Document Type

Article

Publication Date

7-2-2019

Publication Title

Weather and Forecasting

Volume

34

Abstract

A competitive neural network known as the self-organizing map (SOM) is used to objectively identify synoptic patterns in the North American Regional Reanalysis (NARR) for warm-season (April–September) precipitation events over the Southern and Northern Great Plains (SGP/NGP) from 2007 to 2014. Classifications for both regions demonstrate contrast in dominant synoptic patterns ranging from extratropical cyclones to subtropical ridges, all of which have preferred months of occurrence. Precipitation from deterministic Weather Research and Forecasting (WRF) Model simulations run by the National Severe Storms Laboratory (NSSL) are evaluated against National Centers for Environmental Prediction (NCEP) Stage IV observations. The SGP features larger observed precipitation amount, intensity, and coverage, as well as better model performance than the NGP. Both regions’ simulated convective rain intensity and coverage have good agreement with observations, whereas the stratiform rain (SR) is more problematic with weaker intensity and larger coverage. Further evaluation based on SOM regimes shows that WRF bias varies with the type of meteorological forcing, which can be traced to differences in the diurnal cycle and properties of stratiform and convective rain. The higher performance scores are generally associated with the extratropical cyclone condition than the subtropical ridge. Of the six SOM classes over both regions, the largest precipitation oversimulation is found for SR dominated classes, whereas a nocturnal negative precipitation bias exists for classes featuring upscale growth of convection.

Issue

4

First Page

805

Last Page

831

DOI

10.1175/WAF-D-19-0025.1

ISSN

08828156

Rights

This work has been accepted to Weather and Forecasting. The AMS does not guarantee that the copy provided here is an accurate copy of the final published work.

Available for download on Thursday, January 02, 2020

Share

COinS