2π/3

17.
(a) 16π/3

(b) 8π/3

(c) 8π

(d) 8π

19. (a) Disk: π
´ 2
1 (

3
√
y− 1)2 dy = 3π

5
Shell: 2π

´ 1
0 x(2− (x3 + 1)) dx = 3π

5

(b) Disk: π
´ 1
0

[
2− (x3 + 1)

]2 dx = 9π
14

Shell: 2π
´ 2
1 (2− y) 3

√
y− 1 dy = 9π

14 .

Exercises 6.4

1. In SI units, it is one Joule, i.e., one Newton–meter, or
kg·m/s2·m. In Imperial Units, it is Ō–lb.

3. Smaller.

5.
(a) 2450 J

(b) 1568 J

7. 735 J
9. 11,100 Ō–lb

11. 125 Ō–lb
13. 12.5 Ō–lb
15. 0.2625 = 21/80 J
17. 45 Ō–lb
19. 953, 284 J
21. 192,767 Ō–lb. Note that the tank is oriented horizon-

tally. Let the origin be the center of one of the circu-
lar ends of the tank. Since the radius is 3.75 Ō, the
fluid is being pumped to y = 4.75; thus the distance
the gas travels is h(y) = 4.75 − y. A differenƟal ele-
ment of water is a rectangle, with length 20 and width
2
√
3.752 − y2. Thus the force required to move that slab

of gas is F(y) = 40 · 45.93 ·
√
3.752 − y2dy. Total work is´ 3.75

−3.75 40 · 45.93 · (4.75 − y)
√
3.752 − y2 dy. This can be

evaluated without actual integraƟon; split the integral into´ 3.75
−3.75 40 ·45.93 ·(4.75)

√
3.752 − y2 dy+

´ 3.75
−3.75 40 ·45.93 ·

(−y)
√
3.752 − y2 dy. The first integral can be evaluated as

measuring half the area of a circle; the laƩer integral can
be shown to be 0 without much difficulty. (Use subsƟtu-
Ɵon and realize the bounds are both 0.)

23.
(a) approx. 577,000 J

(b) approx. 399,000 J

(c) approx. 110,000 J (By volume, half of the water is be-
tween the base of the cone and a height of 3.9685m.
If one rounds this to 4 m, the work is approx 104,000
J.)

25. 617,400 J

Exercises 6.5
1. Answers will vary.
3. 499.2 lb
5. 6739.2 lb
7. 3920.7 lb
9. 2496 lb

11. 602.59 lb
13.

(a) 2340 lb

(b) 5625 lb

15.
(a) 1597.44 lb

(b) 3840 lb

17.
(a) 56.42 lb

(b) 135.62 lb

19. 5.1 Ō
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Chapter 7
Exercises 7.1
1. F
3. The point (10, 1) lies on the graph of y = f−1(x) (assuming

f is inverƟble).
5. Compose f(g(x)) and g(f(x)) to confirm that each equals

x.
7. Compose f(g(x)) and g(f(x)) to confirm that each equals

x.
9. [−4, 0] or [0, 4]

11. (−∞, 3] or [3,∞)

13. 0
15. −1/5
17. 1/

√
2

19. 5/4

Exercises 7.2
1. The point (10, 1) lies on the graph of y = f−1(x) (assuming

f is inverƟble) and (f−1)′(10) = 1/5.

3.
(
f−1)′ (7) = 1

f ′(3) = 1/4

5.
(
f−1)′ (8) = 1

f ′(1) = 1/6

7. h′(t) = 2√
1−4t2

9. g′(x) = 2
1+4x2

11. g′(t) = cos−1(t) cos(t)− sin(t)√
1−t2

13. g′(x) = 1√
x(2x+2)

15.
(a) f(x) = x, so f ′(x) = 1

(b) f ′(x) = cos(sin−1 x) 1√
1−x2

= 1.

17.
(a) f(x) = x, so f ′(x) = 1

(b) f ′(x) = 1
1+tan2 x sec

2 x = 1

19. y =
√
2(x−

√
2/2) + π/4

21.
√
91 ≈ 9.54 feet

23. 2π/9
25. 1

8 tan
−1(x4/2) + C

27. sin−1 ( x−1
2

)
+ C

Exercises 7.3
1. (−∞,∞)

3. (−∞, 0) ∪ (0,∞)

5. f ′(t) = 3t2et
3−1

7. f ′(x) = 1− x ln 5 ln x
x5x ln 5

9. f ′(x) = 1

11. h ′(r) = 3r ln 3
1+ 32r

13. f ′(t) = et
t + ln tet

15. 24
ln 5

17. 1
2e

x2−1 + C
19. 1

2 sin
2(ex) + C

21. ln 245
ln 3

− 1

23. ln
∣∣tan−1 x

∣∣+ C

25. y′ = (1+ x)1/x
( 1
x(x+1) −

ln(1+x)
x2

)
Tangent line: y = (1− 2 ln 2)(x− 1) + 2

27. y′ = xx
x+1

(
ln x+ 1− 1

x+1

)
Tangent line: y = (1/4)(x− 1) + 1/2

29. y′ = x+1
x+2

( 1
x+1 −

1
x+2

)
Tangent line: y = 1/9(x− 1) + 2/3

31. y′ = xe
x−1ex(1+ x ln x)

Tangent line: y = ex− e+ 1

Exercises 7.4
1. Because cosh x is always posiƟve.

3. coth2 x− csch2 x =
(
ex + e−x

ex − e−x

)2

−
(

2
ex − e−x

)2

=
(e2x + 2+ e−2x)− (4)

e2x − 2+ e−2x

=
e2x − 2+ e−2x

e2x − 2+ e−2x

= 1

5. cosh2 x =
(
ex + e−x

2

)2

=
e2x + 2+ e−2x

4

=
1
2
(e2x + e−2x) + 2

2

=
1
2

(
e2x + e−2x

2
+ 1
)

=
cosh 2x+ 1

2
.

7. d
dx

[sech x] = d
dx

[
2

ex + e−x

]
=

−2(ex − e−x)

(ex + e−x)2

= − 2(ex − e−x)

(ex + e−x)(ex + e−x)

= − 2
ex + e−x · e

x − e−x

ex + e−x

= − sech x tanh x

9.
ˆ

tanh x dx =
ˆ

sinh x
cosh x

dx

Let u = cosh x; du = (sinh x)dx

=

ˆ
1
u
du

= ln |u|+ C
= ln(cosh x) + C.

11. 2 sinh 2x
13. coth x
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15. x cosh x

17. 3√
9x2+1

19. 1
1−(x+5)2

21. sec x

23. y = 3/4(x− ln 2) + 5/4

25. y = x

27. 1
2 ln(cosh(2x)) + C

29. 1
2 sinh

2 x+ C or 1/2 cosh2 x+ C

31. cosh−1(x2/2) + C = ln(x2 +
√
x4 − 4) + C

33. tan−1(ex) + C

35. 0

Exercises 7.5

1. 0/0,∞/∞, 0 · ∞,∞−∞, 00, 1∞,∞0

3. F

5. derivaƟves; limits

7. Answers will vary.

9. −5/3

11. −
√
2/2

13. 0

15. a/b

17. 1/2

19. 0

21. ∞

23. 0

25. −2

27. 0

29. 0

31. ∞

33. ∞

35. 0

37. 1

39. 1

41. 1

43. 1

45. 1

47. 2

49. −∞

51. 0

Chapter 8
Exercises 8.1
1. T
3. sin x− x cos x+ C

5. −x2 cos x+ 2x sin x+ 2 cos x+ C

7. 1/2ex
2
+ C

9. − 1
2 xe

−2x − e−2x

4 + C

11. 1/5e2x(sin x+ 2 cos x) + C

13. 1/10e5x(sin(5x) + cos(5x)) + C

15.
√
1− x2 + x sin−1(x) + C

17. 1
2 x

2 tan−1(x)− x
2 +

1
2 tan

−1(x) + C

19. 1
2 x

2 ln |x| − x2
4 + C

21. − x2
4 + 1

2 x
2 ln |x− 1| − x

2 −
1
2 ln |x− 1|+ C

23. 1
3 x

3 ln |x| − x3
9 + C

25. 2x + x (ln |x+ 1|) + (ln |x+ 1|)2 − 2x ln |x+ 1| −
2 ln |x+ 1|+ 2+ C

27. ln |sin(x)| − x cot(x) + C

29. 1
3 (x

2 − 2)3/2 + C

31. x sec x− ln |sec x+ tan x|+ C

33. x sinh(x)− cosh(x) + C

35. x sinh−1 x−
√
x2 + 1+ C

37. 1/2x
(
sin(ln x)− cos(ln x)

)
+ C

39. 1
2 x ln |x| −

x
2 + C

41. 1/2x2 + C

43. π

45. 0
47. 1/2
49. 3

4e2 − 5
4e4

51. 1/5
(
eπ + e−π

)
Exercises 8.2
1. F
3. F
5. 3

4 x+
1
2 sin 2x+ C

7. 1
6 cos

6 x− 1
4 cos

4 x+ C

9. 1
2 cos

2 x− ln |cos x|+ C

11.
( 2
7 cos

3 x− 2
3 cos x

)√
cos x+ C

13. 1
2

( 1
4 sin(4x)−

1
10 sin(10x)

)
+ C

15. 1
2

(
sin(x) + 1

3 sin(3x)
)
+ C

17. tan x− x+ C

19. tan6(x)
6 + tan4(x)

4 + C

21. sec5(x)
5 − sec3(x)

3 + C

23. 1
3 tan

3 x− tan x+ x+ C

25. 1
2 (sec x tan x− ln |sec x+ tan x|) + C

27. ln |csc x− cot x|+ C
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29. − 1
2 cot

2 x+ ln |csc x|+ C

31. 2
5

33. 32/315
35. 2/3
37. 16/15
39. 1

2 − ln
√
2

Exercises 8.3
1. backwards
3.

(a) tan2 θ + 1 = sec2 θ

(b) 9 sec2 θ.

5. 1
2

(
x
√
x2 + 1+ ln

∣∣√x2 + 1+ x
∣∣)+ C

7. x
√

x2 + 1/4+ 1
4 ln
∣∣∣2√x2 + 1/4+ 2x

∣∣∣+ C

= 1
2 x
√
4x2 + 1+ 1

4 ln
∣∣√4x2 + 1+ 2x

∣∣+ C

9. 4
(

1
2 x
√

x2 − 1/16− 1
32 ln

∣∣∣4x+ 4
√

x2 − 1/16
∣∣∣) + C =

1
2 x
√
16x2 − 1− 1

8 ln
∣∣4x+√

16x2 − 1
∣∣+ C

11. 3 sin−1
(

x√
7

)
+ C (Trig. Subst. is not needed)

13.
√
x2 − 11−

√
11 sec−1(x/

√
11) + C

15. − 1√
x2+9

+ C (Trig. Subst. is not needed)

17. 1
18

x+2
x2+4x+13 +

1
54 tan

−1 ( x+2
2

)
+ C

19. 1
7

(
−
√

5−x2
x − sin−1(x/

√
5)
)
+ C

21. π/2
23. 2

√
2+ 2 ln(1+

√
2)

25. 9 sin−1(1/3) +
√
8 Note: the new bounds of integraƟon

are sin−1(−1/3) < θ < sin−1(1/3). The final answer
comeswith recognizing that sin−1(−1/3) = − sin−1(1/3)
and that cos

(
sin−1(1/3)

)
= cos

(
sin−1(−1/3)

)
=√

8/3.

Exercises 8.4
1. raƟonal
3. A

x +
B

x−3

5. A
x−

√
7 +

B
x+

√
7

7. 3 ln |x− 2|+ 4 ln |x+ 5|+ C

9. 1
3 (ln |x+ 2| − ln |x− 2|) + C

11. − 4
x+8 − 3 ln |x+ 8|+ C

13. − ln |2x− 3|+ 5 ln |x− 1|+ 2 ln |x+ 3|+ C

15. x+ ln |x− 1| − ln |x+ 2|+ C

17. 2x+ C

19. 1
x +

1
2 ln
∣∣∣ x−1
x+1

∣∣∣+ C

21. ln
∣∣3x2 + 5x− 1

∣∣+ 2 ln |x+ 1|+ C

23. ln |x| − 1
2 ln(x

2 + 1)− tan−1 x− 1
2(x2+1) + C

25. 1
2

(
3 ln
∣∣x2 + 2x+ 17

∣∣− 4 ln |x− 7|+ tan −1 ( x+1
4

))
+ C

27. − 1
4 ln(x

2 + 3) + 1
4 ln(x

2 + 1) + C = 1
4 ln

x2+1
x2+3 + C

29. 3
(
ln
∣∣x2 − 2x+ 11

∣∣+ ln |x− 9|
)
+3
√

2
5 tan

−1
(

x−1√
10

)
+C

31. 1
16 tan

−1(x/2) + 1
32 ln |x− 2|+ 1

32 ln |x+ 2|+ C

33. ln(2000/243) ≈ 2.108

35. −π/4+ tan−1 3− ln(11/9) ≈ 0.263

Exercises 8.5

1. x2

2
sin−1 x− 1

4
sin−1 x+ x

4
√
1− x2 + C

3. 18 ln |x− 2| − 9 ln |x− 1| − 5 ln |x− 3|+ C

5. x
25

√
x2 + 25+ C

7. 2 ln |x− 1| − ln |x| − x
(x− 1)2

+ C

9. 1
2
ex

2
(x2 − 1) + C

11. 1
13

e2x(2 sin 3x− 3 cos 3x) + C

13. −
√
4− x2 + C

15. 2 tan−1 √x+ C

17. 1
27

[6x sin 3x− (9x2 − 2) cos 3x] + C

19. 2
3
(1+ ex)3/2 + C

21. 1
3
tan3 x+ C

23. −1
4
(8− x3)4/3 + C

25. 1
10

(3− 2x)5/2 − 1
2
(3− 2x)3/2 + C

27. 2
5
x5/2 − 8

3
x3/2 + 6x1/2C

29. 11
2

ln |x+ 5| − 15
2

ln |x+ 7|+ C

31. etan x + C

33. −1
5
cot5 x− 1

3
cot3 x− cot x− x+ C

35. 1
3
x3 − 1

4
tanh 4x+ C

37. 3 sin−1( x+ 5
6
)
+ C

39. −1
7
cos 7x+ C

41. x3 sin x+ 3x2 cos x− 6x sin x− 6 cos x+ sin x+ C

43. 24x− 10
3

ln |sin 3x| − 1
3
cot 3x+ C

45. −2
√
1+ cos x+ C

47. ln(x2 + 4)− 3
2
tan−1 x

2
+

7√
5
tan−1 x√

5
+ C

49. 2
5
x5/2 ln x− 4

25
x5/2 + C

51. ex

x+ 1
+ C
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Exercises 8.6

1. The interval of integraƟon is finite, and the integrand is
conƟnuous on that interval.

3. converges; could also state< 10.

5. p > 1

7. e5/2

9. 1/3

11. 1/ ln 2

13. diverges

15. 1

17. diverges

19. diverges

21. 2
√
3

23. diverges

25. diverges

27. 1

29. 0

31. −1/4

33. −1

35. diverges

37. 1/2

39. converges; Limit Comparison Test with 1/x3/2.

41. converges; Direct Comparison Test with xe−x.

43. converges; Direct Comparison Test with xe−x.

45. diverges; Direct Comparison Test with x/(x2 + cos x).

47. converges; Limit Comparison Test with 1/ex.

Exercises 8.7

1. F

3. They are superseded by the Trapezoidal Rule; it takes an
equal amount of work and is generally more accurate.

5.
(a) 3/4

(b) 2/3

(c) 2/3

7.
(a) 1

4 (1+
√
2)π ≈ 1.896

(b) 1
6 (1+ 2

√
2)π ≈ 2.005

(c) 2

9.
(a) 38.5781

(b) 147/4 ≈ 36.75

(c) 147/4 ≈ 36.75

11.
(a) 0

(b) 0

(c) 0

13. Trapezoidal Rule: 0.9006
Simpson’s Rule: 0.90452

15. Trapezoidal Rule: 13.9604
Simpson’s Rule: 13.9066

17. Trapezoidal Rule: 1.1703
Simpson’s Rule: 1.1873

19. Trapezoidal Rule: 1.0803
Simpson’s Rule: 1.077

21.
(a) n = 161 (using max

(
f ′′(x)

)
= 1)

(b) n = 12 (using max
(
f (4)(x)

)
= 1)

23.
(a) n = 1004 (using max

(
f ′′(x)

)
= 39)

(b) n = 62 (using max
(
f (4)(x)

)
= 800)

25.
(a) Area is 30.8667 cm2.

(b) Area is 308, 667 yd2.

27. Let f(x) = a(x−x1)2+b(x−x1)+c, so that f(x1) = c = y1,
f(x1 +∆x) = a∆x2 + b∆x + c = y2, and f(x1 + 2∆x) =
4a∆x2 + 2b∆x + c = y3. Therefore, a = y1−2y2+y3

2(∆x)2 and

b = 4y2−y3−3y1
2∆x , and

ˆ x1+2∆x

x1
a(x−x1)2+b(x−x1)+cdx =

a(2∆x)3

3
+

b(2∆x)2

2
+ c(2∆x) = 4(y1 − 2y2 + y3)∆x

3
+

(4y2 − y3 − 3y1)∆x + 2y1∆x =
∆x
3

(4y1 − 8y2 + 4y3 +

12y2 − 3y3 − 9y1 + 6y1) =
∆x
3

(y1 + 4y2 + y3).

Chapter 9
Exercises 9.1
1. Answers will vary.

3. Answers will vary.

5. 2, 8
3 ,

8
3 ,

32
15 ,

64
45

7. 1
3 , 2,

81
5 ,

512
3 , 15625

7

9. an = 3n+ 1

11. an = 10 · 2n−1

13. 1/7

15. 0

17. diverges

19. converges to 0

21. converges to 0

23. diverges
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25. converges to e
27. converges to 5
29. diverges
31. converges to 0
33. converges to 0
35. converges to ln 2
37. converges to 0
39. converges to 1
41. bounded
43. bounded above
45. monotonically increasing for n ≥ 3
47. monotonically decreasing for n ≥ 3
49. monotonically decreasing
51.

(a) LeŌ to reader

(b) an = 1/3n and bn = 1/2n

Exercises 9.2
1. Answers will vary.
3. One sequence is the sequence of terms {an}. The other is

the sequence of nth parƟal sums, {Sn} = {
∑n

i=1 ai}.
5. F
7.

(a) 1, 5
4 ,

49
36 ,

205
144 ,

5269
3600

(b) Plot omiƩed

9.
(a) 1, 3, 6, 10, 15

(b) Plot omiƩed

11.
(a) 1

3 ,
4
9 ,

13
27 ,

40
81 ,

121
243

(b) Plot omiƩed

13.
(a) 0.1, 0.11, 0.111, 0.1111, 0.11111

(b) Plot omiƩed

15. lim
n→∞

an = 3; by Theorem 67 the series diverges.

17. lim
n→∞

an = ∞; by Theorem 67 the series diverges.

19. lim
n→∞

an = ∞; by Theorem 67 the series diverges.

21. Diverges
23. lim

n→∞
an = 1/2; by Theorem 67 the series diverges.

25. Diverges by the Test for Divergence
27. Diverges by Theorem 67
29. Converges
31.

(a) Sn =
(

n(n+1)
2

)2
(b) Diverges

33.

(a) Sn = 5 1−1/2n
1/2

(b) Converges to 10.

35.

(a) Sn = 1−(−1/3)n
4/3

(b) Converges to 3/4.

37.

(a) With parƟal fracƟons, an = 3
2

(
1
n −

1
n+2

)
.

Thus Sn = 3
2

(
3
2 −

1
n+1 −

1
n+2

)
.

(b) Converges to 9/4

39.
(a) Sn = ln

(
1/(n+ 1)

)
(b) Diverges (to−∞).

41.
(a) an = 1

n(n+3) ; using parƟal fracƟons,
the resulƟng telescoping sum reduces to
Sn = 1

3

(
1+ 1

2 +
1
3 −

1
n+1 −

1
n+2 −

1
n+3

)
(b) Converges to 11/18.

43.

(a) With parƟal fracƟons, an = 1
2

(
1

n−1 −
1

n+1

)
. Thus

Sn = 1
2

(
3/2− 1

n −
1

n+1

)
.

(b) Converges to 3/4.

45.

(a) Sn = 1+ 1
2 −

1
n+1 −

1
n+2 +

5
4 (1−( 1

4 )
n)

1− 1
4

(b) Converges to 19
6 .

47. (−5,−1)

49. (−3,−1)

Exercises 9.3

1. conƟnuous, posiƟve and decreasing

3. Converges

5. Diverges

7. Converges

9. Converges

11. p > 1

13. p > 1
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Exercises 9.4

1.
∞∑
n=0

bn converges; we cannot conclude anything about

∞∑
n=0

cn

3. Converges; compare to
∞∑
n=1

1
4n

, as 1/(4n +n2 −n) ≤ 1/4n

for all n ≥ 1.

5. Converges; compare to
∞∑
n=1

1
n!
, as 1/(n! + n) ≤ 1/n! for

all n ≥ 1.

7. Converges; compare to
∞∑
n=1

1
n2

.

9. Diverges; compare to
∞∑
n=1

ln n
n

.

11. Diverges; compare to
∞∑
n=1

1
n
.

13. Diverges; compare to
∞∑
n=1

1
n
:

1
n
=

n2

n3
<

n2 + n+ 1
n3

<
n2 + n+ 1
n3 − 5

,

for all n ≥ 1.

15. Diverges; compare to
∞∑
n=1

1
n
. Just as lim

n→0

sin n
n

= 1,

lim
n→∞

sin(1/n)
1/n

= 1.

17. Converges; compare to
∞∑
n=1

1
n2

.

19. Converges by Comparison Test with
∑ 1

4n

21. Diverges; compare to
∞∑
n=1

1
n1/2

.

23. Converges; compare to
∞∑
n=1

1
n3/2

.

25.
(a) Converges; use Direct Comparison Test as an

n < n.

(b) Converges; since original series converges, we know
limn→∞ an = 0. Thus for large n, anan+1 < an.

(c) Converges; similar logic to part (b) so (an)2 < an.

(d) May converge; certainly nan > an but that does not
mean it does not converge.

(e) Does not converge, using logic from (b) and nth Term
Test.

27. Converges; Integral Test, p-Series Test, Direct & Limit Com-
parison Tests can all be used.

29. Converges; the Direct Comparison Test can be used with
sequence 1/(n− 1)!.

31. Diverges; the nth Term Test can be used, along with the
Limit Comparison Test (compare with 1/10).

33. Converges; the Direct Comparison Test can be used with
sequence 1/

√
n.

Exercises 9.5
1. The signs of the terms do not alternate; in the given series,

some terms are negaƟve and the others posiƟve, but they
do not necessarily alternate.

3. Many examples exist; one common example is an =
(−1)n/n.

5.
(a) converges

(b) converges (p-Series)

(c) absolute

7.
(a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

9.
(a) converges

(b) diverges (Limit Comparison Test with 1/n)

(c) condiƟonal

11.
(a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

13.
(a) diverges (terms oscillate between±1)

(b) diverges

(c) n/a; diverges

15.
(a) converges

(b) converges (Geometric Series with r = 2/3)

(c) absolute

17.
(a) converges

(b) converges (RaƟo Test)

(c) absolute

19.
(a) converges

(b) diverges (p-Series Test with p = 1/2)

(c) condiƟonal

21. S5 = −1.1906; S6 = −0.6767;

−1.1906 ≤
∞∑
n=1

(−1)n

ln(n+ 1)
≤ −0.6767

23. S6 = 0.3681; S7 = 0.3679;

0.3681 ≤
∞∑
n=0

(−1)n

n!
≤ 0.3679

A.20



25. n = 5

27. Using the theorem, we find n = 499 guarantees the sum
is within 0.001 of π/4. (Convergence is actually faster, as
the sum is within ε of π/24 when n ≥ 249.)

Exercises 9.6

1. algebraic, or polynomial.

3. Integral Test, Limit Comparison Test, and Root Test

5. Converges

7. Converges

9. The RaƟo Test is inconclusive; the p-Series Test states it di-
verges.

11. Converges

13. Converges; note the summaƟon can be rewriƩen as
∞∑
n=1

2nn!
3nn!

, from which the RaƟo Test can be applied.

15. Diverges

17. Converges

19. Converges

21. Diverges

23. Diverges. The Root Test is inconclusive, but the nth-Term
Test shows divergence. (The terms of the sequence ap-
proach e2, not 0, as n → ∞.)

25. Converges

Exercises 9.7

1. Diverges

3. Diverges

5. Diverges

7. Absolutely converges

9. CondiƟonally converges

11. Diverges

13. Absolutely converges

15. Absolutely converges

17. Absolutely converges

19. CondiƟonally converges

21. Absolutely converges

23. Absolutely converges

25. Diverges

27. Diverges

29. Absolutely converges

31. Diverges

33. Absolutely converges

35. Diverges

37. Absolutely converges

Exercises 9.8

1. 1

3. 5

5. 1+ 2x+ 4x2 + 8x3 + 16x4

7. 1+ x+ x2
2 + x3

6 + x4
24

9.
(a) R = ∞
(b) (−∞,∞)

11.
(a) R = 1

(b) (2, 4]

13.
(a) R = 2

(b) (−2, 2)

15.
(a) R = 1/5

(b) (4/5, 6/5)

17.
(a) R = 1

(b) (−1, 1)

19.
(a) R = ∞
(b) (−∞,∞)

21.
(a) R = 1

(b) [−1, 1]

23.
(a) R = 0

(b) x = 0

25.
(a) R = 1

9

(b) x = [ 59 ,
7
9 ]

27.
(a) R = ∞
(b) x = (−∞,∞)

29.
∞∑
n=0

8nxn+1, R = 1/8

31.
∞∑
n=0

6(−7)nx4n, R = 1/ 4√7

33.
∞∑
n=0

3 · 2nxn/3+2

5n+1 , R = 125/8

35. ln 3−
∞∑
n=1

3−nxn/n, R = 3

A.21



37.
∞∑
n=0

2
2n+ 1

x2n+1, R = 1

39.
∞∑
n=0

(−1)n x6n+5

2n+ 1
; R = 1

41.
∞∑
n=0

(n+ 2)(n+ 1)
2n+4 xn+3; R = 2

Exercises 9.9

1. TheMaclaurin polynomial is a special case of Taylor polyno-
mials. Taylor polynomials are centered at a specific x-value;
when that x-value is 0, it is a Maclaurin polynomial.

3. p2(x) = 6+ 3x− 4x2.

5. p3(x) = 1− x+ 1
2 x

3 − 1
6 x

3

7. p8(x) = x+ x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5

9. p4(x) = 2x4
3 + 4x3

3 + 2x2 + 2x+ 1

11. p4(x) = x4 − x3 + x2 − x+ 1

13. p4(x) = 1 + 1
2 (−1 + x) − 1

8 (−1 + x)2 + 1
16 (−1 + x)3 −

5
128 (−1+ x)4

15. p6(x) = 1√
2 −

− π
4 +x
√
2 − (− π

4 +x)2

2
√
2 +

(− π
4 +x)3

6
√
2 +

(− π
4 +x)4

24
√
2 −

(− π
4 +x)5

120
√
2 − (− π

4 +x)6

720
√
2

17. p5(x) = 1
2 −

x−2
4 + 1

8 (x− 2)2 − 1
16 (x− 2)3 + 1

32 (x− 2)4 −
1
64 (x− 2)5

19. p3(x) = 1
2 +

1+x
2 + 1

4 (1+ x)2

21. p3(x) = x − x3
6 ; p3(0.1) = 0.09983. Error is bounded by

± 1
4! · 0.1

4 ≈ ±0.000004167.

23. p2(x) = 3+ 1
6 (−9+x)− 1

216 (−9+x)2; p2(10) = 3.16204.
The third derivaƟve of f(x) =

√
x is bounded on (8, 11) by

0.003. Error is bounded by± 0.003
3! · 13 = ±0.0005.

25. The nth derivaƟve of f(x) = ex is bounded by 3 on intervals
containing 0 and 1. Thus |Rn(1)| ≤ 3

(n+1)!1
(n+1). When

n = 7, this is less than 0.0001.
27. The nth derivaƟve of f(x) = cos x is bounded by 1

on intervals containing 0 and π/3. Thus |Rn(π/3)| ≤
1

(n+1)! (π/3)
(n+1). When n = 7, this is less than 0.0001.

Since the Maclaurin polynomial of cos x only uses even
powers, we can actually just use n = 6.

29. The nth term is 1
n! x

n.

31. The nth term is xn.

33. The nth term is (−1)n (x−1)n
n .

35. 3+ 15x+ 75
2
x2 + 375

6
x3 + 1875

24
x4

Exercises 9.10

1. A Taylor polynomial is a polynomial, containing a finite
number of terms. A Taylor series is a series, the summa-
Ɵon of an infinite number of terms.

3. All derivaƟves of ex are ex which evaluate to 1 at x = 0.
The Taylor series starts 1+ x+ 1

2 x
2 + 1

3! x
3 + 1

4! x
4 + · · · ;

the Taylor series is
∞∑
n=0

xn

n!

5. The nth derivaƟve of 1/(1−x) is f (n)(x) = (n)!/(1−x)n+1,
which evaluates to n! at x = 0.
The Taylor series starts 1+ x+ x2 + x3 + · · · ;

the Taylor series is
∞∑
n=0

xn

7. The Taylor series starts 0−(x−π/2)+0x2+ 1
6 (x−π/2)3+

0x4 − 1
120 (x− π/2)5;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− π/2)2n+1

(2n+ 1)!

9. f (n)(x) = (−1)ne−x; at x = 0, f (n)(0) = −1 when n is odd
and f (n)(0) = 1 when n is even.
The Taylor series starts 1− x+ 1

2 x
2 − 1

3! x
3 + · · · ;

the Taylor series is
∞∑
n=0

(−1)n x
n

n!
.

11. f (n)(x) = (−1)n+1 n!
(x+1)n+1 ; at x = 1, f (n)(1) =

(−1)n+1 n!
2n+1

The Taylor series starts 1
2 +

1
4 (x− 1)− 1

8 (x− 1)2 + 1
16 (x−

1)3 · · · ;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− 1)n

2n+1 .

13. Given a value x, the magnitude of the error term Rn(x) is
bounded by

|Rn(x)| ≤
max

∣∣∣f (n+1)(z)
∣∣∣

(n+ 1)!

∣∣∣x(n+1)
∣∣∣ ,

where z is between 0 and x.
If x > 0, then z < x and f (n+1)(z) = ez < ex. If x < 0,
then x < z < 0 and f (n+1)(z) = ez < 1. So given a fixed x
value, letM = max{ex, 1}; f (n)(z) < M. This allows us to
state

|Rn(x)| ≤
M

(n+ 1)!

∣∣∣x(n+1)
∣∣∣ .

For any x, lim
n→∞

M
(n+ 1)!

∣∣∣x(n+1)
∣∣∣ = 0. Thus by the Squeeze

Theorem, we conclude that lim
n→∞

Rn(x) = 0 for all x, and
hence

ex =
∞∑
n=0

xn

n!
for all x.

A.22



15. Given a value x, the magnitude of the error term Rn(x) is
bounded by

|Rn(x)| ≤
max

∣∣∣f (n+1)(z)
∣∣∣

(n+ 1)!

∣∣∣x(n+1)
∣∣∣ ,

where z is between 0 and x. Since
∣∣∣f (n+1)(z)

∣∣∣ = n!
(z+1)n+1 ,

|Rn(x)| ≤
1

n+ 1

(
|x|

min z+ 1

)n+1

.

If 0 < x < 1, then 0 < z < x and f (n+1)(z) = n!
(z+1)n+1 <

n!. Thus

|Rn(x)| ≤
n!

(n+ 1)!

∣∣∣x(n+1)
∣∣∣ = xn+1

n+ 1
.

For a fixed x < 1,

lim
n→∞

xn+1

n+ 1
= 0.

17. Given cos x =
∞∑
n=0

(−1)n x2n

(2n)!
,

cos(−x) =

∞∑
n=0

(−1)n (−x)2n

(2n)!
=

∞∑
n=0

(−1)n x2n

(2n)!
= cos x,

as all powers in the series are even.

19. Given sin x =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
,

d
dx
(
sin x

)
=

d
dx

(
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!

)

=

∞∑
n=0

(−1)n (2n+ 1)x2n

(2n+ 1)!
=

∞∑
n=0

(−1)n x2n

(2n)!
= cos x.

(The summaƟon sƟll starts at n = 0 as there was no con-
stant term in the expansion of sin x).

21. 1+ x
2
− x2

8
+

x3

16
− 5x4

128

23. 1+ x
3
− x2

9
+

5x3

81
− 10x4

243

25.
∞∑
n=0

(−1)n (x
2)2n

(2n)!
=

∞∑
n=0

(−1)n x4n

(2n)!
.

27.
∞∑
n=0

(−1)n (2x+ 3)2n+1

(2n+ 1)!
.

29. x+ x2 + x3

3
− x5

30

31.
ˆ √

π

0
sin
(
x2
)
dx ≈

ˆ √
π

0

(
x2 − x6

6
+

x10

120
− x14

5040

)
dx

= 0.8877

Chapter 10
Exercises 10.0

1. y = 1
2 (x− 3)2 + 3

2

2. y = −1
12 (x+ 1)2 − 1

3. x = − 1
4 (y− 5)2 + 2

4. x = y2

5. y = − 1
4 (x− 1)2 + 2

6. x = − 1
12y

2

7. y = 4x2

8. x = − 1
8 (y− 3)2 + 2

9.
−2 2 4

2

4

x

y

10.

−5 5

−6

−4

−2

x

y

11. (x+1)2
9 + (y−2)2

4 = 1

12. (x−1)2
1/4 + y2

9 = 1

13. (x−1)2
2 + (y− 2)2 = 1

14. x2
3 + y2

5 = 1

15. x2
4 + (y−3)2

6 = 1

16. (x−2)2
4 + (y−2)2

4 = 1

17. x2 − y2
3 = 1

18. y2 − x2
24 = 1

19. (y−3)2
4 − (x−1)2

9 = 1

20. (x−1)2
9 − (y−3)2

4 = 1

21.

−5 5

−5

x

y

22.

−10 −5 5

5

10

x

y
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23. x2
4 − y2

3 = 1

24. x2
3 − (y−1)2

9 = 1

25. (y− 2)2 − x2
10 = 1

26. 4y2 − x2
4 = 1

Exercises 10.1
1. T
3.

√
2

5. 4/3
7. 109/2
9. 12/5

11. − ln(2−
√
3) ≈ 1.31696

13.
´ 1
0

√
1+ 4x2 dx

15.
´ 1
0

√
1+ 1

4x dx

17.
´ 1
−1

√
1+ x2

1−x2 dx

19.
´ 2
1

√
1+ 1

x4 dx

21. 1.4790
23. Simpson’s Rule fails, as it requires one to divide by 0. How-

ever, recognize the answer should be the same as for y =
x2; why?

25. Simpson’s Rule fails.
27. 1.4058
29. 2π

´ 1
0 2x

√
5 dx = 2π

√
5

31. 2π
´ 1
0 x3

√
1+ 9x4 dx = π/27(10

√
10− 1)

33. 2π
´ 1
0

√
1− x2

√
1+ x/(1− x2) dx = 4π

Exercises 10.2
1. T
3. rectangular

5.

5 10

−5

x

y

7.

1 2

1

2

x

y

9.

−10 −5 5 10

2

4

6

8

x

y

11.
−5 5

−5

5

x

y

13.
−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

15.
5 10

−10

10

x

y

17.
−1 1

−1

1

x

y
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19.
(a) Traces a circle of radius 1 counterclockwise once.

(b) Traces a circle of radius 1 counterclockwise over 6
Ɵmes.

(c) Traces a circle of radius 1 clockwise infinite Ɵmes.

(d) Traces an arc of a circle of radius 1, from an angle of
-1 radians to 1 radian, twice.

21. Possible Answer: x = 5+t2
4 , y = t

23. Possible Answer: x = 5
4 t+

11
4 , y = t, [−3, 1]

25. Possible Answer: x = t, y = t2 + 2t, (−∞,−1]

27. x = (t+11)/6, y = (t2−97)/12. At t = 1, x = 2, y = −8.
y′ = 6x− 11; when x = 2, y′ = 1.

29. x = cos−1 t, y =
√
1− t2. At t = 1, x = 0, y = 0.

y′ = cos x; when x = 0, y′ = 1.

31. Possible answers:

(a) x = sin t, y = cos t, [π/2, 5π/2]

(b) x = cos t, y = sin t, [0, 2π]

(c) x = sin t, y = cos t, [π/2, 9π/2]

(d) x = cos t, y = sin t, [0, 4π]

33. x = 4t, y = −16t2 + 64t

35. x = 10t, y = −16t2 + 320t

37. x = 3 cos(2πt) + 1, y = 3 sin(2πt) + 1; other answers
possible

39. x = 5 cos t, y =
√
24 sin t; other answers possible

41. x = 2 tan t, y = ±6 sec t; other answers possible

43. x2 − y2 = 1

45. y = x3/2

47. y = x3 − 3

49. y2 − x2 = 1

51. x = 1− 2y2

53. x2 + y2 = r2; circle centered at (0, 0) with radius r.

55. (x−h)2

a2 − (y−k)2

b2 = 1; hyperbola centered at (h, k) with
horizontal transverse axis and asymptotes with slope b/a.
The parametric equaƟons only give half of the hyperbola.
When a > 0, the right half; when a < 0, the leŌ half.

57. t = −1, 2

59. t = π/6, π/2, 5π/6

61. t = 2

63. t = . . . 0, 2π, 4π, . . .

Exercises 10.3

1. F

3. F

5.
(a) dy

dx = 2t

(b) Tangent line: y = 2(x − 1) + 1; normal line: y =
−1/2(x− 1) + 1

7.
(a) dy

dx = 2t+1
2t−1

(b) Tangent line: y = 3x+2; normal line: y = −1/3x+2

9.
(a) dy

dx = csc t

(b) t = π/4: Tangent line: y =
√
2(x−

√
2)+1; normal

line: y = −1/
√
2(x−

√
2) + 1

11.
(a) dy

dx = cos t sin(2t)+sin t cos(2t)
− sin t sin(2t)+2 cos t cos(2t)

(b) Tangent line: y = x−
√
2; normal line: y = −x−

√
2

13. t = 0

15. t = −1/2

17. The graph does not have a horizontal tangent line.

19. The soluƟon is non-trivial; use idenƟƟes sin(2t) =
2 sin t cos t and cos(2t) = cos2 t− sin2 t to rewrite g′(t) =
2 sin t(2 cos2 t − sin2 t). On [0, 2π], sin t = 0 when
t = 0, π, 2π, and 2 cos2 t − sin2 t = 0 when t =
tan−1(

√
2), π ± tan−1(

√
2), 2π − tan−1(

√
2).

21. t0 = 0; limt→0
dy
dx = 0.

23. t0 = 1; limt→1
dy
dx = ∞.

25. d2y
dx2 = 2; always concave up

27. d2y
dx2 = − 4

(2t−1)3 ; concave up on (−∞, 1/2); concave down
on (1/2,∞).

29. d2y
dx2 = − cot3 t; concave up on (−∞, 0); concave down on
(0,∞).

31. d2y
dx2 = 4(13+3 cos(4t))

(cos t+3 cos(3t))3 , obtained with a computer algebra
system; concave up on

(
− tan−1( 1√

2 ), tan
−1( 1√

2 )
)
, con-

cave down on
(
− π

2 ,− tan−1( 1√
2 )
)
;
(
tan−1( 1√

2 ),
π
2

)
33. L = 6π

35. L = 2
√
34

37. 2π

39. −
√
10
3

+ ln(3+
√
10) +

√
2− ln(1+

√
2)

41. L ≈ 2.4416 (actual value: L = 2.42211)

43. L ≈ 4.19216 (actual value: L = 4.18308)

45. The answer is 16π for both (of course), but the integrals
are different.

47. 6πa2
5

49. 24π(949
√
26+1)

5

51. SA ≈ 1.36751 (actual value SA = 1.36707
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Exercises 10.4

1. Answers will vary.

3. T

5. 1 2O
A

B

C

D

7. A(2.5, π/4) and A(−2.5, 5π/4);
B(−1, 5π/6) and B(1, 11π/6);
C(3, 4π/3) and C(−3, π/3);
D(1.5, 2π/3) and D(−1.5, 5π/3)

9. A = (
√
2,
√
2);

B = (
√
2,−

√
2);

C = (
√
5,−0.46);

D = (
√
5, 2.68)

11.

1 2

1

2

x

y

13.

−2 2

−2

−1

1

2

x

y

15.

−2 2

−2

2

x

y

17.

−2 2

−2

2

x

y

19.

−1 1

−1

1

x

y

21.

−1 1

−1

1

x

y

23.

−2 2

2

3

1

x

y

25.

−2 −1

−1

1

x

y

27.

−1 1

−1

−0.5

0.5

1

x

y

29.

−5 5

−4

−2

2

4

x

y

31.

−5 5

−4

−2

2

4

x

y

33. (x− 1)2 + y2 = 1
35. x2 + (y− 3

2 )
2 = 9

4

37. (x− 1/2)2 + (y− 1/2)2 = 1/2
39. x = 3
41. x4 + x2y2x2 − y2 = 0
43. y = x/

√
3

45. r = 7/(sin θ − 4 cos θ)
47. r = 5 csc θ
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49. r = 1/ 3√cos2 θ sin θ

51. r = −2 cos θ

53. P(1, 0), P(0, π/2) = P(0, π/4), P(−1/2, π/3)

55. P(
√
3/2, π/3) = P(−

√
3/2, 4π/3), P(

√
3/2, 2π/3) =

P(−
√
3/2, 5π/3), P(0, π/2)

57. P(3/2, π/3), P(3/2,−π/3)

59. P(0, 0) = P(0, 3π/2), P(1 +
√
2/2, 3π/4), P(1 −√

2/2, 7π/4)
61. Answers will vary.

Exercises 10.5

1. Using x = r cos θ and y = r sin θ, we can write x =
f(θ) cos θ, y = f(θ) sin θ.

3.
(a) dy

dx = − cot θ

(b) tangent line: y = −(x −
√
2/2) +

√
2/2; normal

line: y = x

5.
(a) dy

dx = cos θ(1+2 sin θ)
cos2 θ−sin θ(1+sin θ)

(b) tangent line: x = 3
√
3/4; normal line: y = 3/4

7.
(a) dy

dx = θ cos θ+sin θ
cos θ−θ sin θ

(b) tangent line: y = −2/πx + π/2; normal line: y =
π/2x+ π/2

9.
(a) dy

dx = 4 sin(θ) cos(4θ)+sin(4θ) cos(θ)
4 cos(θ) cos(4θ)−sin(θ) sin(4θ)

(b) tangent line: y = 5
√
3(x +

√
3/4) − 3/4; normal

line: y = −1/5
√
3(x+

√
3/4)− 3/4

11. horizontal: θ = π/2, 3π/2;
verƟcal: θ = 0, π, 2π

13. horizontal: θ = tan−1(1/
√
5), π/2,

π − tan−1(1/
√
5), π + tan−1(1/

√
5), 3π/2, 2π −

tan−1(1/
√
5);

verƟcal: θ = 0, tan−1(
√
5), π − tan−1(

√
5), π, π +

tan−1(
√
5), 2π − tan−1(

√
5)

15. In polar: θ = 0 ∼= θ = π
In rectangular: y = 0

17. In polar: θ = π
4 and θ = − π

4
In rectangular: y = x and y = −x.

19. area = 8π
3 + 4

√
3

21. area = π/12

23. area = π − 3
√
3/2

25. area = π + 3
√
3

27. area =
ˆ π/3

π/12

1
2
sin2(3θ) dθ−

ˆ π/6

π/12

1
2
cos2(3θ) dθ =

1
12

+

π

24

29. area =
ˆ π/3

0

1
2
(1 − cos θ)2 dθ +

ˆ π/2

π/3

1
2
(cos θ)2 dθ =

7π
24

−
√
3
2

≈ 0.0503

31. 4π
33. L ≈ 2.2592; (actual value L = 2.22748)
35. SA = 16π
37. SA = 32π/5
39. SA = 36π

Chapter 11
Exercises 11.1
1. right hand
3. curve (a parabola); surface (a cylinder)
5. a hyperboloid of two sheets
7.
∥∥AB∥∥ =

√
6;
∥∥BC∥∥ =

√
17;
∥∥AC∥∥ =

√
11. Yes, it is a right

triangle as
∥∥AB∥∥2 + ∥∥AC∥∥2 = ∥∥BC∥∥2.

9. Center at (4,−1, 0); radius = 3
11. Interior of a sphere with radius 1 centered at the origin.
13. The first octant of space along with its adjacent quarter

planes; all points (x, y, z)where each of x, y and z are posi-
Ɵve or zero. (Analogous to the first quadrant in the plane.)

15.

17.

19. y2 + z2 = x4

21. z = (
√
x2 + y2)2 = x2 + y2

23. (a) x = y2 + z2

9
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25. (b) x2 + y2

9
+

z2

4
= 1

27.

29.

31.

Exercises 11.2

1. Answers will vary.

3. A vector with magnitude 1.

5. It stretches the vector by a factor of 2, and points it in the
opposite direcƟon.

7. # ‰PQ = ⟨4,−4⟩ = 4⃗ı− 4ȷ⃗

9. # ‰PQ = ⟨2, 2, 0⟩ = 2⃗ı+ 2ȷ⃗

11.
(a) u⃗+ v⃗ = ⟨3, 2, 1⟩; u⃗− v⃗ = ⟨−1, 0,−3⟩; πu⃗−

√
2⃗v =⟨

π − 2
√
2, π −

√
2,−π − 2

√
2
⟩
.

(c) x⃗ = ⟨−1, 0,−3⟩.

13.

u⃗

v⃗

u⃗ + v⃗

u⃗−
v⃗

x

y

Sketch of u⃗− v⃗ shiŌed for clarity.

15.
u⃗

v⃗

u⃗ + v⃗

u⃗ − v⃗

x y

z

17. ∥u⃗∥ =
√
17, ∥⃗v∥ =

√
3, ∥u⃗+ v⃗∥ =

√
14, ∥u⃗− v⃗∥ =

√
26

19. ∥u⃗∥ = 7, ∥⃗v∥ = 35, ∥u⃗+ v⃗∥ = 42, ∥u⃗− v⃗∥ = 28
21. u⃗ =

⟨
3/

√
58, 7/

√
58
⟩

23. u⃗ = ⟨1/3,−2/3, 2/3⟩
25. u⃗ = ⟨cos 50◦, sin 50◦⟩ ≈ ⟨0.643, 0.766⟩.
27.

∥u⃗∥ =
√

sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ

=
√

sin2 θ(cos2 φ+ sin2 φ) + cos2 θ

=
√

sin2 θ + cos2 θ
= 1.

29. The force on each chain is 100lb.
31. The force on each chain is 50lb.
33. θ = 5.71◦; the weight is liŌed 0.005 Ō (about 1/16th of an

inch).
35. θ = 84.29◦; the weight is liŌed 9 Ō.

Exercises 11.3
1. Scalar
3. By considering the sign of the dot product of the two vec-

tors. If the dot product is posiƟve, the angle is acute; if the
dot product is negaƟve, the angle is obtuse.

5. −22
7. 3
9. not defined

11. Answers will vary.
13. θ = 0.3218 ≈ 18.43◦

15. θ = π/4 = 45◦

17. Answers will vary; two possible answers are ⟨−7, 4⟩ and
⟨14,−8⟩.

19. Answers will vary; two possible answers are ⟨1, 0,−1⟩ and
⟨4, 5,−9⟩.

21. proj v⃗ u⃗ = ⟨−1/2, 3/2⟩.
23. proj v⃗ u⃗ = ⟨−1/2,−1/2⟩.
25. proj v⃗ u⃗ = ⟨1, 2, 3⟩.
27. u⃗ = ⟨−1/2, 3/2⟩+ ⟨3/2, 1/2⟩.
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29. u⃗ = ⟨−1/2,−1/2⟩+ ⟨−5/2, 5/2⟩.
31. u⃗ = ⟨1, 2, 3⟩+ ⟨0, 3,−2⟩.
33. 1.96lb

35. 141.42Ō–lb

37. 500Ō–lb

39. 500Ō–lb

Exercises 11.4

1. vector

3. “Perpendicular” is one answer.

5. Torque

7. u⃗× v⃗ = ⟨12,−15, 3⟩
9. u⃗× v⃗ = ⟨−5,−31, 27⟩

11. u⃗× v⃗ = ⟨0,−2, 0⟩
13. ı⃗× ȷ⃗ = k⃗

15. ȷ⃗× k⃗ = ı⃗

17. Answers will vary.

19. 21

21. 5

23.
√
230

25. 6

27. 3
√
30

29. 5/2

31. 8
√

7/2

33. 15

35. ± 1√
21 ⟨−2, 1, 4⟩

37. any unit vector orthogonal to u⃗ works (such as
1√
2 ⟨1, 0,−1⟩).

39. 43.75
√
3 ≈ 75.78Ō–lb

41. 11.58Ō–lb

43. With u⃗ = ⟨u1, u2, u3⟩, we have

u⃗× u⃗ = ⟨u2u3 − u3u2,−(u1u3 − u3u1), u1u2 − u2u1⟩)
= ⟨0, 0, 0⟩

= 0⃗.

Exercises 11.5

1. A point on the line and the direcƟon of the line.

3. parallel, skew

5. vector: ℓ(t) = ⟨2,−4, 1⟩+ t ⟨9, 2, 5⟩
parametric: x = 2+ 9t, y = −4+ 2t, z = 1+ 5t
symmetric: (x− 2)/9 = (y+ 4)/2 = (z− 1)/5

7. Answers can vary: vector: ℓ(t) = ⟨2, 1, 5⟩+ t ⟨5,−3,−1⟩
parametric: x = 2+ 5t, y = 1− 3t, z = 5− t
symmetric: (x− 2)/5 = −(y− 1)/3 = −(z− 5)

9. Answers can vary; here the direcƟon is given by d⃗1 × d⃗2:
vector: ℓ(t) = ⟨0, 1, 2⟩+ t ⟨−10, 43, 9⟩
parametric: x = −10t, y = 1+ 43t, z = 2+ 9t
symmetric: −x/10 = (y− 1)/43 = (z− 2)/9

11. Answers can vary; here the direcƟon is given by d⃗1 × d⃗2:
vector: ℓ(t) = ⟨7, 2,−1⟩+ t ⟨1,−1, 2⟩
parametric: x = 7+ t, y = 2− t, z = −1+ 2t
symmetric: x− 7 = 2− y = (z+ 1)/2

13. vector: ℓ(t) = ⟨1, 1⟩+ t ⟨2, 3⟩
parametric: x = 1+ 2t, y = 1+ 3t
symmetric: (x− 1)/2 = (y− 1)/3

15. parallel
17. intersecƟng; ℓ⃗1(3) = ℓ⃗2(4) = ⟨9,−5, 13⟩
19. skew
21. same
23.

√
41/3

25. 5
√
2/2

27. 3/
√
2

29. Since both P and Q are on the line, # ‰PQ is parallel to d⃗. Thus
# ‰PQ× d⃗ = 0⃗, giving a distance of 0.

31.
(a) The distance formula cannot be used because since

d⃗1 and d⃗2 are parallel, c⃗ is 0⃗ and we cannot divide by∥∥∥0⃗∥∥∥.
(b) Since d⃗1 and d⃗2 are parallel, #     ‰P1P2 lies in the plane

formed by the two lines. Thus #     ‰P1P2 × d⃗2 is orthogo-
nal to this plane, and c⃗ = (

#     ‰P1P2 × d⃗2)× d⃗2 is parallel
to the plane, but sƟll orthogonal to both d⃗1 and d⃗2.
We desire the length of the projecƟon of #     ‰P1P2 onto
c⃗, which is what the formula provides.

(c) Since the lines are parallel, one can measure the dis-
tance between the lines at any locaƟon on either line
(just as to find the distance between straight railroad
tracks, one canuse ameasuring tape anywhere along
the track, not just at one specific place.) Let P = P1
and Q = P2 as given by the equaƟons of the lines,
and apply the formula for distance between a point
and a line.

Exercises 11.6
1. A point in the plane and a normal vector (i.e., a direcƟon

orthogonal to the plane).
3. Answers will vary.
5. Answers will vary.
7. Standard form: 3(x− 2)− (y− 3) + 7(z− 4) = 0

general form: 3x− y+ 7z = 31
9. Answers may vary;

Standard form: 8(x− 1) + 4(y− 2)− 4(z− 3) = 0
general form: 8x+ 4y− 4z = 4

11. Answers may vary;
Standard form: −7(x− 2) + 2(y− 1) + (z− 2) = 0
general form: −7x+ 2y+ z = −10

13. Answers may vary;
Standard form: 2(x− 1)− (y− 1) = 0
general form: 2x− y = 1
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15. Answers may vary;
Standard form: 2(x− 2)− (y+ 6)− 4(z− 1) = 0
general form: 2x− y− 4z = 6

17. Answers may vary;
Standard form: (x− 5) + (y− 7) + (z− 3) = 0
general form: x+ y+ z = 15

19. Answers may vary;
Standard form: 3(x+ 4) + 8(y− 7)− 10(z− 2) = 0
general form: 3x+ 8y− 10z = 24

21. Answers may vary:

ℓ =


x = 14t
y = −1− 10t
z = 2− 8t

23. (−3,−7,−5)
25. No point of intersecƟon; the plane and line are parallel.
27.

√
5/7

29. 1/
√
3

31. If P is any point in the plane, and Q is also in the plane,
then # ‰PQ lies parallel to the plane and is orthogonal to n⃗,
the normal vector. Thus n⃗ · # ‰PQ = 0, giving the distance as
0.

Exercises 11.7
1. (a) (4, π

3 ,−1); (b) (
√
17, π

3 , 1.816)
3. (a) (2

√
7, 11π

6 , 0); (b) (2
√
7, 11π

6 , π
2 )

5. (a) r2 + z2 = 25; (b) ρ = 5
7. (a) r2 + 9z2 = 36; (b) ρ2(1+ 8 cos2 ϕ) = 36
9.

11.
13.

Chapter 12
Exercises 12.1
1. parametric equaƟons
3. displacement

5.
1 2 3 4

−5

5

x

y

7.
2 4

−1

−0.5

0.5

1

x

y

9.
−3 −2 −1 1 2 3

−1

−2

1

2

x

y

11.
−10 −5 5 10

−5

5

x

y

13.

15.

17. ∥⃗r(t)∥ =
√
25 cos2 t+ 9 sin2 t.

19. ∥⃗r(t)∥ =
√
cos2 t+ t2 + t4.

21. Answers may vary; three soluƟons are
r⃗(t) = ⟨3 sin t+ 5, 3 cos t+ 5⟩,
r⃗(t) = ⟨−3 cos t+ 5, 3 sin t+ 5⟩ and
r⃗(t) = ⟨3 cos t+ 5,−3 sin t+ 5⟩.

23. Answers may vary, though most direct soluƟons are
r⃗(t) = ⟨−3 cos t+ 3, 2 sin t− 2⟩,
r⃗(t) = ⟨3 cos t+ 3,−2 sin t− 2⟩ and
r⃗(t) = ⟨3 sin t+ 3, 2 cos t− 2⟩.

25. Answers may vary, though most direct soluƟons are
r⃗(t) = ⟨t,−1/2(t− 1) + 5⟩,
r⃗(t) = ⟨t+ 1,−1/2t+ 5⟩,
r⃗(t) = ⟨−2t+ 1, t+ 5⟩ and
r⃗(t) = ⟨2t+ 1,−t+ 5⟩.

27. Answers may vary, though most direct soluƟon is
r⃗(t) = ⟨3 cos(4πt), 3 sin(4πt), 3t⟩.
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29. ⟨1, 1⟩

31. ⟨1, 2, 7⟩

Exercises 12.2

1. component

3. It is difficult to idenƟfy the points on the graphs of r⃗(t) and
r⃗ ′(t) that correspond to each other.

5.
⟨
e3, 0

⟩
7. ⟨2t, 1, 0⟩

9. (0,∞)

11. r⃗ ′(t) =
⟨
−1/t2, 5/(3t+ 1)2, sec2 t

⟩
13. r⃗ ′(t) = ⟨2t, 1⟩·⟨sin t, 2t+ 5⟩+

⟨
t2 + 1, t− 1

⟩
·⟨cos t, 2⟩ =

(t2 + 1) cos t+ 2t sin t+ 4t+ 3

15.

2 4 6

2

4

6

r⃗ ′(1)

x

y

r⃗ ′(t) = ⟨2t+ 1, 2t− 1⟩

17.
2 4

−2

2
r⃗ ′(1)

x

y

r⃗ ′(t) =
⟨
2t, 3t2 − 1

⟩
19. ℓ(t) = ⟨2, 0⟩+ t ⟨3, 1⟩

21. ℓ(t) = ⟨−3, 0, π⟩+ t ⟨0,−3, 1⟩

23. t = 2nπ, where n is an integer;
so t = . . .− 4π,−2π, 0, 2π, 4π, . . .

25. r⃗(t) is not smooth at t = 3π/4+ nπ, where n is an integer

27. Both derivaƟves return
⟨
5t4, 4t3 − 3t2, 3t2

⟩
.

29. Both derivaƟves return⟨
2t− et − 1, cos t− 3t2, (t2 + 2t)et − (t− 1) cos t− sin t

⟩
.

31.
⟨
tan−1 t, tan t

⟩
+ C⃗

33. ⟨4,−4⟩

35. r⃗(t) = ⟨ln |t+ 1|+ 1,− ln |cos t|+ 2⟩

37. r⃗(t) =
⟨
− cos t+ 1, t− sin t, et − t− 1

⟩
39. 10π

41.
√
2(1− e−1)

Exercises 12.3

1. Velocity is a vector, indicaƟng an objects direcƟon of travel
and its rate of distance change (i.e., its speed). Speed is a
scalar.

3. The average velocity is found by dividing the displacement
by the Ɵme traveled – it is a vector. The average speed is
foundby dividing the distance traveled by the Ɵme traveled
– it is a scalar.

5. One example is traveling at a constant speed s in a circle,
ending at the starƟng posiƟon. Since the displacement is
0⃗, the average velocity is 0⃗, hence

∥∥∥0⃗∥∥∥ = 0. But traveling
at constant speed smeans the average speed is also s > 0.

7. v⃗(t) = ⟨2, 5, 0⟩, a⃗(t) = ⟨0, 0, 0⟩

9. v⃗(t) = ⟨− sin t, cos t⟩, a⃗(t) = ⟨− cos t,− sin t⟩

11. v⃗(t) = ⟨1, cos t⟩, a⃗(t) = ⟨0,− sin t⟩

0.5 1 1.5

0.5

1

1.5 v⃗(π/4)

a⃗(π/4)
x

y

13. v⃗(t) = ⟨2t+ 1,−2t+ 2⟩, a⃗(t) = ⟨2,−2⟩

2 4 6

2

−2

−4

−6

−8

v⃗(1)

a⃗(1)

x

y

15. ∥⃗v(t)∥ =
√
4t2 + 1.

Min at t = 0; Max at t = ±1.
17. ∥⃗v(t)∥ = 5.

Speed is constant, so there is no difference between
min/max

19. ∥⃗v(t)∥ = |sec t|
√
tan2 t+ sec2 t.

min: t = 0; max: t = π/4

21. ∥⃗v(t)∥ = 13.
speed is constant, so there is no difference between
min/max

23. ∥⃗v(t)∥ =
√

4t2 + 1+ t2/(1− t2).
min: t = 0; max: there is no max; speed approaches∞ as
t → ±1

25.
(a) r⃗1(1) = ⟨1, 1⟩; r⃗2(1) = ⟨1, 1⟩
(b) v⃗1(1) = ⟨1, 2⟩; ∥⃗v1(1)∥ =

√
5; a⃗1(1) = ⟨0, 2⟩

v⃗2(1) = ⟨2, 4⟩; ∥⃗v2(1)∥ = 2
√
5; a⃗2(1) = ⟨2, 12⟩
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27.
(a) r⃗1(2) = ⟨6, 4⟩; r⃗2(2) = ⟨6, 4⟩
(b) v⃗1(2) = ⟨3, 2⟩; ∥⃗v1(2)∥ =

√
13; a⃗1(2) = ⟨0, 0⟩

v⃗2(2) = ⟨6, 4⟩; ∥⃗v2(2)∥ = 2
√
13; a⃗2(2) = ⟨0, 0⟩

29. v⃗(t) = ⟨2t+ 1, 3t+ 2⟩, r⃗(t) =⟨
t2 + t+ 5, 3t2/2+ 2t− 2

⟩
31. v⃗(t) = ⟨sin t, cos t⟩, r⃗(t) = ⟨1− cos t, sin t⟩
33. Displacement: ⟨0, 0, 6π⟩; distance traveled: 2

√
13π ≈

22.65Ō; average velocity: ⟨0, 0, 3⟩; average speed:
√
13 ≈

3.61Ō/s
35. Displacement: ⟨0, 0⟩; distance traveled: 2π ≈ 6.28Ō; av-

erage velocity: ⟨0, 0⟩; average speed: 1Ō/s
37. At t-values of sin−1(9/30)/(4π) + n/2 ≈ 0.024 + n/2

seconds, where n is an integer.
39.

(a) Holding the crossbow at an angle of 0.013 radians,
≈ 0.745◦ will hit the target 0.4s later. (Another solu-
Ɵon exists, with an angle of 89◦, landing 18.75s later,
but this is impracƟcal.)

(b) In the .4 seconds the arrow travels, a deer, travel-
ing at 20mph or 29.33Ō/s, can travel 11.7Ō. So she
needs to lead the deer by 11.7Ō.

41. The posiƟon funcƟon is r⃗(t) =
⟨
220t,−16t2 + 1000

⟩
. The

y-component is 0 when t = 7.9; r⃗(7.9) = ⟨1739.25, 0⟩,
meaning the box will travel about 1740Ō horizontally be-
fore it lands.

Exercises 12.4
1. 1
3. T⃗(t) and N⃗(t).

5. T⃗(t) =
⟨

4t√
20t2−4t+1

, 2t−1√
20t2−4t+1

⟩
;

T⃗(1) =
⟨
4/

√
17, 1/

√
17
⟩

7. T⃗(t) = cos t sin t√
cos2 t sin2 t

⟨− cos t, sin t⟩. (Be careful;
this cannot be simplified as just ⟨− cos t, sin t⟩ as√
cos2 t sin2 t ̸= cos t sin t, but rather |cos t sin t|.)

T⃗(π/4) =
⟨
−
√
2/2,

√
2/2
⟩

9. ℓ(t) = ⟨2, 0⟩+ t
⟨
4/

√
17, 1/

√
17
⟩
; in parametric form,

ℓ(t) =

{
x = 2+ 4t/

√
17

y = t/
√
17

11. ℓ(t) =
⟨√

2/4,
√
2/4
⟩
+ t
⟨
−
√
2/2,

√
2/2
⟩
; in parametric

form,

ℓ(t) =

{
x =

√
2/4−

√
2t/2

y =
√
2/4+

√
2t/2

13. T⃗(t) = ⟨− sin t, cos t⟩; N⃗(t) = ⟨− cos t,− sin t⟩

15. T⃗(t) =
⟨
− sin t√

4 cos2 t+sin2 t
, 2 cos t√

4 cos2 t+sin2 t

⟩
;

N⃗(t) =
⟨
− 2 cos t√

4 cos2 t+sin2 t
,− sin t√

4 cos2 t+sin2 t

⟩
17.

(a) Be sure to show work

(b) N⃗(π/4) =
⟨
−5/

√
34,−3/

√
34
⟩

19.
(a) Be sure to show work

(b) N⃗(0) =
⟨
− 1√

5 ,
2√
5

⟩
21. T⃗(t) = 1√

5 ⟨2, cos t,− sin t⟩; N⃗(t) = ⟨0,− sin t,− cos t⟩

23. T⃗(t) = 1√
a2+b2

⟨−a sin t, a cos t, b⟩;

N⃗(t) = ⟨− cos t,− sin t, 0⟩

25. aT = 4t√
1+4t2

and aN =
√

4− 16t2
1+4t2

At t = 0, aT = 0 and aN = 2;
At t = 1, aT = 4/

√
5 and aN = 2/

√
5.

At t = 0, all acceleraƟon comes in the form of changing
the direcƟon of velocity and not the speed; at t = 1, more
acceleraƟon comes in changing the speed than in changing
direcƟon.

27. aT = 0 and aN = 2
At t = 0, aT = 0 and aN = 2;
At t = π/2, aT = 0 and aN = 2.
The object moves at constant speed, so all acceleraƟon
comes from changing direcƟon, hence aT = 0. a⃗(t) is al-
ways parallel to N⃗(t), but twice as long, hence aN = 2.

29. aT = 0 and aN = a
At t = 0, aT = 0 and aN = a;
At t = π/2, aT = 0 and aN = a.
The object moves at constant speed, meaning that aT is al-
ways 0. The object “rises” along the z-axis at a constant
rate, so all acceleraƟon comes in the form of changing di-
recƟon circling the z-axis. The greater the radius of this
circle the greater the acceleraƟon, hence aN = a.

Exercises 12.5
1. Ɵme and/or distance
3. Answers may include lines, circles, helixes
5. κ

7. s = 3t, so r⃗(s) = ⟨2s/3, s/3,−2s/3⟩
9. s =

√
13t, so

r⃗(s) =
⟨
3 cos(s/

√
13), 3 sin(s/

√
13), 2s/

√
13
⟩

11. κ = |6x|

(1+(3x2−1)2)3/2
;

κ(0) = 0, κ(1/2) = 192
17

√
17 ≈ 2.74.

13. κ = |cos x|

(1+sin2 x)3/2
;

κ(0) = 1, κ(π/2) = 0

15. κ = |2 cos t cos(2t)+4 sin t sin(2t)|

(4 cos2(2t)+sin2 t)3/2
;

κ(0) = 1/4, κ(π/4) = 8

17. κ =
|6t2+2|

(4t2+(3t2−1)2)3/2
;

κ(0) = 2, κ(5) = 19
1394

√
1394 ≈ 0.0004

19. κ = 0;
κ(0) = 0, κ(1) = 0

21. κ = 3
13 ;

κ(0) = 3/13, κ(π/2) = 3/13

23. maximized at x = ±
√
2

4√5

25. maximized at t = 1/4
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27. radius of curvature is 5
√
5/4.

29. radius of curvature is 9.

31. x2 + (y− 1/2)2 = 1/4, or
c⃗(t) = ⟨1/2 cos t, 1/2 sin t+ 1/2⟩

33. x2 + (y+ 8)2 = 81, or c⃗(t) = ⟨9 cos t, 9 sin t− 8⟩

35. Let r⃗(t) = ⟨x(t), y(t), 0⟩ and apply the second formula of
part 3.

Chapter 13

Exercises 13.1

1. Answers will vary.

3. topographical

5. surface

7. domain: R2

range: z ≥ 2

9. domain: R2

range: R

11. domain: R2

range: 0 < z ≤ 1

13. domain: {(x, y) | x2+ y2 ≤ 9}, i.e., the domain is the circle
and interior of a circle centered at the origin with radius 3.
range: 0 ≤ z ≤ 3

15. Level curves are lines y = (3/2)x− c/2.

−2 −1 1 2

−2

2

x

y

17. Level curves are parabolas x = y2 + c.

−4 −2 2 4

−4

−2

2

4

c = 2c = 0
c = −2

x

y

19. Level curves are circles, centered at (1/c,−1/c) with ra-
dius

√
2/c2 − 1. When c = 0, the level curve is the line

y = x.

−4 −2 2 4

−4

−2

2

4

c = 1

c = −1
c = 0

x

y

21. Level curves are ellipses of the form x2
c2 + y2

c2/4 = 1, i.e.,
a = c and b = c/2.

−4 −2 2 4

−4

−2

2

4

x

y

23. domain: x + 2y − 4z ̸= 0; the set of points in R3 NOT in
the domain form a plane through the origin.
range: R

25. domain: z ≥ x2 − y2; the set of points in R3 above (and
including) the hyperbolic paraboloid z = x2 − y2.
range: [0,∞)

27. The level surfaces are spheres, centered at the origin, with
radius

√
c.

29. The level surfaces are paraboloids of the form z = x2
c + y2

c ;
the larger c, the “wider” the paraboloid.

31. The level curves for each surface are similar; for z =√
x2 + 4y2 the level curves are ellipses of the form x2

c2 +
y2

c2/4 = 1, i.e., a = c and b = c/2; whereas for z = x2+4y2

the level curves are ellipses of the form x2
c + y2

c/4 = 1, i.e.,
a =

√
c and b =

√
c/2. The first set of ellipses are spaced

evenly apart, meaning the funcƟon grows at a constant
rate; the second set of ellipses are more closely spaced to-
gether as c grows, meaning the funcƟon grows faster and
faster as c increases.
The funcƟon z =

√
x2 + 4y2 can be rewriƩen as z2 =

x2 + 4y2, an ellipƟc cone; the funcƟon z = x2 + 4y2 is a
paraboloid, each matching the descripƟon above.

Exercises 13.2

1. Answers will vary.

3. Answers will vary.
One possible answer: {(x, y)|x2 + y2 ≤ 1}

5. Answers will vary.
One possible answer: {(x, y)|x2 + y2 < 1}
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7.
(a) Answers will vary.

interior point: (1, 3)
boundary point: (3, 3)

(b) S is a closed set

(c) S is bounded

9.
(a) Answers will vary.

interior point: none
boundary point: (0,−1)

(b) S is a closed set, consisƟng only of boundary points

(c) S is bounded

11.
(a) D =

{
(x, y) | 9− x2 − y2 ≥ 0

}
.

(b) D is a closed set.

(c) D is bounded.

13.
(a) D =

{
(x, y) | y > x2

}
.

(b) D is an open set.

(c) D is unbounded.

15.
(a) Along y = 0, the limit is 1.

(b) Along x = 0, the limit is−1.

Since the above limits are not equal, the limit does not ex-
ist.

17.
(a) Along y = mx, the limit is 0.

(b) Along x = 0, the limit is−1.

Since the above limits are not equal, the limit does not ex-
ist.

19.
(a) Along y = 2, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

x− 1
x2 − 1

= lim
x→1

1
x+ 1

= 1/2.

(b) Along y = x+ 1, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

2(x− 1)
x2 − 1

= lim
x→1

2
x+ 1

= 1.

Since the limits along the lines y = 2 and y = x+ 1 differ,
the overall limit does not exist.

Exercises 13.3
1. A constant is a number that is added or subtracted in an ex-

pression; a coefficient is a number that is being mulƟplied
by a nonconstant funcƟon.

3. fx
5. fx = 2xy− 1, fy = x2 + 2

fx(1, 2) = 3, fy(1, 2) = 3
7. fx = − sin x sin y, fy = cos x cos y

fx(π/3, π/3) = −3/4, fy(π/3, π/3) = 1/4

9. fx = 2xy+ 6x, fy = x2 + 4
fxx = 2y+ 6, fyy = 0
fxy = 2x, fyx = 2x

11. fx = 1/y, fy = −x/y2

fxx = 0, fyy = 2x/y3
fxy = −1/y2, fyx = −1/y2

13. fx = 2xex
2+y2 , fy = 2yex

2+y2

fxx = 2ex
2+y2 + 4x2ex

2+y2 , fyy = 2ex
2+y2 + 4y2ex

2+y2

fxy = 4xyex
2+y2 , fyx = 4xyex

2+y2

15. fx = cos x cos y, fy = − sin x sin y
fxx = − sin x cos y, fyy = − sin x cos y
fxy = − sin y cos x, fyx = − sin y cos x

17. fx = −5y3 sin(5xy3), fy = −15xy2 sin(5xy3)
fxx = −25y6 cos(5xy3), fyy = −225x2y4 cos(5xy3) −
30xy sin(5xy3)
fxy = −75xy5 cos(5xy3) − 15y2 sin(5xy3), fyx =
−75xy5 cos(5xy3)− 15y2 sin(5xy3)

19. fx = 2y2√
4xy2+1

, fy = 4xy√
4xy2+1

fxx = − 4y4√
4xy2+1

3 , fyy = − 16x2y2√
4xy2+1

3 + 4x√
4xy2+1

fxy = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

, fyx = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

21. fx = − 2x
(x2+y2+1)2 , fy = − 2y

(x2+y2+1)2

fxx = 8x2
(x2+y2+1)3 −

2
(x2+y2+1)2 , fyy =

8y2
(x2+y2+1)3 −

2
(x2+y2+1)2

fxy = 8xy
(x2+y2+1)3 , fyx =

8xy
(x2+y2+1)3

23. fx = 6x, fy = 0
fxx = 6, fyy = 0
fxy = 0, fyx = 0

25. fx = 1
4xy , fy = − ln x

4y2

fxx = − 1
4x2y , fyy =

ln x
2y3

fxy = − 1
4xy2 , fyx = − 1

4xy2

27. f(x, y) = x sin y+ x+ C, where C is any constant.
29. f(x, y) = 3x2y− 4xy2 + 2y+ C, where C is any constant.

31. fx = 2xe2y−3z, fy = 2x2e2y−3z, fz = −3x2e2y−3z

fyz = −6x2e2y−3z, fzy = −6x2e2y−3z

33. fx = 3
7y2z , fy = − 6x

7y3z , fz = − 3x
7y2z2

fyz = 6x
7y3z2 , fzy =

6x
7y3z2
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Exercises 13.4
1. T
3. T
5. dz = (sin y+ 2x)dx+ (x cos y)dy
7. dz = 5dx− 7dy

9. dz = x√
x2+y

dx+ 1
2
√

x2+y
dy, with dx = −0.05 and dy = .1.

At (3, 7), dz = 3/4(−0.05) + 1/8(.1) = −0.025, so
f(2.95, 7.1) ≈ −0.025+ 4 = 3.975.

11. dz = (2xy−y2)dx+(x2−2xy)dy, with dx = 0.04 and dy =
0.06. At (2, 3), dz = 3(0.04) + (−8)(0.06) = −0.36, so
f(2.04, 3.06) ≈ −0.36− 6 = −6.36.

13. The total differenƟal of volume is dV = 4πdr + πdh. The
coefficient of dr is greater than the coefficient of dh, so the
volume is more sensiƟve to changes in the radius.

15. Using trigonometry, ℓ = x tan θ, so dℓ = tan θdx +
x sec2 θdθ. With θ = 85◦ and x = 30, we have dℓ =
11.43dx + 3949.38dθ. The measured length of the wall
is much more sensiƟve to errors in θ than in x. While it
can be difficult to compare sensiƟviƟes between measur-
ing feet and measuring degrees (it is somewhat like “com-
paring apples to oranges”), here the coefficients are so dif-
ferent that the result is clear: a small error in degree has a
much greater impact than a small error in distance.

17. dw = 2xyz3 dx+ x2z3 dy+ 3x2yz2 dz

19. dx = 0.05, dy = −0.1. dz = 9(.05) + (−2)(−0.1) =
0.65. So f(3.05, 0.9) ≈ 7+ 0.65 = 7.65.

21. dx = 0.5, dy = 0.1, dz = −0.2.
dw = 2(0.5) + (−3)(0.1) + 3.7(−0.2) = −0.04, so
f(2.5, 4.1, 4.8) ≈ −1− 0.04 = −1.04.

23. Everywhere except the origin.

Exercises 13.5
1. Because the parametric equaƟons describe a level curve, z

is constant for all t. Therefore dz
dt = 0.

3. dx
dt , and

∂f
∂y

5. F
7.

(a) dz
dt = 3(2t) + 4(2) = 6t+ 8.

(b) At t = 1, dz
dt = 14.

9.
(a) dz

dt = 5(−2 sin t) + 2(cos t) = −10 sin t+ 2 cos t

(b) At t = π/4, dz
dt = −4

√
2.

11.

(a) dz
dt

= 2x(cos t) + 4y(3 cos t).

(b) At t = π/4, x =
√
2/2, y = 3

√
2/2, and dz

dt = 19.

13. t = −4/3; this corresponds to a minimum
15. t = tan−1(1/5) + nπ, where n is an integer

17. We find that
dz
dt

= 38 cos t sin t.

Thus dz
dt = 0 when t = πn or πn + π/2, where n is any

integer.
19.

(a) ∂z
∂s = 2xy(1) + x2(2) = 2xy+ 2x2;
∂z
∂t = 2xy(−1) + x2(4) = −2xy+ 4x2

(b) With s = 1, t = 0, x = 1 and y = 2. Thus ∂z
∂s = 6

and ∂z
∂t = 0

21.
(a) ∂z

∂s = 2x(cos t) + 2y(sin t) = 2x cos t+ 2y sin t;
∂z
∂t = 2x(−s sin t) + 2y(s cos t) = −2xs sin t +
2ys cos t

(b) With s = 2, t = π/4, x =
√
2 and y =

√
2. Thus

∂z
∂s = 4 and ∂z

∂t = 0

23. fx = 2x tan y, fy = x2 sec2 y;
dy
dx

= − 2 tan y
x sec2 y

25. fx =
(x+ y2)(2x)− (x2 + y)(1)

(x+ y2)2
,

fy =
(x+ y2)(1)− (x2 + y)(2y)

(x+ y2)2
;

dy
dx

= −2x(x+ y2)− (x2 + y)
x+ y2 − 2y(x2 + y)

27. dz
dt = 2(4) + 1(−5) = 3.

29. ∂z
∂s = −4(5) + 9(−2) = −38,
∂z
∂t = −4(7) + 9(6) = 26.

Exercises 13.6
1. A parƟal derivaƟve is essenƟally a special case of a direc-

Ɵonal derivaƟve; it is the direcƟonal derivaƟve in the direc-
Ɵon of x or y, i.e., ⟨1, 0⟩ or ⟨0, 1⟩.

3. u⃗ = ⟨0, 1⟩
5. maximal, or greatest
7. ∇f =

⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
9. ∇f =

⟨
−2x

(x2+y2+1)2 ,
−2y

(x2+y2+1)2

⟩
11. ∇f = ⟨2x− y− 7, 4y− x⟩
13. ∇f =

⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
; ∇f(2, 1) =

⟨−2, 2⟩. Be sure to change all direcƟons to unit vectors.
(a) 2/5 (⃗u = ⟨3/5, 4/5⟩)
(b) −2/

√
5 (⃗u =

⟨
−1/

√
5,−2/

√
5
⟩
)

15. ∇f =
⟨

−2x
(x2+y2+1)2 ,

−2y
(x2+y2+1)2

⟩
; ∇f(1, 1) =

⟨−2/9,−2/9⟩. Be sure to change all direcƟons to
unit vectors.

(a) 0 (⃗u =
⟨
1/

√
2,−1/

√
2
⟩
)

(b) 2
√
2/9 (⃗u =

⟨
−1/

√
2,−1/

√
2
⟩
)

17. ∇f = ⟨2x− y− 7, 4y− x⟩;∇f(4, 1) = ⟨0, 0⟩.
(a) 0

(b) 0
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19. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
(a) ∇f(2, 1) = ⟨−2, 2⟩
(b) ∥∇f(2, 1)∥ = ∥⟨−2, 2⟩∥ =

√
8

(c) ⟨2,−2⟩
(d)

⟨
1/

√
2, 1/

√
2
⟩

21. ∇f =
⟨

−2x
(x2+y2+1)2 ,

−2y
(x2+y2+1)2

⟩
(a) ∇f(1, 1) = ⟨−2/9,−2/9⟩.
(b) ∥∇f(1, 1)∥ = ∥⟨−2/9,−2/9⟩∥ = 2

√
2/9

(c) ⟨2/9, 2/9⟩
(d)

⟨
1/

√
2,−1/

√
2
⟩

23. ∇f = ⟨2x− y− 7, 4y− x⟩
(a) ∇f(4, 1) = ⟨0, 0⟩
(b) 0

(c) ⟨0, 0⟩
(d) All direcƟons give a direcƟonal derivaƟve of 0.

25.
(a) ∇F(x, y, z) =

⟨
6xz3 + 4y, 4x, 9x2z2 − 6z

⟩
(b) 113/

√
3

27.
(a) ∇F(x, y, z) =

⟨
2xy2, 2y(x2 − z2),−2y2z

⟩
(b) 0

Exercises 13.7

1. Answers will vary. The displacement of the vector is one
unit in the x-direcƟon and 3 units in the z-direcƟon, with
no change in y. Thus along a line parallel to v⃗, the change
in z is 3 Ɵmes the change in x – i.e., a “slope” of 3. Specif-
ically, the line in the x-z plane parallel to z has a slope of
3.

3. T

5.

(a) ℓx(t) =


x = 2+ t
y = 3
z = −48− 12t

(b) ℓy(t) =


x = 2
y = 3+ t
z = −48− 40t

(c) ℓ⃗u (t) =


x = 2+ t/

√
10

y = 3+ 3t/
√
10

z = −48− 66
√

2/5t

7.

(a) ℓx(t) =


x = 4+ t
y = 2
z = 2+ 3t

(b) ℓy(t) =


x = 4
y = 2+ t
z = 2− 5t

(c) ℓ⃗u (t) =


x = 4+ t/

√
2

y = 2+ t/
√
2

z = 2−
√
2t

9. ℓ⃗n(t) =


x = 2− 12t
y = 3− 40t
z = −48− t

11. ℓ⃗n(t) =


x = 4+ 3t
y = 2− 5t
z = 2− t

13. (1.425, 1.085,−48.078), (2.575, 4.915,−47.952)

15. (5.014, 0.31, 1.662) and (2.986, 3.690, 2.338)

17. −12(x− 2)− 40(y− 3)− (z+ 48) = 0

19. 3(x− 4)− 5(y− 2)− (z− 2) = 0 (Note that this tangent
plane is the same as the original funcƟon, a plane.)

21. ∇F = ⟨x/4, y/2, z/8⟩; at P,∇F =
⟨
1/4,

√
2/2,

√
6/8
⟩

(a) ℓ⃗n(t) =


x = 1+ t/4
y =

√
2+

√
2t/2

z =
√
6+

√
6t/8

(b) 1
4 (x− 1) +

√
2
2 (y−

√
2) +

√
6
8 (z−

√
6) = 0.

23. ∇F =
⟨
y2 − z2, 2xy,−2xz

⟩
; at P,∇F = ⟨0, 4, 4⟩

(a) ℓ⃗n(t) =


x = 2
y = 1+ 4t
z = −1+ 4t

(b) 4(y− 1) + 4(z+ 1) = 0.

Exercises 13.8

1. F; it is the “other way around.”

3. T

5. One criƟcal point at (−4, 2); fxx = 1 and D = 4, so this
point corresponds to a relaƟve minimum.

7. One criƟcal point at (6,−3); D = −4, so this point corre-
sponds to a saddle point.

9. Two criƟcal points: at (0,−1); fxx = 2 and D = −12, so
this point corresponds to a saddle point;
at (0, 1), fxx = 2 and D = 12, so this corresponds to a
relaƟve minimum.

11. CriƟcal points when x or y are 0. D = −12x2y2, so the
test is inconclusive. (Some elementary thought shows that
these are absolute minima.)
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13. One criƟcal point: fx = 0 when x = 3; fy = 0 when y = 0,
so one criƟcal point at (3, 0), which is a relaƟve maximum,
where fxx = y2−16

(16−(x−3)2−y2)3/2
and D = 16

(16−(x−3)2−y2)2 .
Both fx and fy are undefined along the circle (x−3)2+y2 =
16; at any point along this curve, f(x, y) = 0, the absolute
minimum of the funcƟon.

15. The triangle is bound by the lines y = −1, y = 2x+ 1 and
y = −2x+ 1.
Along y = −1, there is a criƟcal point at (0,−1).
Along y = 2x+1, there is a criƟcal point at (−3/5,−1/5).
Along y = −2x+1, there is a criƟcal point at (3/5,−1/5).
The funcƟon f has one criƟcal point, irrespecƟve of the con-
straint, at (0,−1/2).
Checking the value of f at these four points, along with
the three verƟces of the triangle, we find the absolute
maximum is at (0, 1, 3) and the absolute minimum is at
(0,−1/2, 3/4).

17. The region has no “corners” or “verƟces,” just a smooth
edge.
To find criƟcal points along the circle x2 + y2 = 4, we
solve for y2: y2 = 4 − x2. We can go further and state
y = ±

√
4− x2.

We can rewrite f as f(x) = x2+2x+(4− x2)+
√
4− x2 =

2x+4+
√
4− x2. (Wewill return and use−

√
4− x2 later.)

Solving f ′(x) = 0, we get x =
√
2 ⇒ y =

√
2. f ′(x) is also

undefined at x = ±2, where y = 0.
Using y = −

√
4− x2, we rewrite f(x, y) as f(x) = 2x+4−√

4− x2. Solving f ′(x) = 0, we get x = −
√
2, y = −

√
2.

The funcƟon f itself has a criƟcal point at (−1,−1).
Checking the value of f at (−1,−1), (

√
2,
√
2),

(−
√
2,−

√
2), (2, 0) and (−2, 0), we find the abso-

lute maximum is at (
√
2,
√
2, 4 + 4

√
2) and the absolute

minimum is at (−1,−1,−2).

Exercises 13.9

1. ±2
√
5 at (±4/

√
5,±2/

√
5)

3. (±20/
√
13,±30/

√
13)

5. 8abc/3
√
3

7. Length 130/3, height and width 65/3.

9. (0,±1, 0)

11. (2, 1, 2)

13. Max: 5 at±(2, 2), min: −9/2 at±(3/
√
2,−3/

√
2).

15. (2/
√
3)3 = 8/3

√
3

Chapter 14

Exercises 14.1

1. C(y), meaning that instead of being just a constant, like the
number 5, it is a funcƟon of y, which acts like a constant
when taking derivaƟves with respect to x.

3. curve to curve, then from point to point

5.
(a) 18x2 + 42x− 117

(b) −108

7.
(a) x4/2− x2 + 2x− 3/2

(b) 23/15

9.
(a) sin2 y

(b) π/2

11.
ˆ 4

1

ˆ 1

−2
dy dx and

ˆ 1

−2

ˆ 4

1
dx dy.

area of R = 9 units2

13.
ˆ 4

2

ˆ 7−x

x−1
dy dx. The order dx dy needs two iterated inte-

grals as x is bounded above by two different funcƟons. This
gives: ˆ 3

1

ˆ y+1

2
dx dy+

ˆ 5

3

ˆ 7−y

2
dx dy.

area of R = 4 units2

15.
ˆ 1

0

ˆ √
x

x4
dy dx and

ˆ 1

0

ˆ 4√y

y2
dx dy

area of R = 7/15 units2

17.

R
y = 4 − x2

−2 2

2

4

x

y

area of R =

ˆ 4

0

ˆ √
4−y

−
√
4−y

dx dy

19.

R

x2/16 + y2/4 = 1

2 4

−2

2

x

y

area of R =

ˆ 4

0

ˆ √
4−x2/4

−
√

4−x2/4
dy dx
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21.

R

y = x2

y =
x+

2

−1 1 2

1

2

3

4

x

y

area of R =

ˆ 2

−1

ˆ x+2

x2
dy dx

Exercises 14.2

1. volume

3. The double integral gives the signed volume under the sur-
face. Since the surface is always posiƟve, it is always above
the x-y plane and hence produces only “posiƟve” volume.

5. 6;
ˆ 1

−1

ˆ 2

1

(
x
y
+ 3
)

dy dx

7. 112/3;
ˆ 2

0

ˆ 4−2y

0

(
3x2 − y+ 2

)
dx dy

9. 16/5;
ˆ 1

−1

ˆ 1−x2

0
(x+ y+ 2) dy dx

11.

(a)

R

y =
√
x

y = x2

1

1

x

y

(b)
ˆ 1

0

ˆ √
x

x2
x2y dy dx =

ˆ 1

0

ˆ √y

y2
x2y dx dy.

(c) 3
56

13.

(a)

R

−1 1

1

−1

x

y

(b)
ˆ 1

−1

ˆ 1

−1
x2 − y2 dy dx =

ˆ 1

−1

ˆ 1

−1
x2 − y2 dx dy.

(c) 0

15.

(a)

R

3x+
2y =

6

1 2

1

2

3

x

y

(b)

(c)
ˆ 2

0

ˆ 3−3/2x

0

(
6−3x−2y

)
dy dx =

ˆ 3

0

ˆ 2−2/3y

0

(
6−

3x− 2y
)
dx dy.

(d) 6

17.

(a)
R

−3 3

−3

3

x

y

(b)
ˆ 3

−3

ˆ √
9−x2

0

(
x3y− x

)
dy dx =

ˆ 3

0

ˆ √
9−y2

−
√

9−y2

(
x3y−

x
)
dx dy.

(c) 0

19. IntegraƟng ex
2
with respect to x is not possible in terms of

elementary funcƟons.
ˆ 2

0

ˆ 2x

0
ex

2
dy dx = e4 − 1.

21. IntegraƟng
ˆ 1

y

2y
x2 + y2

dx gives tan−1(1/y) − π/4; inte-

graƟng tan−1(1/y) is hard.ˆ 1

0

ˆ x

0

2y
x2 + y2

dy dx = ln 2.

23. average value of f = 6/2 = 3

25. average value of f = 112/3
4 = 28/3

Exercises 14.3

1. f
(
r cos θ, r sin θ

)
, r dr dθ

3.
ˆ 2π

0

ˆ 1

0

(
3r cos θ − r sin θ + 4

)
r dr dθ = 4π

5.
ˆ π

0

ˆ 3 cos θ

cos θ

(
8− r sin θ

)
r dr dθ = 16π

7.
ˆ 2π

0

ˆ 2

1

(
ln(r2)

)
r dr dθ = 2π

(
ln 16− 3/2

)
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9.
ˆ π/2

−π/2

ˆ 6

0

(
r2 cos2 θ − r2 sin2 θ

)
r dr dθ

=

ˆ π/2

−π/2

ˆ 6

0

(
r2 cos(2θ)

)
r dr dθ = 0

11.
ˆ π/2

−π/2

ˆ 5

0

(
r2
)
dr dθ = 125π/3

13.
ˆ π/4

0

ˆ √
8

0

(
r cos θ + r sin θ

)
r dr dθ = 16

√
2/3

15.
(a) This is impossible to integrate with rectangular coor-

dinates as e−(x2+y2) does not have an anƟderivaƟve
in terms of elementary funcƟons.

(b)
ˆ 2π

0

ˆ a

0
rer

2
dr dθ = π(1− e−a2).

(c) lim
a→∞

π(1 − e−a2) = π. This implies that there is

a finite volume under the surface e−(x2+y2) over the
enƟre x-y plane.

Exercises 14.4

1. Because they are scalar mulƟples of each other.

3. “liƩle masses”

5. Mx measures the moment about the x-axis, meaning we
need to measure distance from the x-axis. Such measure-
ments are measures in the y-direcƟon.

7. x = 5.25

9. (x, y) = (0, 3)

11. M = 150g;

13. M = 2lb

15. M = 16π ≈ 50.27kg

17. M = 54π ≈ 169.65lb

19. M = 150g;My = 600;Mx = −75; (x, y) = (4,−0.5)

21. M = 2lb;My = 0;Mx = 2/3; (x, y) = (0, 1/3)

23. M = 16π ≈ 50.27kg; My = 4π; Mx = 4π; (x, y) =
(1/4, 1/4)

25. M = 54π ≈ 169.65lb; My = 0; Mx = 504; (x, y) =
(0, 2.97)

27. Ix = 64/3; Iy = 64/3; IO = 128/3

29. Ix = 16/3; Iy = 64/3; IO = 80/3

Exercises 14.5

1. arc length

3. surface areas

5. IntuiƟvely, adding h to f only shiŌs f up (i.e., parallel to the
z-axis) and does not change its shape. Therefore it will not
change the surface area over R.
AnalyƟcally, fx = gx and fy = gy; therefore, the surface
area of each is computed with idenƟcal double integrals.

7. S =
ˆ 2π

0

ˆ 2π

0

√
1+ cos2 x cos2 y+ sin2 x sin2 y dx dy

9. S =
ˆ 1

−1

ˆ 1

−1

√
1+ 4x2 + 4y2 dx dy

11. S =
ˆ 3

0

ˆ 1

−1

√
1+ 9+ 49 dx dy = 6

√
59 ≈ 46.09

13. This is easier in polar:

S =
ˆ 2π

0

ˆ 4

0
r
√

1+ 4r2 cos2 t+ 4r2 sin2 t dr dθ

=

ˆ 2π

0

ˆ 4

0
r
√
1+ 4r2 dr dθ

=
π

6
(
65

√
65− 1

)
≈ 273.87

15.

S =
ˆ 2

0

ˆ 2x

0

√
1+ 1+ 4x2 dy dx

=

ˆ 2

0

(
2x
√
2+ 4x2

)
dx

=
26
3
√
2 ≈ 12.26

17. This is easier in polar:

S =
ˆ 2π

0

ˆ 5

0
r

√
1+ 4r2 cos2 t+ 4r2 sin2 t

r2 sin2 t+ r2 cos2 t
dr dθ

=

ˆ 2π

0

ˆ 5

0
r
√
5 dr dθ

= 25π
√
5 ≈ 175.62

19. IntegraƟng in polar is easiest considering R:

S =
ˆ 2π

0

ˆ 1

0
r
√
1+ c2 + d2 dr dθ

=

ˆ 2π

0

1
2

(√
1+ c2 + d2

)
dθ

= π
√
1+ c2 + d2.

The value of h does not maƩer as it only shiŌs the plane
verƟcally (i.e., parallel to the z-axis). Different values of h
do not create different ellipses in the plane.

Exercises 14.6

1. surface to surface, curve to curve and point to point

3. Answers can vary. From this secƟon we used triple inte-
graƟon to find the volume of a solid region, the mass of a
solid, and the center of mass of a solid.

5. V =
´ 1
−1

´ 1
−1

(
8− x2 − y2 − (2x+ y)

)
dx dy = 88/3

7. V =
´ π

0

´ x
0

(
cos x sin y+ 2− sin x cos y

)
dy dx = π2 −π ≈

6.728
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9. dz dy dx:
ˆ 3

0

ˆ 1−x/3

0

ˆ 2−2x/3−2y

0
dz dy dx

dz dx dy:
ˆ 1

0

ˆ 3−3y

0

ˆ 2−2x/3−2y

0
dz dx dy

dy dz dx:
ˆ 3

0

ˆ 2−2x/3

0

ˆ 1−x/3−z/2

0
dy dz dx

dy dx dz:
ˆ 2

0

ˆ 3−3z/2

0

ˆ 1−x/3−z/2

0
dy dx dz

dx dz dy:
ˆ 1

0

ˆ 2−2y

0

ˆ 3−3y−3z/2

0
dx dz dy

dx dy dz:
ˆ 2

0

ˆ 1−z/2

0

ˆ 3−3y−3z/2

0
dx dy dz

V =

ˆ 3

0

ˆ 1−x/3

0

ˆ 2−2x/3−2y

0
dz dy dx = 1.

11. dz dy dx:
ˆ 2

0

ˆ 0

−2

ˆ −y

y2/2
dz dy dx

dz dx dy:
ˆ 0

−2

ˆ 2

0

ˆ −y

y2/2
dz dx dy

dy dz dx:
ˆ 2

0

ˆ 2

0

ˆ −z

−
√
2z

dy dz dx

dy dx dz:
ˆ 2

0

ˆ 2

0

ˆ −z

−
√
2z

dy dx dz

dx dz dy:
ˆ 0

−2

ˆ −y

y2/2

ˆ 2

0
dx dz dy

dx dy dz:
ˆ 2

0

ˆ −z

−
√
2z

ˆ 2

0
dx dy dz

V =

ˆ 2

0

ˆ 2

0

ˆ −z

−
√
2z

dy dz dx = 4/3.

13. dz dy dx:
ˆ 2

0

ˆ 1

1−x/2

ˆ 2x+4y−4

0
dz dy dx

dz dx dy:
ˆ 1

0

ˆ 2

2−2y

ˆ 2x+4y−4

0
dz dx dy

dy dz dx:
ˆ 2

0

ˆ 2x

0

ˆ 1

z/4−x/2+1
dy dz dx

dy dx dz:
ˆ 4

0

ˆ 2

z/2

ˆ 1

z/4−x/2+1
dy dx dz

dx dz dy:
ˆ 1

0

ˆ 4y

0

ˆ 2

z/2−2y+2
dx dz dy

dx dy dz:
ˆ 4

0

ˆ 1

z/4

ˆ 2

z/2−2y+2
dx dy dz

V =

ˆ 4

0

ˆ 1

z/4

ˆ 2

z/2−2y+2
dx dy dz = 4/3.

15. dz dy dx:
ˆ 1

0

ˆ 1−x2

0

ˆ √
1−y

0
dz dy dx

dz dx dy:
ˆ 1

0

ˆ √
1−y

0

ˆ √
1−y

0
dz dx dy

dy dz dx:
ˆ 1

0

ˆ x

0

ˆ 1−x2

0
dy dz dx+

ˆ 1

0

ˆ 1

x

ˆ 1−z2

0
dy dz dx

dy dx dz:
ˆ 1

0

ˆ z

0

ˆ 1−z2

0
dy dx dz+

ˆ 1

0

ˆ 1

z

ˆ 1−x2

0
dy dx dz

dx dz dy:
ˆ 1

0

ˆ √
1−y

0

ˆ √
1−y

0
dx dz dy

dx dy dz:
ˆ 1

0

ˆ 1−z2

0

ˆ √
1−y

0
dx dy dz

Answers will vary. Neither order is parƟcularly “hard.” The
order dz dy dx requires integraƟng a square root, so pow-
ers can be messy; the order dy dz dx requires two triple
integrals, but each uses only polynomials.

17. 8

19. π

21. M = 10,Myz = 15/2,Mxz = 5/2,Mxy = 5;
(x, y, z) = (3/4, 1/4, 1/2)

23. M = 16/5,Myz = 16/3,Mxz = 104/45,Mxy = 32/9;
(x, y, z) = (5/3, 13/18, 10/9) ≈ (1.67, 0.72, 1.11)

Exercises 14.7

1. 8π

3. 4π(8− 33/2)/3

5.

7. 1− sin 2/2

9. 2πab

11.

Chapter 15
Exercises 15.1

1. 1/2

3. 23

5. 24π

7. −2π

9. 2π

11. 0

13.

15.

17.

Exercises 15.2

1. 0

3. No.

5. No.

7.

9. (b) No. Hint: Think of how F is defined.
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Exercises 15.3
1. 16/15
3. −5π
5. Yes. F(x, y) = xy2 + x3

7. Yes. F(x, y) = 4x2y+ 2y2 + 3x
9.

11.

Exercises 15.4
1. 216π
3. 12π/5
5.
7. 15/4
9.

11.

Exercises 15.5
1. 2

√
2π2

3. 2/5
5. 2π(π − 1)
7. 67/15
9. 6

11. Yes

13. No

15.

17.

19. Hint: Think of how a vector field f(x, y) = P(x, y)i+Q(x, y)j
in R2 can be extended in a natural way to be a vector field
in R3.

Exercises 15.6
1. 0

3. 12
√
x2 + y2 + z2

5. 6(x+ y+ z)

7. 12ρ

9. −2zr−3e⃗r + r−2e⃗z
11. div f⃗ = 2ρ−1 − sin θ cscϕ + cotϕ;

curl f⃗ = cotϕ cos θ⃗eρ + 2⃗eθ − 2 cos θ⃗eϕ
13.

15.

17.

19.

21.

23.

25. Hint: Start by showing that e⃗r = cos θi + sin θj, e⃗θ =
− sin θi+ cos θj, e⃗z = k.

27.
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Index

∆, 981
∂(x, y, z)
∂(u, v,w)

, 924´
C, 930, 933
∇, 820
∇, 961, 970, 979
∇2, 981‚

Σ
, 956, 959¸

C, 941
e⃗r, e⃗θ, e⃗z, e⃗ρ, e⃗ϕ, 985
d⃗r, 934

!, 456
Absolute Convergence Theorem, 504
absolute maximum, 143
absolute minimum, 143
Absolute Value Theorem, 459
acceleraƟon, 94, 731
AlternaƟng Harmonic Series, 502, 528
AlternaƟng Series Test

for series, 500
aN, 749, 760
analyƟc funcƟon, 550
angle of elevaƟon, 736
annulus, 950
anƟderivaƟve, 219
arc length, 569, 598, 624, 729, 753
arc length parameter, 753, 755
asymptote

horizontal, 51
verƟcal, 48

aT, 749, 760
average rate of change, 715
average value of a funcƟon, 870
average value of funcƟon, 271

Beta funcƟon, 927
Binomial Series, 550
BisecƟon Method, 66
boundary point, 773
bounded sequence, 462

convergence, 463
bounded set, 773

capping surface, 976
center of mass, 885, 886, 888, 889, 916
Chain Rule, 122

mulƟvariable, 804, 808
notaƟon, 128

change of variable, 921, 923
circle of curvature, 759
circulaƟon, 975

closed, 773
closed curve, 941
closed disk, 773
closed surface, 960
concave down, 169
concave up, 169
concavity, 169, 594

inflecƟon point, 170
test for, 170

conic secƟons, 559
degenerate, 559
ellipse, 561
hyperbola, 563
parabola, 560

conical helix, 967
conservaƟve field, 945
Constant MulƟple Rule

of derivaƟves, 102
of integraƟon, 223
of series, 477

constrained criƟcal point, 844
constrained opƟmizaƟon, 839
conƟnuity

leŌ, 61
right, 61

conƟnuous funcƟon, 59, 780
properƟes, 64, 781
vector–valued, 719, 720

contour lines, 767
convergence

absolute, 503, 504
AlternaƟng Series Test, 500
condiƟonal, 503
Direct Comparison Test, 490
for integraƟon, 438

Integral Test, 484
interval of, 522
Limit Comparison Test, 493
for integraƟon, 439

of geometric series, 473
of improper int., 432, 437–439
of monotonic sequences, 466
of p-series, 487
of power series, 521
of sequence, 458, 463
of series, 470
radius of, 522
RaƟo Comparison Test, 510
Root Comparison Test, 513

coordinates
curvilinear, 705

A.43



cylindrical, 705, 986
ellipsoidal, 964
polar, 705
spherical, 705, 986

criƟcal number, 146
criƟcal point, 146, 833, 834, 836
cross product

and derivaƟves, 724
applicaƟons, 681
area of parallelogram, 681
torque, 684
volume of parallelepiped, 683

definiƟon, 676
properƟes, 679, 680

curl, 970, 980, 986
curvature, 756

and moƟon, 760
equaƟons for, 757
of circle, 758, 759
radius of, 759

curve
parametrically defined, 577
rectangular equaƟon, 577
smooth, 585

curve sketching, 178
cusp, 585
cycloid, 713
cylinder, 637

decreasing funcƟon, 158
finding intervals, 159
strictly, 158

definite integral, 231
and subsƟtuƟon, 284

derivaƟve
acceleraƟon, 95
as a funcƟon, 84
at a point, 80
basic rules, 100
Chain Rule, 122, 128, 804, 808
Constant MulƟple Rule, 102
Constant Rule, 100
differenƟal, 204
direcƟonal, 813, 816, 817, 820, 821
First Deriv. Test, 162
Generalized Power Rule, 123
higher order, 105
interpretaƟon, 106

hyperbolic funct., 363
implicit, 132, 811
interpretaƟon, 92
inverse hyper., 367
inverse trig., 347
Mean Value Theorem, 153
mixed parƟal, 789
moƟon, 95
mulƟvariable differenƟability, 797, 802
notaƟon, 84, 105
parametric equaƟons, 590
parƟal, 785, 792

Power Rule, 100
power series, 525
Product Rule, 109
QuoƟent Rule, 113
Second Deriv. Test, 174
Sum/Difference Rule, 102
tangent line, 80
trigonometric funcƟons, 115
vector–valued funcƟons, 721, 724
velocity, 95

differenƟable, 80, 797, 802
differenƟal, 204, 934

notaƟon, 204
differenƟal form, 934
Direct Comparison Test

for integraƟon, 438
for series, 490

directed curve, 939
direcƟonal derivaƟve, 813, 816, 817, 820, 821
directrix, 560, 637
disconƟnuous, 59
Disk Method, 300
displacement, 266, 714, 729
distance

between lines, 694
between point and line, 694
between point and plane, 702
between points in space, 634
traveled, 739

divergence, 961, 980, 986
AlternaƟng Series Test, 500
Direct Comparison Test, 490
for integraƟon, 438

Integral Test, 484
Limit Comparison Test, 493
for integraƟon, 439

of geometric series, 473
of improper int., 432, 437–439
of p-series, 487
of sequence, 458
of series, 470
RaƟo Comparison Test, 510
Root Comparison Test, 513

Divergence Theorem, 961
dot product

and derivaƟves, 724
definiƟon, 663
properƟes, 664

double integral, 862, 863
in polar, 874
properƟes, 867

elementary funcƟon, 442
ellipse

definiƟon, 561
standard equaƟon, 562

ellipsoid, 927, 964
exact differenƟal form, 934, 952, 976
extrema

absolute, 143, 833



and First Deriv. Test, 162
and Second Deriv. Test, 174
finding, 147
relaƟve, 145, 833, 834

Extreme Value Theorem, 144, 840
extreme values, 143

factorial, 456
First DerivaƟve Test, 162
floor funcƟon, 60
fluid pressure/force, 328, 330
flux, 961
focus, 560, 561, 563
Fubini’s Theorem, 863
funcƟon

of three variables, 769
of two variables, 765
vector–valued, 711

Fundamental Theorem of Calculus, 260, 263
and Chain Rule, 265

Gabriel’s Horn, 574
Generalized Power Rule, 123
geometric sequence, 462
geometric series, 472, 473
gradient, 815–817, 820, 821, 986

and level curves, 817
and level surfaces, 821

Green’s idenƟƟes, 991
Green’s Theorem, 947

harmonic, 991
Head To Tail Rule, 653
helicoid, 708
helix, 967
Hooke’s Law, 320
hyperbola

definiƟon, 563
standard equaƟon, 564

hyperbolic funcƟon
definiƟon, 360
derivaƟves, 363
idenƟƟes, 363
integrals, 363
inverse, 364
derivaƟve, 367
integraƟon, 367
logarithmic def., 366

implicit differenƟaƟon, 132, 811
improper integraƟon, 432, 435
increasing funcƟon, 158

finding intervals, 159
strictly, 158

indefinite integral, 220
indeterminate form, 8, 50, 374, 376
inflecƟon point, 170
iniƟal point, 649
iniƟal value problem, 225
integral

surface, 954, 956

Integral Test, 484
integraƟon

arc length, 569
area, 231, 854, 855
area between curves, 291
average value, 271
by parts, 380
by subsƟtuƟon, 276
definite, 231
and subsƟtuƟon, 284
Riemann Sums, 254

displacement, 266
distance traveled, 739
double, 862
fluid force, 328, 330
Fun. Thm. of Calc., 260, 263
general applicaƟon technique, 290
hyperbolic funct., 363
improper, 432, 435, 438, 439
indefinite, 220
inverse hyper., 367
iterated, 854
Mean Value Theorem, 269
mulƟple, 854
notaƟon, 220, 231, 264, 854
numerical, 442
LeŌ Hand Rule, 450, 451
LeŌ/Right Hand Rule, 442
Midpoint Rule, 450, 451
Right Hand Rule, 450, 451
Simpson’s Rule, 448, 450, 451
Trapezoidal Rule, 445, 450, 451

of mulƟvariable funcƟons, 851
of power series, 525
of trig. funcƟons, 282
of trig. powers, 396
of trig. powers, 391
of vector–valued funcƟons, 727
Power Rule, 224
Sum/Difference Rule, 223
surface area, 572, 600, 626
trig. subst., 405
triple, 902, 913, 915
volume
cross-secƟonal area, 298
Disk Method, 300
Shell Method, 310
Washer Method, 303

work, 317
interior point, 773
Intermediate Value Theorem, 65
interval of convergence, 522
irreducible quadraƟc, 413
irrotaƟonal, 975
iterated integraƟon, 854, 862, 863, 902, 913, 915

changing order, 857
properƟes, 867, 908

Jacobian, 923

Lagrange mulƟplier, 844



lamina, 881
Laplacian, 981, 986
LeŌ Hand Rule, 240, 245, 442
LeŌ/Right Hand Rule, 450

error bounds, 451
level curves, 767, 817
level surface, 770, 821
limit

Absolute Value Theorem, 459
at infinity, 51
definiƟon, 16
difference quoƟent, 12
does not exist, 11, 41
indeterminate form, 8, 50, 374, 376
leŌ handed, 39
of infinity, 47
of mulƟvariable funcƟon, 775, 776, 783
of sequence, 458
of vector–valued funcƟons, 718, 719
one sided, 39
properƟes, 25, 776
pseudo-definiƟon, 8
right handed, 39
Squeeze Theorem, 31

Limit Comparison Test
for integraƟon, 439
for series, 493

line integral, 930, 933
linearizaƟon, 203
lines, 687

distances between, 694
equaƟons for, 689
intersecƟng, 691
parallel, 691
skew, 691

logarithmic differenƟaƟon, 357

Maclaurin Polynomial, see Taylor Polynomial
definiƟon, 538

Maclaurin Series, see Taylor Series
definiƟon, 547

magnitude of vector, 649
mass, 881, 882, 916

center of, 885
maximum

absolute, 143, 833
and First Deriv. Test, 162
and Second Deriv. Test, 174
relaƟve/local, 145, 833, 837

Mean Value Theorem
of differenƟaƟon, 153
of integraƟon, 269

Midpoint Rule, 240, 245, 450
error bounds, 451

minimum
absolute, 143, 833
and First Deriv. Test, 162
and First Deriv. Test, 174
relaƟve/local, 145, 833, 837

Möbius strip, 969

moment, 887, 889, 916
monotonic sequence, 464
mulƟple integraƟon, see iterated integraƟon
mulƟply connected, 951
mulƟvariable funcƟon, 765, 769

conƟnuity, 780, 781, 783, 798, 802
differenƟability, 797, 798, 802
domain, 765, 769
level curves, 767
level surface, 770
limit, 775, 776, 783
range, 765, 769

n⃗-posiƟve direcƟon, 969
Newton’s Method, 212
norm, 649
normal derivaƟve, 991
normal line, 591, 827
normal vector, 697
normal vector field, 968
numerical integraƟon, 442

LeŌ Hand Rule, 450
error bounds, 451

LeŌ/Right Hand Rule, 442
Midpoint Rule, 450
error bounds, 451

Right Hand Rule, 450
error bounds, 451

Simpson’s Rule, 448, 450
error bounds, 451

Trapezoidal Rule, 445, 450
error bounds, 451

open, 773
open ball, 783
open disk, 773
opƟmizaƟon, 195

constrained, 839
orientable, 968
orthogonal, 667, 827

decomposiƟon, 670
orthogonal decomposiƟon of vectors, 670
orthogonal projecƟon, 669
osculaƟng circle, 759
outward normal, 958

p-series, 487
parabola

definiƟon, 560
general equaƟon, 561

parallel vectors, 657
Parallelogram Law, 653
parametric equaƟons

arc length, 598
concavity, 594
definiƟon, 577
finding d2y

dx2 , 594
finding dy

dx , 590
normal line, 591
surface area, 600



tangent line, 590
parƟal derivaƟve, 785, 792

high order, 793
meaning, 787
mixed, 789
second derivaƟve, 789
total differenƟal, 796, 801

path independence, 942, 952, 976
perpendicular, see orthogonal
piecewise smooth curve, 936
planes

coordinate plane, 636
distance between point and plane, 702
equaƟons of, 698
introducƟon, 636
normal vector, 697
tangent, 829

point of inflecƟon, 170
polar

coordinates, 604
funcƟon
arc length, 624
gallery of graphs, 611
surface area, 626

funcƟons, 607
area, 620
area between curves, 622
finding dy

dx , 617
graphing, 607

polar coordinates, 604
ploƫng points, 604

posiƟon vector, 933
potenƟal, 944
Power Rule

differenƟaƟon, 100
integraƟon, 224

power series, 520
algebra of, 553
convergence, 521
derivaƟves and integrals, 525

Product Rule
differenƟaƟon, 109

projecƟle moƟon, 736, 751

quadric surface
definiƟon, 640
ellipsoid, 643
ellipƟc cone, 642
ellipƟc paraboloid, 642
gallery, 642–644
hyperbolic paraboloid, 644
hyperboloid of one sheet, 643
hyperboloid of two sheets, 644
sphere, 643
trace, 640

QuoƟent Rule, 113

R, 649
radius of convergence, 522
radius of curvature, 759

RaƟo Comparison Test
for series, 510

rearrangements of series, 504, 505
related rates, 187
Riemann integral, 929
Riemann Sum, 240, 244, 248

and definite integral, 254
Right Hand Rule, 240, 245, 442
right hand rule

of Cartesian coordinates, 634
Rolle’s Theorem, 153
Root Comparison Test

for series, 513

saddle point, 836, 837
Second DerivaƟve Test, 174, 837
sensiƟvity analysis, 800
sequence

Absolute Value Theorem, 459
posiƟve, 490

sequences
boundedness, 462
convergent, 458, 463, 466
definiƟon, 455
divergent, 458
limit, 458
limit properƟes, 461
monotonic, 464

series
absolute convergence, 503
Absolute Convergence Theorem, 504
alternaƟng, 499
ApproximaƟon Theorem, 505

AlternaƟng Series Test, 500
Binomial, 550
condiƟonal convergence, 503
convergent, 470
definiƟon, 470
Direct Comparison Test, 490
divergent, 470
geometric, 472, 473
Integral Test, 484
interval of convergence, 522
Limit Comparison Test, 493
Maclaurin, 547
p-series, 487
parƟal sums, 470
power, 520, 521
derivaƟves and integrals, 525

properƟes, 477
radius of convergence, 522
RaƟo Comparison Test, 510
rearrangements, 504, 505
Root Comparison Test, 513
Taylor, 547
telescoping, 475

Shell Method, 310
signed area, 231
signed volume, 862, 863
simple closed curve, 941



simply connected, 952, 976
Simpson’s Rule, 448, 450

error bounds, 451
smooth, 724
smooth curve, 585
solenoidal, 962
speed, 731
sphere, 635
Squeeze Theorem, 31
Stokes’ Theorem, 968, 970
Sum/Difference Rule

of derivaƟves, 102
of integraƟon, 223
of series, 477

summaƟon
notaƟon, 242
properƟes, 243

surface
orientable, 968
two-sided, 969

surface area, 894
solid of revoluƟon, 572, 600, 626

surface integral, 954, 956
surface of revoluƟon, 639, 640

tangent line, 80, 590, 617, 723
direcƟonal, 824

tangent plane, 829
Taylor Polynomial

definiƟon, 538
Taylor’s Theorem, 542

Taylor Series
common series, 552
definiƟon, 547
equality with generaƟng funcƟon, 549

Taylor’s Theorem, 542
telescoping series, 475
terminal point, 649
torus, 957
total differenƟal, 796, 801

sensiƟvity analysis, 800
total signed area, 231
trace, 640
Trapezoidal Rule, 445, 450

error bounds, 451
triple integral, 902, 913, 915

cylindrical coordinates, 925
properƟes, 908
spherical coordinates, 926

unbounded sequence, 462
unbounded set, 773
unit normal vector

aN, 749
and acceleraƟon, 748, 749
and curvature, 760
definiƟon, 746
in R2, 748

unit tangent vector
and acceleraƟon, 748, 749

and curvature, 756, 760
aT, 749
definiƟon, 744
in R2, 748

unit vector, 655
properƟes, 657
standard unit vector, 659
unit normal vector, 746
unit tangent vector, 744

vector
normal, 958
posiƟve unit normal, 969

vector field, 933
normal, 968
smooth, 947

vector–valued funcƟon
algebra of, 713
arc length, 729
average rate of change, 715
conƟnuity, 719, 720
definiƟon, 711
derivaƟves, 721, 724
describing moƟon, 731
displacement, 714
distance traveled, 739
graphing, 711
integraƟon, 727
limits, 718, 719
of constant length, 726, 736, 745
projecƟle moƟon, 736
smooth, 724
tangent line, 723

vectors, 649
algebra of, 652
algebraic properƟes, 655
component form, 650
cross product, 676, 679, 680
definiƟon, 649
dot product, 663, 664
Head To Tail Rule, 653
magnitude, 649
norm, 649
normal vector, 697
orthogonal, 667
orthogonal decomposiƟon, 670
orthogonal projecƟon, 669
parallel, 657
Parallelogram Law, 653
resultant, 653
standard unit vector, 659
unit vector, 655, 657
zero vector, 653

velocity, 94, 731
volume, 862, 863, 900

Washer Method, 303
work, 317, 673, 929, 966

zenith angle, 705



DifferenƟaƟon Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx

(
sin−1 x

)
=

1
√
1− x2

20.
d
dx

(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx

(
csc−1 x

)
=

−1
|x|

√
x2 − 1

22.
d
dx

(
sec−1 x

)
=

1
|x|

√
x2 − 1

23.
d
dx

(
tan−1 x

)
=

1
1+ x2

24.
d
dx

(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx

(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx

(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx

(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx

(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx

(
tanh−1 x

)
=

1
1− x2

36.
d
dx

(
coth−1 x

)
=

1
1− x2

IntegraƟon Rules

1.
ˆ

c · f(x) dx = c
ˆ

f(x) dx

2.
ˆ

f(x)± g(x) dx =
ˆ

f(x) dx±
ˆ

g(x) dx

3.
ˆ

0 dx = C

4.
ˆ

1 dx = x+ C

5.
ˆ

xn dx =
1

n+ 1
xn+1 + C,

n ̸= −1

6.
ˆ

ex dx = ex + C

7.
ˆ

ax dx =
1
ln a

· ax + C

8.
ˆ 1

x
dx = ln |x|+ C

9.
ˆ

cos x dx = sin x+ C

10.
ˆ

sin x dx =− cos x+ C

11.
ˆ

tan x dx =− ln |cos x|+ C

12.
ˆ

sec x dx = ln |sec x+ tan x|+ C

13.
ˆ

csc x dx =− ln |csc x+ cot x|+ C

14.
ˆ

cot x dx = ln |sin x|+ C

15.
ˆ

sec2 x dx = tan x+ C

16.
ˆ

csc2 x dx =− cot x+ C

17.
ˆ

sec x tan x dx = sec x+ C

18.
ˆ

csc x cot x dx =− csc x+ C

19.
ˆ

cos2 x dx =
1
2
x+

1
4
sin

(
2x
)
+ C

20.
ˆ

sin2 x dx =
1
2
x−

1
4
sin

(
2x
)
+ C

21.
ˆ 1

x2 + a2
dx =

1
a
tan−1

(
x
a

)
+ C

22.
ˆ 1

√
a2 − x2

dx = sin−1
(

x
a

)
+ C

23.
ˆ 1

x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

24.
ˆ

cosh x dx = sinh x+ C

25.
ˆ

sinh x dx = cosh x+ C

26.
ˆ

tanh x dx = ln(cosh x) + C

27.
ˆ

coth x dx = ln |sinh x|+ C

28.
ˆ 1

√
x2 − a2

dx = ln
∣∣∣x+√

x2 − a2
∣∣∣+ C

29.
ˆ 1

√
x2 + a2

dx = ln
∣∣∣x+√

x2 + a2
∣∣∣+ C

30.
ˆ 1

a2 − x2
dx =

1
2a

ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

31.
ˆ 1

x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

32.
ˆ 1

x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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DefiniƟons of the Trigonometric FuncƟons

Unit Circle DefiniƟon

x

y

(x, y)

y

x

θ sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle DefiniƟon

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric IdenƟƟes
Pythagorean IdenƟƟes

sin2 x+ cos2 x = 1
tan2 x+ 1 = sec2 x
1+ cot2 x = csc2 x

CofuncƟon IdenƟƟes

sin
(π
2
− x
)
= cos x csc

(π
2
− x
)
= sec x

cos
(π
2
− x
)
= sin x sec

(π
2
− x
)
= csc x

tan
(π
2
− x
)
= cot x cot

(π
2
− x
)
= tan x

Double Angle Formulas

sin 2x = 2 sin x cos x
cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1
= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = 2 sin

(
x+ y
2

)
sin
(
y− x
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd IdenƟƟes

sin(−x) = − sin x
cos(−x) = cos x
tan(−x) = − tan x
csc(−x) = − csc x
sec(−x) = sec x
cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas

sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes
Triangles

h = a sin θ

Area =
1
2
bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone

Volume =
1
3
πr2h

Surface Area =

πr
√

r2 + h2 + πr2

h

r

Parallelograms Area = bh

b

h

Right Circular Cylinder

Volume = πr2h
Surface Area =

2πrh+ 2πr2
h

r

Trapezoids Area = 1
2 (a+ b)h

b

a

h

Sphere

Volume =
4
3
πr3

Surface Area = 4πr2

r

Circles

Area = πr2

Circumference = 2πr
r

General Cone

Area of Base = A

Volume =
1
3
Ah

h

A

Sectors of Circles

θ in radians

Area =
1
2
θr2

s = rθ r

s

θ

General Right Cylinder

Area of Base = A
Volume = Ah h

A



Algebra
Factors and Zeros of Polynomials

Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a soluƟon of
the equaƟon p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra

An nth degree polynomial has n (not necessarily disƟnct) zeros. Although all of these zerosmay be imaginary, a real polynomial
of odd degree must have at least one real zero.

QuadraƟc Formula

If p(x) = ax2 + bx+ c, then the zeros of p are x =
−b±

√
b2 − 4ac
2a

Special Factoring

x2 − a2 = (x− a)(x+ a) x3 ± a3 = (x± a)(x2 ∓ ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)

Binomial Theorem

(x+ y)2 = x2 + 2xy+ y2 (x+ y)3 = x3 + 3x2y+ 3xy2 + y3

(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x+ y)n =
n∑

i=0

(
n
k

)
xn−kyk

RaƟonal Zero Theorem

If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s, where
r is a factor of a0 and s is a factor of an.

Factoring by Grouping

acx3 + adx2 + bcx+ bd = ax2(cs+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

ArithmeƟc OperaƟons

ab+ ac = a(b+ c)
a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n(a

b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



AddiƟonal Formulas
SummaƟon Formulas

n∑
i=1

c = cn
n∑

i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule
ˆ b

a
f(x) dx ≈ ∆x

2
[f(x1) + 2f(x2) + 2f(x3) + · · ·+ 2f(xn) + f(xn+1)]

with Error ≤ (b− a)3

12n2
[max |f ′′(x)|]

Simpson’s Rule
ˆ b

a
f(x) dx ≈ ∆x

3
[f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + · · ·+ 2f(xn−1) + 4f(xn) + f(xn+1)]

with Error ≤ (b− a)5

180n4
[
max

∣∣f(4)(x)∣∣]

Arc Length

L =
ˆ b

a

√
1+ f ′(x)2 dx

Work Done by a Variable Force

W =

ˆ b

a
F(x) dx

Force Exerted by a Fluid

F =
ˆ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x)

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + · · ·+ f (n)(c)
n!

(x− c)n

Standard Form of Conic SecƟons
Parabola Ellipse Hyperbola

VerƟcal axis Horizontal axis Foci and verƟces Foci and verƟces
on x-axis on y-axis

y =
x2

4p
x =

y2

4p
x2

a2
+

y2

b2
= 1

x2

a2
− y2

b2
= 1

y2

b2
− x2

a2
= 1



Summary of Tests for Series

Test Series CondiƟon(s) of
Convergence

CondiƟon(s) of
Divergence Comment

nth-Term
Test for

Divergence

∞∑
n=1

an lim
n→∞

an ̸= 0 cannot show
convergence.

Geometric
Series

∞∑
n=0

arn |r| < 1 |r| ≥ 1 Sum=
a

1− r

Telescoping
Series

∞∑
n=1

bn − bn+m lim
n→∞

bn = L
Sum=(
m∑

n=1
bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

p-Series For
Logarithms

∞∑
n=1

1
(an+ b)(log n)p

p > 1 p ≤ 1

The base of the
logarithm doesn’t

affect
convergence.

Integral
Test

∞∑
n=1

an
ˆ ∞

1
a(n) dn

converges

ˆ ∞

1
a(n) dn

diverges

an = a(n)must
be conƟnuous
and decreasing

Direct
Comparison

∞∑
n=1

an
∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit
Comparison

∞∑
n=1

an
∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and

lim
n→∞

an/bn > 0

or =∞

RaƟo Test
∞∑
n=1

an lim
n→∞

an+1

an
< 1

lim
n→∞

an+1

an
> 1

or =∞

{an}must be
posiƟve

Root Test
∞∑
n=1

an lim
n→∞

(
an
)1/n

< 1
lim

n→∞

(
an
)1/n

> 1

or =∞
{an}must be

posiƟve


	APEX Calculus: UND Edition
	Recommended Citation

	Table of Contents
	Preface
	 Calculus I
	1 Limits
	1.1 An Introduction To Limits
	1.2 Epsilon-Delta Definition of a Limit
	1.3 Finding Limits Analytically
	1.4 One Sided Limits
	1.5 Limits Involving Infinity
	1.6 Continuity

	2 Derivatives
	2.1 Instantaneous Rates of Change: The Derivative
	2.2 Interpretations of the Derivative
	2.3 Basic Differentiation Rules
	2.4 The Product and Quotient Rules
	2.5 The Chain Rule
	2.6 Implicit Differentiation

	3 The Graphical Behavior of Functions
	3.1 Extreme Values
	3.2 The Mean Value Theorem
	3.3 Increasing and Decreasing Functions
	3.4 Concavity and the Second Derivative
	3.5 Curve Sketching

	4 Applications of the Derivative
	4.1 Related Rates
	4.2 Optimization
	4.3 Differentials
	4.4 Newton's Method

	5 Integration
	5.1 Antiderivatives and Indefinite Integration
	5.2 The Definite Integral
	5.3 Riemann Sums
	5.4 The Fundamental Theorem of Calculus
	5.5 Substitution

	6 Applications of Integration
	6.1 Area Between Curves
	6.2 Volume by Cross-Sectional Area; Disk and Washer Methods
	6.3 The Shell Method
	6.4 Work
	6.5 Fluid Forces


	 Calculus II
	7 Inverse Functions and L'Hôpital's Rule
	7.1 Inverse Functions
	7.2 Derivatives of Inverse Functions
	7.3 Exponential and Logarithmic Functions
	7.4 Hyperbolic Functions
	7.5 L'Hôpital's Rule

	8 Techniques of Integration
	8.1 Integration by Parts
	8.2 Trigonometric Integrals
	8.3 Trigonometric Substitution
	8.4 Partial Fraction Decomposition
	8.5 Integration Strategies
	8.6 Improper Integration
	8.7 Numerical Integration

	9 Sequences and Series
	9.1 Sequences
	9.2 Infinite Series
	9.3 The Integral Test
	9.4 Comparison Tests
	9.5 Alternating Series and Absolute Convergence
	9.6 Ratio and Root Tests
	9.7 Strategy for testing series
	9.8 Power Series
	9.9 Taylor Polynomials
	9.10 Taylor Series

	10 Curves in the Plane
	10.1 Arc Length and Surface Area
	10.2 Parametric Equations
	10.3 Calculus and Parametric Equations
	10.4 Introduction to Polar Coordinates
	10.5 Calculus and Polar Functions


	 Calculus III
	11 Vectors
	11.1 Introduction to Cartesian Coordinates in Space
	11.2 An Introduction to Vectors
	11.3 The Dot Product
	11.4 The Cross Product
	11.5 Lines
	11.6 Planes
	11.7 Curvilinear Coordinates

	12 Vector Valued Functions
	12.1 Vector–Valued Functions
	12.2 Calculus and Vector–Valued Functions
	12.3 The Calculus of Motion
	12.4 Unit Tangent and Normal Vectors
	12.5 The Arc Length Parameter and Curvature

	13 Functions of Several Variables
	13.1 Introduction to Multivariable Functions
	13.2 Limits and Continuity of Multivariable Functions
	13.3 Partial Derivatives
	13.4 Differentiability and the Total Differential
	13.5 The Multivariable Chain Rule
	13.6 Directional Derivatives
	13.7 Tangent Lines, Normal Lines, and Tangent Planes
	13.8 Extreme Values
	13.9 Lagrange Multipliers

	14 Multiple Integration
	14.1 Iterated Integrals and Area
	14.2 Double Integration and Volume
	14.3 Double Integration with Polar Coordinates
	14.4 Center of Mass
	14.5 Surface Area
	14.6 Volume Between Surfaces and Triple Integration
	14.7 Change of Variables in Multiple Integrals

	15 Line and Surface Integrals
	15.1 Line Integrals
	15.2 Properties of Line Integrals
	15.3 Green's Theorem
	15.4 Surface Integrals and the Divergence Theorem
	15.5 Stokes' Theorem
	15.6 Gradient, Divergence, Curl and Laplacian

	A Solutions To Selected Problems
	Index


