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Abstract. In this proof-of-concept paper, we apply a
bulk-mass-modeling method using observations from the
NASA Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) instrument for retrieving particulate matter (PM)
concentration over the contiguous United States (CONUS)
over a 2-year period (2008–2009). Different from previ-
ous approaches that rely on empirical relationships between
aerosol optical depth (AOD) and PM2.5 (PM with particle di-
ameters less than 2.5 µm), for the first time, we derive PM2.5
concentrations, during both daytime and nighttime, from
near-surface CALIOP aerosol extinction retrievals using bulk
mass extinction coefficients and model-based hygroscopic-
ity. Preliminary results from this 2-year study conducted over
the CONUS show a good agreement (r2

∼ 0.48; mean bias
of −3.3 µgm−3) between the averaged nighttime CALIOP-
derived PM2.5 and ground-based PM2.5 (with a lower r2 of
∼ 0.21 for daytime; mean bias of −0.4 µgm−3), suggesting
that PM concentrations can be obtained from active-based
spaceborne observations with reasonable accuracy. Results
from sensitivity studies suggest that accurate aerosol typing
is needed for applying CALIOP measurements for PM2.5
studies. Lastly, the e-folding correlation length for surface
PM2.5 is found to be around 600 km for the entire CONUS
(∼ 300 km for western CONUS and ∼ 700 km for eastern
CONUS), indicating that CALIOP observations, although
sparse in spatial coverage, may still be applicable for PM2.5
studies.

1 Introduction

During the last decade, an extensive number of studies have
researched the feasibility of estimating PM2.5 (particulate
matter with particle diameters smaller than 2.5 µm) pollution
with the use of passive satellite-derived aerosol optical depth
(AOD; e.g., Liu et al., 2007; Hoff and Christopher, 2009;
van Donkelaar et al., 2015). Monitoring of PM concentra-
tion from space observations is needed, as PM2.5 pollution
is one of the known causes of respiratory-related diseases as
well as other health-related issues (e.g., Liu et al., 2005; Hoff
and Christopher, 2009; Silva et al., 2013). Yet, ground-based
PM2.5 measurements are often inconsistent or have limited
availability over much of the globe.

In some earlier studies, empirical relationships of PM2.5
concentrations and AODs were developed and used for esti-
mating PM2.5 concentrations from passive-sensor-retrieved
AODs (e.g., Wang and Christopher, 2003; Engel-Cox et
al., 2004; Liu et al., 2005; Kumar et al., 2007; Hoff and
Christopher, 2009). One of the limitations of this approach
is that vertical distributions and the thermodynamic state of
aerosol particles vary with space and time. Especially for
regions with elevated aerosol plumes, deep boundary layer
entrainment zones, or strong nighttime inversions, column-
integrated AODs are not a good approximation of surface
PM2.5 concentrations at specific points and times (e.g., Liu et
al., 2004; Toth et al., 2014; Reid et al., 2017). Indeed, Kaku et
al. (2018) recently showed that surface PM2.5 had longer spa-
tial correlation lengths than AOD, even in the “well behaved”
southeastern United States where previous studies showed
good correlation between PM2.5 and AOD (e.g., Wang and
Christopher, 2003). To account for variability in aerosol ver-
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Figure 1. For 2008–2009, scatter plot of mean PM2.5 concentra-
tion from ground-based U.S. EPA stations and mean column AOD
(550 nm) from collocated Collection 6 (C6) Aqua MODIS observa-
tions. The red line represents the Deming regression fit.

tical distribution, several studies have attempted the use of
chemical transport models, or CTMs (e.g., van Donkelaar et
al., 2015). Satellite data assimilation of AOD has become
commonplace, vastly improving AOD analyses and short-
term prediction (e.g., Zhang et al., 2014; Sessions et al.,
2015). Yet, PM2.5 simulations remain poor (e.g., Reid et
al., 2016). Uncertainties in such studies are unavoidable due
to uncertainties in CTM-based aerosol vertical distributions,
and no nighttime AODs are currently available from passive
satellite retrievals.

It is arguable that from a climatological and long-term
average perspective, the use of AOD as a proxy for PM2.5
concentrations nevertheless has certain qualitative skill (e.g.,
Toth et al., 2014; Reid et al., 2017) due to the averag-
ing process that suppresses sporadic aerosol events with
highly variable vertical distributions. Still, as illustrated in
Fig. 1, in which 2-year (2008–2009) means of Moderate
Resolution Imaging Spectroradiometer (MODIS) AOD are
plotted against PM2.5 concentrations throughout the con-
tiguous United States (CONUS), although a linear rela-
tionship is plausibly shown, a low r2 value of 0.08 is
found. To construct Fig. 1, Aqua MODIS Collection 6
(C6) Optical_Depth_Land_And_Ocean data (0.55 µm), re-
stricted to “very good” retrievals as reported by the
Land_Ocean_Quality_Flag, are first collocated with daily
surface PM2.5 measurements in both space and time (i.e.,
within 40 km in distance and the same day) and then col-
located daily pairs are averaged into 2-year means (for each
PM2.5 site). Figure 1 may indicate that even from a long-term
mean perspective, aerosol vertical distributions are not uni-
form across the CONUS, which is also confirmed by other
studies (e.g., Toth et al., 2014). AOD retrievals themselves,
with known uncertainties due to cloud contamination and as-
sumptions in the retrieval process (e.g., Levy et al., 2013),
may also introduce uncertainties to that task.

On board the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) satellite, the Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) in-
strument provides observations of aerosol and cloud vertical
distributions during both day and night (Hunt et al., 2009;
Winker et al., 2010). Given that CALIOP provides aerosol
extinction retrievals near the ground, it is interesting and
reasonable to raise the following question: can near-surface
CALIPSO extinction be used as a better physical quantity
than AOD for estimating surface PM2.5 concentrations? This
is because unlike AOD, which is a column-integrated value,
near-surface CALIPSO extinction is, in theory, a more re-
alistic representation of near-surface aerosol properties. Yet,
in comparing with passive sensors such as MODIS, which
has a swath width on the order of ∼ 2000 km, CALIOP is
a nadir-pointing instrument with a narrow swath of ∼ 70 m
and a repeat cycle of 16 days (Winker et al., 2009). Thus,
the spatial sampling of CALIOP is sparse on a daily basis
and temporal sampling or other conditional or contextual bi-
ases are unavoidable if CALIOP observations are used to es-
timate daily PM2.5 concentrations (Zhang and Reid, 2009;
Colarco et al., 2014). Also, there are known uncertainties in
CALIPSO-retrieved extinction values due to uncertainties in
the retrieval process, such as the lidar ratio (extinction-to-
backscatter ratio), calibration, and the “retrieval fill value”
(RFV) issue (Young et al., 2013; Toth et al., 2018).

Even with these known issues, especially the sampling
bias, it is still compelling to investigate if near-surface
CALIOP extinction can be utilized to retrieve surface PM2.5
concentrations with reasonable accuracy from a long-term
(i.e., 2-year) mean perspective. CALIOP data have been suc-
cessfully used in PM2.5 studies in the past but primarily for
assisting passive AOD and PM2.5 analyses using aerosol ver-
tical distribution as a constraint (e.g., Glantz et al., 2009; van
Donkelaar et al., 2010; Val Martin et al., 2013; Toth et al.,
2014; Li et al., 2015; Gong et al., 2017). However, the ques-
tion of the efficacy of the direct use of CALIOP retrievals re-
mained. To demonstrate a concept, we developed a bulk mass
scattering scheme for inferring PM concentrations from near-
surface aerosol extinction retrievals derived from CALIOP
observations. The bulk method used here is based upon the
well-established relationship between particle light scatter-
ing and PM2.5 aerosol mass concentration (e.g., Charlson et
al., 1968; Waggoner and Weiss, 1980; Liou, 2002; Chow et
al., 2006), discussed further, with the relevant equations, in
Sect. 2.

In this study, using 2 years (2008–2009) of CALIOP
and United States (U.S.) Environmental Protection Agency
(EPA) data over the CONUS, the following questions are ad-
dressed:

1. Can CALIOP extinction be used effectively for estimat-
ing PM2.5 concentrations through a bulk mass scattering
scheme from a 2-year mean perspective for both day-
time and nighttime?

Atmos. Meas. Tech., 12, 1739–1754, 2019 www.atmos-meas-tech.net/12/1739/2019/
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2. Can CALIOP extinction be used as a better parameter
than AOD for estimating PM2.5 concentrations from a
2-year mean perspective?

3. What sampling biases can be expected in CALIOP esti-
mates of PM2.5?

4. How do uncertainties in bulk properties compare to
overall CALIOP-retrieved PM2.5 uncertainty?

Details of the methods and datasets used are described in
Sect. 2. Section 3 shows the preliminary results using 2
years of EPA PM2.5 and CALIOP data, including an uncer-
tainty analysis. The conclusions of this paper are provided in
Sect. 4.

2 Data and methods

Since 1970, the U.S. EPA has monitored surface PM us-
ing a number of Federal Reference/Equivalent Methods
(FRMs/FEMs), which employ gravimetric, tapered element
oscillating microbalance (TEOM), and beta gauge instru-
ments (Federal Register, 1997; Greenstone, 2002). A total
of 2 years (2008–2009) of daily PM2.5 local conditions (EPA
code= 88101) data were acquired from the EPA Air Qual-
ity System for use in this investigation, consistent with our
previous PM2.5 study (Toth et al., 2014). These data repre-
sent PM2.5 concentrations over a 24 h period and include two
scenarios: one sample is taken during the 24 h duration (i.e.,
filter-based measurement) or an average is computed from
hourly samples within this time period (every hour may not
have an available measurement, however).

Note that uncertainties have been reported for hourly PM
measurements (Kiss et al., 2017). Examples of some un-
certainties in these PM2.5 measurements depend upon the
instrument/method used: gravimetric (e.g., transport to the
lab/human error and volatization of PM during the drying
process; Patashnick et al., 2001), TEOM (e.g., errors due to
improper inlet tube temperature; Eatough et al., 2003), and
beta attenuation monitors (e.g., changes in the sample flow
rate due to variations in temperature and moisture; Spagnolo,
1989). Also, it has been found that beta attenuation monitors
may be more accurate than TEOM, as TEOM can underes-
timate PM2.5 at low temperatures (e.g., Chung et al., 2001).
Still, as suggested by Kiss et al. (2017), PM data collected
over a longer period of time are much less likely to be bi-
ased. Thus, we expect lower uncertainties from data collected
over 24 h than from daily data generated by averaging hourly
observations. Fully quantifying the differences from the two
different PM observing methods, however, is the subject for
a future study.

CALIOP, flying aboard the CALIPSO platform within the
A-Train satellite constellation, is a dual-wavelength (0.532
and 1.064 µm) lidar that has collected profiles of atmo-
spheric aerosol particles and clouds since summer 2006

(Winker et al., 2007). In this study, daytime and night-
time extinction coefficients retrieved at 0.532 µm from
the version 4.10 CALIOP Level 2 5 km aerosol profile
(L2_05kmAPro) product were used. Using parameters pro-
vided in the L2_05kmAPro product, as well as the cor-
responding Level 2 5 km aerosol layer (L2_05kmALay)
product, a robust quality-assurance (QA) procedure for the
aerosol observations was implemented (Table 1). Further in-
formation on the QA metrics and screening protocol are dis-
cussed in detail in previous studies (Kittaka et al., 2011;
Campbell et al., 2012; Toth et al., 2013, 2016). Once the
QA procedure was applied, the aerosol profiles were lin-
early re-gridded from 60 m vertical resolution (above mean
sea level, a.m.s.l.) to 100 m segments (i.e., resampled to
100 m resolution) referenced to the local surface (above
ground level, a.g.l.; Toth et al., 2014, 2016). The choice of
100 m was arbitrary, and the profiles were re-gridded in or-
der to obtain a dataset corrected for a.g.l., as opposed to the
a.m.s.l.-referenced profiles provided by the L2_05kmAPro
product. Surface elevation and relative humidity (RH) were
taken from collocated model data included in the CALIPSO
L2_05kmAPro product (Vaughan et al., 2018; RH was taken
from the Modern Era Retrospective-Analysis for Research,
or MERRA-2 reanalysis product). To limit the effects of sig-
nal attenuation and increase the chances of measuring aerosol
presence near the surface, the atmospheric volume descrip-
tion parameter within the L2_05kmAPro dataset is used to
cloud-screen each aerosol profile as in Toth et al. (2018).

In this study, near-surface PM mass concentration (Cm)
is derived from near-surface CALIOP extinction based on a
bulk formulation as in Eq. (1) (e.g., Liou, 2002; Chow et al.,
2006):

β = Cm (ascatfrh+ aabs)× 1000, (1)

where β is CALIOP-derived near-surface extinction per kilo-
meter, Cm is the PM mass concentration in micrograms per
cubic meter, ascat and aabs are dry mass scattering and absorp-
tion efficiencies in square meters per gram, and frh represents
the light scattering hygroscopicity. As a preliminary study,
for the purpose of demonstrating this concept, we assume the
dominant aerosol type over the CONUS is pollution aerosol
(i.e., the most prevalent near-surface aerosol type reported in
the CALIOP products for the CONUS during 2008–2009 is
polluted continental) with ascat and aabs values of 3.40 and
0.37 m2 g−1 (Hess et al., 1998; Lynch et al., 2016), respec-
tively. These values are similar to those reported in Hand and
Malm (2007) and Kaku et al. (2018) but are interpolated to
0.532 µm from values at 0.450 and 0.550 µm obtained from
the Optical Properties of Aerosols and Clouds (OPAC) model
(Hess et al., 1998). Still, both ascat and aabs have regional
and species-related dependencies. Also, only 2-year averages
are used in this study, and we assume that sporadic aerosol
plumes are smoothed out in the averaging process and that
bulk aerosol properties are similar throughout the study re-
gion. We have further explored the impact of aerosol types
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Table 1. The parameters, and corresponding values, used to assure the quality of the CALIOP aerosol extinction profile.

Parameter Values

Integrated_Attenuated_Backscatter_532 ≤ 0.01 sr−1

Extinction_Coefficient_532 ≥ 0 and ≤ 1.25 km−1

Extinction_QC_532 = 0, 1, 2, 16, or 18
CAD_Score ≥−100 and ≤−20
Extinction_Coefficient_Uncertainty_532 ≤ 10 km−1

Atmospheric_Volume_Description (Bits 1–3) = 3
Atmospheric_Volume_Description (Bits 10–12) 6= 0

on PM2.5 retrievals in a later section. Furthermore, to aid in
focusing this study on fine-mode and anthropogenic aerosols,
those aerosol extinction range bins classified as dust by the
CALIOP typing algorithm were excluded from the analysis.

Also, surface PM concentrations are dry mass measure-
ments. To account for the impact of humidity on ascat (it
is assumed that aabs is not affected by moisture; Nessler et
al., 2005; Lynch et al., 2016), we estimated the hygroscopic
growth factor for pollution aerosol based on Hänel (1976), as
shown in Eq. (2):

frh =

(
1−RH

1−RHref

)−0
, (2)

where frh is the hygroscopic growth factor, RH is the relative
humidity, and RHref is the reference RH and is set to 30 % in
this study (Lynch et al., 2016). 0 is a unitless value (a fit
parameter describing the amount of hygroscopic increase in
scattering) and is assumed to be 0.63 (i.e., sulfate aerosol)
in this study (Hänel, 1976; Chew et al., 2016; Lynch et al.,
2016).

Additionally, the CALIOP-derived PM density is for all
particle sizes. To convert from mass concentration of PM
(Cm) to mass concentration of PM2.5 (Cm2.5), which repre-
sents mass concentration for particle diameters smaller than
2.5 µm, we adopted the PM2.5-to-PM10 (PM with diameters
less than 10 µm) ratio (ϕ) of 0.6 as measured during the Stud-
ies of Emissions and Atmospheric Composition, Clouds and
Climate Coupling by Regional Surveys (SEAC4RS) cam-
paign over the US (Kaku et al., 2018). Again, the ratio of
PM2.5 to PM10 can also vary spatially; however we used a re-
gional mean to demonstrate the concept. Analyses in a later
section using 2 years (2008–2009) of surface PM2.5 to PM10
data suggest that 0.6 is a rather reasonable number to use for
the CONUS for the study period. Here we assume that mass
concentrations for particle diameters larger than 10 µm are
negligible over the CONUS. Thus, we can rewrite Eq. (1) as

Cm2.5 =
β ×φ

(ascat× frh+ aabs)× 1000
, (3)

where Cm2.5 is the CALIOP-derived PM2.5 concentration in
units of micrograms per cubic meter.

Lastly, we note that most of the results are shown in the
form of scatter plots with fits from a Deming regression
(Deming, 1943). Due to uncertainties in PM2.5 data, we show
slopes computed from Deming regression analyses instead
of those from simple linear regression. Deming regression in
particular is appropriate here, as it accounts for errors in both
the independent and dependent variables (Deming, 1943) and
has been used in past PM2.5-related studies (e.g., Huang et
al., 2014).

3 Results and discussion

3.1 Regional analysis

Figure 2a shows the mean PM2.5 concentration using 2 years
(2008–2009) of daily surface PM2.5 data from the U.S. EPA
(PM2.5_EPA), not collocated with CALIOP observations. A
total of 1091 stations (some operational throughout the entire
period; others only partially) are included in the analysis, and
observations from those stations are further used in evaluat-
ing CALIOP-derived PM2.5 concentrations (Cm2.5), as later
shown in Fig. 3. PM2.5 concentrations of ∼ 10 µgm−3 are
found over the eastern CONUS. In comparison, much lower
PM2.5 concentrations of ∼ 5 µgm−3 are exhibited for the in-
terior CONUS, over states including Montana, Wyoming,
North Dakota, South Dakota, Utah, Colorado, and Arizona.
For the west coast of the CONUS, and especially over Cal-
ifornia, higher PM2.5 concentrations are observed, with the
maximum 2-year mean near 20 µgm−3. Note that the spa-
tial distribution of surface PM2.5 concentrations over the
CONUS as shown in Fig. 2a is consistent with reported val-
ues from several studies (e.g., Hand et al., 2013; Van Donke-
laar et al., 2015; Di et al., 2017).

Figure 3a shows the 2-year averaged 1◦× 1◦ (latitude
and longitude) gridded daytime CALIOP aerosol extinc-
tion over the CONUS using CALIOP observations from
100 to 1000 m, referenced to the number of cloud-free
L2_05kmAPro profiles in each 1×1◦ bin. The lowest 100 m
of CALIOP extinction data are not used in the analysis due
to the potential of surface return contamination (e.g., Toth
et al., 2014), although this has been improved for the ver-
sion 4 CALIOP products but may still be present in some

Atmos. Meas. Tech., 12, 1739–1754, 2019 www.atmos-meas-tech.net/12/1739/2019/
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Figure 2. For 2008–2009 over the CONUS, (a) mean PM2.5 concentration (µgm−3) for those U.S. EPA stations with reported daily mea-
surements, and (c) 1◦× 1◦ average CALIOP-derived PM2.5 concentrations for the 100–1000 m a.g.l. atmospheric layer, using Eq. (3), for
combined daytime and nighttime conditions. Also shown are the pairwise PM2.5 concentrations from (b) EPA daily measurements and
(d) those derived from CALIOP (day and night combined), both averaged for each EPA station for the 2008–2009 period. For all four plots,
values greater than 20 µgm−3 are colored red.

cases. Here the averaged extinction from 100–1000 m is used
to represent near-surface aerosol extinction. This selection
of the 100–1000 m layer is somewhat arbitrary, even though
it is estimated from the mean CALIOP-based aerosol verti-
cal distribution over the CONUS (Toth et al., 2014). Thus,
a sensitivity study is provided in a later section to under-
stand the impact of this aerosol layer selection on CALIOP-
based PM2.5 retrievals. As shown in Fig. 3a, a higher mean
near-surface CALIOP extinction of 0.1 km−1 is found for the
eastern CONUS and over California, while lower values of
0.025–0.05 km−1 are found for the interior CONUS. Fig-
ure 3b shows a plot similar to Fig. 3a but using nighttime
CALIOP observations only. Although similar spatial patterns
are found during both day and night, the near-surface extinc-
tion values are overall lower for nighttime than daytime, and
nighttime data are less noisy than daytime. These findings are
not surprising, as daytime CALIOP measurements are sub-
ject to contamination from background solar radiation (e.g.,
Omar et al., 2013).

To investigate any diurnal biases in the data, Fig. 3c and
d show the derived PM2.5 concentration using daytime and
nighttime CALIOP data, respectively, based on the method
described in Sect. 2. Both Fig. 3c and d suggest a higher
PM2.5 concentration of ∼ 10–12.5 µgm−3 over the eastern

CONUS and a much lower PM2.5 concentration of ∼ 2.5–
5 µgm−3 over the interior CONUS. High PM2.5 values of 10–
20 µgm−3 are also found over the west coast of the CONUS,
particularly over California. The spatial distribution of PM2.5
concentrations, as derived using near-surface CALIOP data
(Fig. 3c and d, as well as the combined daytime and night-
time perspective shown in Fig. 2c), is remarkably similar to
the spatial distribution of PM2.5 values as estimated based on
ground-based observations (Fig. 2a). Still, day and night dif-
ferences in PM2.5 concentrations are also clearly visible, as
higher PM2.5 values are found, in general, during daytime,
based on CALIOP observations. The high daytime PM2.5
values, as shown in Fig. 3c, may represent stronger near-
surface convection and more frequent anthropogenic activ-
ities during daytime. However, they may also be partially
contributed by solar radiation contamination. Another pos-
sibility is that the daytime mean extinction coefficients (from
which the mean PM2.5 estimates are derived) appear artifi-
cially larger than at night due to high daytime noise limiting
the ability of CALIOP to detect fainter aerosol layers during
daylight operations. Note that, for context, maps of the num-
ber of days and CALIOP Level 2 5 km aerosol profiles used
in the creation of Fig. 3a–d are shown in Appendix Fig. A1.

www.atmos-meas-tech.net/12/1739/2019/ Atmos. Meas. Tech., 12, 1739–1754, 2019
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Figure 3. For 2008–2009 over the CONUS, 1◦× 1◦ average CALIOP extinction, relative to the number of cloud-free 5 km CALIOP profiles
in each 1◦× 1◦ bin, for the 100–1000 m a.g.l. atmospheric layer, for (a) daytime and (b) nighttime measurements. Also shown are the
corresponding CALIOP-derived PM2.5 concentrations, using Eq. (3) for (c) daytime and (d) nighttime conditions. Values greater than
0.2 km−1 and 20 µgm−3 for (a, b) and (c, d), respectively, are colored red. Scatter plots of mean PM2.5 concentration from ground-based
U.S. EPA stations and those derived from collocated near-surface CALIOP observations are shown in the bottom row, using (e) daytime and
(f) nighttime CALIOP data. The red lines represent the Deming regression fits.

Figure 3e shows the intercomparison between PM2.5_EPA
and PM2.5_CALIOP concentrations. Note that only CALIOP
and ground-based PM2.5 data pairs, which are within 100 km
of each other and have reported values for the same day
(i.e., year, month, and day), are used to generate Fig. 3e.
Still, although only spatially and temporally collocated data
pairs are used, ground-based PM2.5 data represent 24 h av-
erages, while CALIOP-derived PM2.5 concentrations are in-
stantaneous values over the daytime CALIOP overpass. To

reduce this temporal bias, 2 years (2008–2009) of collocated
CALIOP-derived and measured PM2.5 concentrations are av-
eraged and only the 2-year averages are used in construct-
ing Fig. 3e. Also, to minimize the abovementioned temporal
sampling bias, ground stations with fewer than 100 collo-
cated pairs are discarded. This leaves a total of 276 stations
for constructing Fig. 3e.

As shown in Fig. 3e, an r2 value of 0.21 (with slope of
1.07) is found between CALIOP-derived and measured sur-

Atmos. Meas. Tech., 12, 1739–1754, 2019 www.atmos-meas-tech.net/12/1739/2019/
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Figure 4. Scatter plot of mean PM2.5 concentration from ground-
based U.S. EPA stations and those derived from collocated near-
surface CALIOP observations using combined daytime and night-
time CALIOP data. The red line represents the Deming regression
fit.

face PM2.5 concentrations, with a corresponding mean bias
of −0.40 µgm−3 (PM2.5_CALIOP−PM2.5_EPA). In compari-
son, Fig. 3f shows results similar to Fig. 3e, but for nighttime
CALIOP data. A much higher r2 value of 0.48 (with slope
of 0.96) is found between CALIOP-derived and measured
PM2.5 values from 528 EPA stations, with a correspond-
ing mean bias of −3.3 µgm−3 (PM2.5_CALIOP−PM2.5_EPA).
This may be related to the diurnal variability of PM2.5 con-
centrations, as the daily mean EPA measurement might be
closer to the CALIOP morning retrieval than to its afternoon
counterpart. Still, data points are more scattered in Fig. 3e
in comparison with Fig. 3f, which again indicates that day-
time CALIOP data are noisier, possibly due to daytime solar
contamination as well as other factors such as biases in rela-
tive humidity. Details of these biases are further explored in
Sect. 3.2.

To supplement this analysis, a pairwise PM2.5_EPA and
PM2.5_CALIOP (day and night CALIOP combined) analysis is
presented in the spatial plots of Fig. 2b and d. Here, however,
we lift the requirement of 100 collocated pairs to increase
data samples for better spatial representativeness. The spa-
tial variability of PM2.5 over the CONUS is consistent with
the observed patterns of non-collocated data (i.e., Fig. 2a
and c), but with generally higher values due to differences
in sampling. Also, comparing Fig. 2b and d, PM2.5_EPA spa-
tial patterns match well with those of PM2.5_CALIOP, yet with
larger values for PM2.5_EPA (consistent with the biases dis-
cussed above). Lastly, a scatter plot of the pairwise anal-
ysis shown in Fig. 2b and d is provided in Fig. 4. An r2

value of 0.40 is found between EPA and CALIOP-derived
PM2.5 concentrations from a combined daytime and night-
time CALIOP perspective. Overall, Figs. 2, 3, and 4 indicate
that near-surface CALIOP extinction data can be used to esti-
mate surface PM2.5 concentrations with reasonable accuracy.

Figure 5. Root-mean-square errors of CALIOP-derived PM2.5
against EPA PM2.5 as a function of CALIOP-derived PM2.5, us-
ing both daytime (in red) and nighttime (in blue) CALIOP obser-
vations. The five bins are equally sampled based upon a cumulative
histogram analysis, and each point from left to right represents the
RMSE and mean PM2.5 concentration derived from CALIOP for
0 %–20 %, 20 %–40 %, 40 %–60 %, 60 %–80 %, and 80 %–100 %
cumulative frequencies.

3.2 Uncertainty analysis

In this section, uncertainties in the CALIOP-derived 2-year
averaged PM2.5 concentrations are explored as functions
of aerosol vertical distribution, PM2.5-to-PM10 ratio, RH,
aerosol type, and cloud presence above. Spatial-sampling-
related biases as well as prognostic errors are also studied.

3.2.1 Prognostic errors in Cm2.5

As a first step for the uncertainty analysis, we estimated
the prognostic error of 2-year averaged PM2.5_CALIOP. Fig-
ure 5 shows the root-mean-square error (RMSE) of CALIOP-
based PM2.5 concentrations against those from EPA stations
as a function of CALIOP-based PM2.5 for the 2008–2009
period over the CONUS. RMSEs were computed for five
equally sampled bins, determined from a cumulative his-
togram analysis. Each point in Fig. 5, from left to right, rep-
resents the RMSE and mean PM2.5 concentration derived
from CALIOP for 0 %–20 %, 20 %–40 %, 40 %–60 %, 60 %–
80 %, and 80 %–100 % cumulative frequencies. A mean
combined daytime and nighttime RMSE of ∼ 4 µgm−3 is
found, with a mean value slightly greater for nighttime
(∼ 4.3 µgm−3) than daytime (∼ 3.7 µgm−3). While most
bins exhibit larger nighttime RMSEs, daytime RMSEs are
larger for the greatest mean CALIOP-derived PM2.5 concen-
trations.

3.2.2 Surface layer height sensitivity study

A sensitivity study was conducted for which PM2.5 was
derived from near-surface CALIOP aerosol extinction by
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Table 2. Statistical summary of a sensitivity analysis varying the height of the surface layer, including R2, slope from Deming re-
gression, mean bias (CALIOP−EPA) of PM2.5 in micrograms per cubic meter, and percent error change in derived PM2.5, defined as
((mean new PM2.5−mean original PM2.5)/mean original PM2.5)× 100. The row in bold represents the results shown in the remainder of
the paper.

Surface layer (m) Analysis (day/night)

R2 Deming Mean bias (CALIOP−EPA; Error change
slope µgm−3) (%)

0–100 0.27/0.41 1.32/0.60 −2.67/−9.06 −13.71/−61.94
0–200 0.33/0.53 1.34/1.04 −0.52/−5.68 3.79/−23.58
0–300 0.35/0.54 1.32/1.11 −0.09/−4.70 7.24/−12.15
0–400 0.38/0.57 1.30/1.13 −0.13/−4.25 6.92/−6.46
0–500 0.35/0.52 1.26/1.06 −0.21/−4.04 5.70/−4.39
0–600 0.40/0.53 1.19/1.04 −0.46/−3.91 3.72/−2.15
0–700 0.44/0.46 1.20/0.98 −0.41/−3.89 2.73/−2.88
0–800 0.35/0.50 1.06/0.94 −0.59/−3.76 −0.77/−2.04
0–900 0.17/0.49 1.04/0.91 −0.74/−3.74 −3.91/−2.25
0–1000 0.13/0.48 0.98/0.89 −1.08/−3.74 −7.48/−2.57
100–500 0.34/0.44 1.23/1.00 0.54/−3.40 14.21/−0.84
100–1000 0.21/0.48 1.07/0.96 −0.39/−3.34

varying the height of the surface layer in increments of
100 m from the ground to 1000 m. Note that the surface layer
(0–100 m) is included for this sensitivity study only. The sta-
tistical results of this analysis, for both daytime and nighttime
conditions, are shown in Table 2. Four statistical parameters
were computed, consisting of r2, slope from Deming regres-
sion, mean bias (CALIOP−EPA) of PM2.5, and percent error
change in derived PM2.5, defined as ((mean_new_PM2.5−

mean_original_PM2.5)/mean_original_PM2.5)× 100. For
context, the bottom row of Table 2 shows the results from
the original analysis. In terms of r2 and slope, optimal values
peak at different surface layer heights between daytime and
nighttime. For example, for daytime, the largest correlations
are found for the 0–600 and 0–700 m layers, while for
nighttime these are found for the 0–300 and 0–400 m layers.
However, the 0–300 m layer exhibits the lowest mean
bias for the daytime analysis, and the 100–1000 m layer
exhibits the lowest mean bias for the nighttime analysis.
Overall, marginal changes are found for varying the height
of the surface layer. Yet the largest mean bias is found for
the 0–100 m layer, indicating the need for excluding the
0–100 m layer in the analysis.

3.2.3 RH sensitivity study

Profiles of RH were taken from the MERRA-2 reanaly-
sis product, as these collocated data are provided in the
CALIPSO L2_05kmAPro product. However, biases may ex-
ist in this RH dataset. Thus, we examined the impact of vary-
ing the RH values by ±10 % on the CALIOP-derived PM2.5
concentrations. For both daytime and nighttime analyses, no
significant differences in the r2 and slope values were found.
However, a +15 % change in the mean derived PM2.5 val-

ues was found by decreasing the RH values by 10 %, while a
−15 % change in the mean derived PM2.5 values was found
by increasing the RH values by 10 %.

3.2.4 PM2.5-to-PM10 ratio sensitivity study

Another source of uncertainty in this study is the
PM2.5/PM10 ratio. Using surface-based PM2.5 and PM10
data from those EPA stations over the CONUS for 2008–
2009 with concurrent PM2.5 and PM10 daily data available
(i.e., 409 stations), we computed the mean PM2.5/PM10 ra-
tio and its corresponding standard deviation. The mean ratio
was 0.56 with a standard deviation of 0.32. It is interesting to
note that the mean PM2.5/PM10 ratio estimated from 2 years
of surface observations over the CONUS is close to 0.6 (the
number used in this study), as reported by Kaku et al. (2018).
We also tested the sensitivity of the derived PM2.5 concen-
trations as a function of PM2.5/PM10 ratio for two scenar-
ios: ±1 standard deviation of the mean (Table 3). In general,
a ±50 % to 60 % change is found with the variation in the
PM2.5/PM10 ratio at the range of ±1 standard deviation of
the mean. As suggested from Table 3, the lowest mean day-
time bias is found for a ratio of 0.6, and for nighttime the
lowest mean bias occurs using a ratio of 0.88.

3.2.5 Sampling-related biases

As mentioned in the introduction section, a sampling bias,
due to the very small footprint size and ∼ 16-day repeat cy-
cle of CALIOP, can exist when using CALIOP observations
for PM2.5 estimates (Zhang and Reid, 2009). This sampling-
induced bias is investigated from a 2-year mean perspective
by comparing histograms of PM2.5_EPA and Cm2.5 concen-
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Table 3. Statistical summary of a sensitivity analysis varying the PM2.5-to-PM10 ratio used, including slope from Deming regression, mean
bias (CALIOP−EPA) of PM2.5 in micrograms per cubic meter, and percent error change in derived PM2.5, defined as ((mean new PM2.5−
mean original PM2.5)/mean original PM2.5)× 100. The row in bold represents the results shown in the remainder of the paper.

Analysis (day/night)

PM2.5/PM10 ratio Deming Mean bias (CALIOP−EPA; Error change (%)
slope µgm−3)

Low ratio (−1 SD) = 0.24 0.43/0.38 −7.81/−8.61 −60.00 %/−60.00 %
High ratio (+1 SD) = 0.88 1.57/1.41 5.39/0.77 46.67 %/46.67 %

0.60 1.07/0.96 −0.39/−3.34

Figure 6. The 2-year (2008–2009) histograms of mean PM2.5 con-
centrations from the U.S. EPA (in black) and those derived from
aerosol extinction using nighttime (in blue) and daytime (in red)
CALIOP data. The U.S. EPA data shown are not collocated, while
those derived using CALIOP are spatially (but not temporally) col-
located, with EPA station observations.

trations as shown in Fig. 6. To generate Fig. 6, all available
daily EPA PM2.5 data are used to represent the “true” 2-year
mean spectrum of PM2.5 concentrations over the EPA sites.
The aerosol extinction data spatially collocated to the EPA
sites (Sect. 3.1), but not temporally collocated, are used for
estimating the 2-year mean spectrum of PM2.5 concentra-
tions as derived from CALIOP observations. To be consis-
tent with the previous analysis, only cloud-free CALIOP pro-
files are considered. The PM2.5_EPA concentrations peak at∼
10 µgm−3 (standard deviation of∼ 3 µgm−3), and CALIOP-
derived PM2.5 peaks at ∼ 9 µgm−3 (daytime; standard de-
viation of ∼ 4 µgm−3) and ∼ 7 µgm−3 (nighttime; standard
deviation of ∼ 2 µgm−3). The distribution shifts towards
smaller concentrations for CALIOP, more so for nighttime
than daytime (possibly due to CALIOP daytime versus night-
time detection differences).

Still, Fig. 6 may reflect the diurnal difference in PM2.5
concentrations as well as the retrieval bias in Cm2.5 values.
Thus, we have re-performed the exercise shown in Fig. 6 us-

ing spatially and temporally collocated PM2.5_EPA and Cm2.5
data as shown in Fig. 7. To construct Fig. 7, PM2.5_EPA and
Cm2.5 data are collocated following the steps mentioned in
Sect. 3.1, with CALIOP and EPA PM2.5 representing 2-year
mean values for each EPA station. Again, only cloud-free
CALIOP profiles are considered for this analysis. As shown
in Fig. 7a, the PM2.5_EPA concentrations peak at∼ 12 µgm−3

(standard deviation of∼ 4 µgm−3), and daytime Cm2.5 peaks
at ∼ 10 µgm−3 (standard deviation of ∼ 4 µgm−3). In com-
parison, with the use of collocated nighttime Cm2.5 and
PM2.5_EPA data as shown in Fig. 7b, the peak PM2.5_EPA
value is about 5 µgm−3 higher than the peak Cm2.5 value
(with similar standard deviations as found in the analyses of
Fig. 7a). Considering both Figs. 6 and 7, it is likely that the
temporal sampling bias seen in Fig. 6 is at least in part due
to retrieval bias as well as the difference in PM2.5 concentra-
tions during daytime and nighttime.

3.2.6 CALIOP AOD analysis

Most past studies focused on the use of column AODs as
proxies for surface PM2.5 (e.g., Liu et al., 2005; Hoff and
Christopher, 2009; van Donkelaar et al., 2015). Therefore,
it is interesting to investigate whether near-surface CALIOP
extinction values can be used as a better physical quantity to
estimate surface PM2.5 in comparing with column-integrated
CALIOP AOD. To achieve this goal, we have compared
CALIOP column AOD and PM2.5 from EPA stations, as
shown in Fig. 8. Similar to the scatter plots of Fig. 3, each
point represents a 2-year mean for each EPA site and was
created from a dataset following the same spatial–temporal
collocation as described above. As shown in Fig. 8, r2 val-
ues of 0.04 and 0.13 are found using CALIOP daytime and
nighttime AOD data, respectively, similar to the MODIS-
based analysis shown in Fig. 1. This is expected, as ele-
vated aerosol layers will negatively impact the relationship
between surface PM2.5 and column AOD. The derivation
of surface PM2.5 from near-surface CALIOP extinction, as
demonstrated from this study, however, provides a much bet-
ter spatial matching between the quantities being compared,
with potential error terms that can be well quantified and
minimized in later studies.
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Figure 7. The 2-year (2008–2009) histograms of mean PM2.5 con-
centrations from the U.S. EPA and those derived from spatially
and temporally collocated aerosol extinction using (a) daytime and
(b) nighttime CALIOP data.

Figure 8. For 2008–2009, scatter plots of mean PM2.5 concen-
tration from ground-based U.S. EPA stations and mean column
AOD from collocated CALIOP observations, using (a) daytime and
(b) nighttime CALIOP data. The red lines represent the Deming
regression fits.

3.2.7 Cloud flag sensitivity study

For most of this paper, a strict cloud screening process is
implemented, during which no clouds are allowed in the en-

Figure 9. For 2008–2009, scatter plots of mean PM2.5 concentra-
tion from ground-based U.S. EPA stations and those derived from
collocated all-sky (including cloud-free and cloudy profiles) near-
surface CALIOP observations, using (a) daytime and (b) nighttime
CALIOP data. The red lines represent the Deming regression fits.

tire CALIOP profile. However, in contrast to passive sensor
capabilities (e.g., MODIS), near-surface aerosol extinction
coefficients can be readily retrieved from CALIOP profiles
even when there are transparent cloud layers above. There-
fore, we conducted an additional analysis for which no cloud
flag was set (i.e., all-sky conditions). Results are shown in
scatter plot form in Fig. 9, in a manner similar to in Fig. 3e
and f, with an additional 97 points for the daytime analysis
and 156 points for the nighttime analysis. Comparing the all-
sky results with those of Fig. 3e and f (cloud-free conditions),
the r2 values are similar. This is also true in terms of mean
bias, with similar values of 0.70 µgm−3 found for daytime,
and−2.68 µgm−3 for nighttime, all-sky scenarios. This indi-
cates that our method performs reasonably well from an all-
sky perspective. However, we note that restricting the anal-
ysis to solely those cases that are cloudy (not shown), the
method does not perform as well. For example, the r2 value
decreases by 71 % for the daytime analysis compared to the
cloud-free results (Fig. 3e). The corresponding nighttime r2

value decreases by 90 %. This is expected, as any errors made
in estimating the optical depths of the overlying clouds will
propagate (as biases) into the extinction retrievals for the un-
derlying aerosols.

3.2.8 Aerosol type analysis

Also, for this study, we assume that the primary aerosol type
over the CONUS is pollution (i.e., sulfate) aerosol, which is
generally composed of smaller (fine mode) particles that tend
to exhibit mass extinction efficiencies ∼ 4 m2 g−1. However,
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even after implementing our dust-free restriction, the study
region can also be contaminated with non-pollution aerosols,
which can have a larger particle size and exhibit lower mass
extinction efficiencies (e.g., Hess et al., 1998; Malm and
Hand, 2007; Lynch et al., 2016). The use of PM2.5 versus
PM10 somewhat mitigates this size dependency, but never-
theless coarse mode dust or sea salt can dominate PM2.5 mass
values (e.g., Atwood et al., 2013).

Thus, in this section, the impact of aerosol types on the de-
rived PM2.5 concentrations was explored by varying the mass
scattering and absorption efficiencies and gamma values as-
sociated with each aerosol type. The three aerosol types cho-
sen for this sensitivity study were dust, sea salt, and smoke,
based upon Lynch et al. (2016). The mass scattering and
absorption values for dust and sea salt were interpolated to
0.532 µm from values at 0.450 and 0.550 µm from OPAC (as
was performed for the sulfate case; Hess et al., 1998). For
smoke, these values were interpolated to 0.532 µm from val-
ues at 0.440 and 0.670 µm as provided by Reid et al. (2005)
for smoke cases over the US and Canada. The gamma val-
ues were taken from Lynch et al. (2016) and the references
within. These values, as well as the results from this sensi-
tivity study, are shown in Table 4. If we assume all aerosols
within the study region are smoke aerosols, no major changes
in the retrieved CALIOP PM2.5 values are found. However,
significant uncertainties on the order of ∼ 200 % are found
if sea salt, or ∼ 800 % if dust, aerosol mass scattering and
absorption efficiencies and gamma values are used instead.
Clearly, this study suggests that accurate aerosol typing is
necessary for future applications of CALIOP observations
for surface PM2.5 estimations.

3.3 E-folding correlation length for PM2.5
concentrations over the CONUS

As a last study, we also estimated the spatial e-folding cor-
relation length for PM2.5 concentrations over the CONUS.
This provides us an estimation of the correlation between a
CALIOP-derived and actual PM2.5 concentration for a given
location as a function of distance between the CALIOP ob-
servation and the given location. To accomplish this, all EPA
stations over the CONUS with at least 50 days of daily data
available for the 2008–2009 period were first determined.
Next, the distances between each pair of these EPA stations,
and their corresponding correlation of daily PM2.5 concen-
trations, were computed. Results are shown in Fig. 10 as
a scatter plot, with individual points in gray and the black
curve representing the exponential fit to the data. A decrease
in PM2.5 correlation with distance between EPA stations is
found, and the e-folding length in correlation (e.g., corre-
lation reduced to 1/e, or 0.37) is ∼ 600 km (from an AOD
standpoint, this value is 40–400 km, as suggested by Ander-
son et al., 2003).

Also included in Fig. 10 are results from a corresponding
regional analysis, with the red and blue lines showing bin av-

Figure 10. For 2008–2009 over the CONUS, scatter plot of dis-
tance (km) between any two U.S. EPA stations and the correspond-
ing spatial correlation of PM2.5 concentration between each pair of
stations. The black curve represents the exponential fit to the data
for the entire CONUS, and the red and blue dashed lines represent
10 km bin averages for the western and eastern CONUS, respec-
tively.

erages (10 km) for the western and eastern CONUS, respec-
tively (regions partitioned by the −97◦ longitude line). The
e-folding length is ∼ 300 km for the western CONUS and
∼ 700 km for the eastern CONUS, indicating a much shorter
correlation length for pollution over the western CONUS,
possibly due to a more complex terrain such as mountains.
Overall, these PM2.5 e-folding lengths suggest that CALIOP-
derived PM2.5 concentrations could still have some represen-
tative skill within a few hundred kilometers of a given loca-
tion.

4 Conclusions

In this paper, we have demonstrated a new bulk-mass-
modeling method for retrieving surface particulate matter
(PM) with particle diameters smaller than 2.5 µm (PM2.5)
using observations acquired by the NASA Cloud-Aerosol Li-
dar with Orthogonal Polarization (CALIOP) instrument from
2008 to 2009. For the purposes of demonstrating this con-
cept, only regionally averaged parameters, such as mass scat-
tering and absorption coefficients, and PM2.5-to-PM10 (PM
with particle diameters smaller than 10 µm) conversion ra-
tio, are used. Also, we assume the dominant type of aerosols
over the study region is pollution aerosols (supported by the
occurrence frequencies of aerosol types determined by the
CALIOP algorithms) and exclude aerosol extinction range
bins classified as dust from the analysis. Even with the highly
averaged parameters, the results from this paper are rather
promising and demonstrate a potential for monitoring PM
pollution using active observations from lidars. Specifically,
the primary results of this study are as follows.

1. CALIOP-derived PM2.5 concentrations of ∼ 10–
12.5 µgm−3 are found over the eastern contiguous
United States (CONUS), with lower values of ∼ 2.5–

www.atmos-meas-tech.net/12/1739/2019/ Atmos. Meas. Tech., 12, 1739–1754, 2019



1750 T. D. Toth et al.: A bulk-mass-modeling-based method for retrieving PM pollution

Table 4. Statistical summary of a sensitivity analysis varying the aerosol type assumed in the derivation of PM2.5, including R2, slope from
Deming regression, mean bias (CALIOP−EPA) of PM2.5 in micrograms per cubic meter, and percent error change in derived PM2.5, defined
as ((mean new PM2.5−mean original PM2.5)/mean original PM2.5)× 100. The row in bold represents the results shown in the remainder
of the paper.

Analysis (day/night)

Aerosol type R2 Deming Mean bias Error

ascat aabs 0 slope (CALIOP−EPA; µgm−3) change (%)

Smoke 5.26 0.26 0.18 0.10/0.44 0.86/0.78 −1.81/−4.26 −11.53/−10.54
Sea salt 1.42 0.01 0.46 0.18/0.48 2.92/2.64 22.42/12.93 184.12/184.99
Dust 0.52 0.08 0.00 0.05/0.39 9.01/8.18 102.04/70.82 826.94/843.33

Sulfate 3.40 0.37 0.63 0.21/0.48 1.07/0.96 −0.39/−3.34

5 µgm−3 over the central CONUS. PM2.5 values
of ∼ 10–20 µgm−3 are found over the west coast
of the CONUS, primarily California. The spatial
distribution of 2-year mean PM2.5 concentrations
derived from near-surface CALIOP aerosol data
compares well to the spatial distribution of in situ
PM2.5 measurements collected at the ground-based
stations of the U.S. Environmental Protection Agency
(EPA). The use of nighttime CALIOP extinction to
derive PM2.5 results in a higher correlation (r2

= 0.48;
mean bias =−3.3 µgm−3) with EPA PM2.5 than
daytime CALIOP extinction data (r2

= 0.21; mean bias
=−0.40 µgm−3).

2. Correlations between CALIOP aerosol optical depth
(AOD) and EPA PM2.5 are much lower (r2 values of
0.04 and 0.13 for daytime and nighttime CALIOP AOD
data, respectively) than those obtained from derived
PM2.5 using near-surface CALIOP aerosol extinction. A
similar correlation is also found between Moderate Res-
olution Imaging Spectroradiometer (MODIS) AOD and
EPA PM2.5 from 2-year (2008–2009) means. This sug-
gests that CALIOP extinction may be used as a better
parameter for estimating PM2.5 concentrations from a 2-
year mean perspective. Also, the algorithm proposed in
this study is essentially a semi-physical-based method,
and thus the retrieval process can be improved, upon a
careful study of the physical parameters used in the pro-
cess.

3. Spatial and temporal sampling biases, as well as a re-
trieval bias, are found. Also, several sensitivity studies
were conducted, including surface layer height, cloud
flag, PM2.5/PM10 ratio, relative humidity, and aerosol
type. The sensitivity studies highlight the need for accu-
rate aerosol typing for estimating PM2.5 concentrations
using CALIOP observations.

4. Using surface-based PM2.5 at EPA stations alone, the
e-folding correlation length for PM2.5 concentrations

was found to be about 600 km for the CONUS. A re-
gional analysis yielded values of ∼ 300 and ∼ 700 km
for the western and eastern CONUS, respectively. Thus,
while limited in spatial sampling, measurements from
CALIOP may still be used for estimating PM2.5 con-
centrations over the CONUS.

As noted earlier, CALIOP observations are still rather sparse,
and concerns related to reported CALIOP aerosol extinction
values also exist, such as solar and surface contamination and
the retrieval fill value issue (e.g., Toth et al., 2018). Yet, the
future High Spectral Resolution Lidar (HSRL) instrument
on board the Earth Clouds, Aerosol, and Radiation Explorer
(EarthCARE) satellite (Illingworth et al., 2015), as well as
forthcoming space-based lidar missions in response to the
2017 Decadal Survey, offer opportunities to further explore
aerosol extinction-based PM concentrations. Ultimately the
results from this study show that the combined use of sev-
eral lidar instruments for monitoring regional and global PM
pollution is potentially achievable.

Data availability. The CALIPSO Level 2
5 km aerosol profile (Vaughan et al., 2018;
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05kmAPro-
Standard-V4-10; last access: 26 September 2018)
and aerosol layer (Vaughan et al., 2018;
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05kmALay-
Standard-V4-10; last access: 26 September 2018) products were
obtained from NASA Langley Research Center Atmospheric Sci-
ence Data Center. MODIS data were obtained from NASA Goddard
Space Flight Center (http://ladsweb.nascom.nasa.gov; last access:
12 March 2019). The PM2.5 data were obtained from the EPA AQS
site (https://aqs.epa.gov/aqsweb/airdata/download_files.html; last
access: 12 March 2019).
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Appendix A

Figure A1. For 2008–2009 over the CONUS, for each 1◦× 1◦ grid box, the number of days and CALIOP Level 2 5 km aerosol profiles used
in the creation of the maps in Fig. 3 for (a, c) daytime and (b, d) nighttime measurements. Values greater than 400 profiles for (c, d) are
colored red.
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